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Abstract: A meshless collocation method based on the differential reproducing
kernel (DRK) interpolation is developed for the three-dimensional (3D) coupled
analysis of simply-supported, functionally graded (FG) piezoelectric hollow cylin-
ders. The material properties of FG hollow cylinders are regarded as heterogeneous
through the thickness coordinate, and then specified to obey an exponent-law de-
pendent on this. In the present formulation, the shape function for the reproduc-
ing kernel (RK) interpolation function at each sampling node is separated into a
primitive function possessing Kronecker delta properties and an enrichment func-
tion constituting reproducing conditions. By means of this DRK interpolation, the
essential boundary conditions can be readily applied, exactly like the implementa-
tion in the finite element method (FEM). An additional innovation of this meshless
method is that the shape functions for derivatives of the RK interpolation functions
are determined using a set of differential reproducing conditions, rather than di-
rectly differentiating them. In the implementation of the DRK interpolation-based
collocation method presented in this work, some crucial parameters are discussed,
such as the optimal support size and the highest-order of the basis functions. The
influence of the material-property gradient index on the field variables induced in
the FG hollow cylinders is also studied.

Keywords: DRK interpolation, Collocation methods, Meshless methods, Cou-
pled piezoelectric effects, FG material, Cylinders.

1 Introduction

In recent decades, functionally graded (FG) piezoelectric structures have been widely
used in various engineering applications for sensing, actuating and controlling pur-
poses due to their direct and converse multi-field effects. The material properties
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of these FG structures are designed to gradually and continuously vary through the
thickness coordinate. This feature is helpful in preventing from some drawbacks
that often occur in multilayered structures, such as residual stress concentration in-
duced in a high temperature environment and large inter-laminar stresses induced
at interfaces between adjacent layers. However, this feature also increases the com-
plexity and difficulty of the analysis of these FG structures. Consequently, far fewer
published articles deal with the mechanical problems of FG structures in compari-
son to those that consider multilayered structures.

The published three-dimensional (3D) analytical methods for the analysis of mul-
tilayered and FG piezoelectric shells and plates were classified into four different
approaches, namely the Pagano, state space, series expansion and asymptotic ap-
proaches by Wu, Chiu and Wang (2008a). The 3D static behaviors of multilay-
ered piezoelectric cylinders and plates were studied by Heyliger (1997a, b) using
the Pagano approach, which was also applied to the cylindrical bending deforma-
tion and vibration analyses of multilayered plates by Heyliger and Brooks (1995,
1996). A modified Pagano approach was developed for the coupled analysis of FG
magneto-electro-elastic plates (Wu and Lu, 2009; Wu and Chen, 2009). Zhong and
Shang (2003, 2005) and Wu and Liu (2007) presented the 3D exact analyses of FG
piezoelectric and piezo-thermo-elastic plates using the state space approach in con-
junction with the transfer matrix method. Based on the series expansion method,
Kapuria, Sengupta and Dumir (1997a) presented the 3D exact solutions for the
coupled electro-elastic analysis of single-layer homogeneous piezoelectric cylin-
drical hollow cylinders under axisymmetric loads, while Kapuria, Sengupta and
Dumir (1997b) and Kapuria, Dumir and Sengupta (1997) presented the 3D piezo-
thermo-elastic analysis of multilayered hollow cylinders under axisymmetric and
nonaxisymmetric thermo-electric loads, respectively. An asymptotic approach was
developed for a variety of mechanical problems of simply-supported, multilayered
and FG shells made up of smart materials (Wu and Chi, 2004; Wu, Lo and Chao,
2005; Wu and Lo, 2006; Wu, Syu and Lo, 2007; Wu and Syu, 2006, 2007; Wu and
Tsai, 2009). More details about the developments, ideas and applications of these
earlier analytical approaches can be found in Wu, Chiu and Wang (2008a).

In addition to the earlier 3D analytical approaches, some approximate 3D numer-
ical modeling methodologies have also been proposed for the coupled analysis of
multilayered and FG piezoelectric shells and plates. Ramirez, Heyliger and Pan
(2006a, b) proposed a discrete layer approach in combination with the Ritz method
(or the finite element method, FEM) to investigate the static and free vibration re-
sponses of FG material plates. The discrete layer scheme was demonstrated to be
not limited to specific boundary conditions and gradation functions. Cheung and
Jiang (2001) and Akhras and Li (2007) studied the 3D static and 3D static, vibra-



A DRK Interpolation-Based Collocation Method 3

tion and stability analyses of piezoelectric plates, respectively, using a finite layer
method.

In recent decades, meshless methods in which the relevant approximate or inter-
polate functions are constructed using the random distribution of nodes have at-
tracted the considerable attention. These approaches include the diffuse element
method (Nayroles, Touzot and Villon, 1992), the element-free Galerkin method
(Belytschko, Lu and Gu, 1994), the moving least squares method (Lancaster and
Salkauakas, 1981), the meshless local Petrov-Galerkin (MLPG) method (Atluri and
Zhu, 1998, 2000; Atluri, Han and Shen, 2003) and the reproducing kernel particle
method (Liu, Jun and Zhang, 1995). It has been reported that the drawbacks of
FEM in treating discontinuity, moving boundary and large deformation problems
can be overcome. However, it is noted that in the earlier Galerkin-based meshless
methods, except for the MLPG method, a background mesh is still needed to eval-
uate the integral of weak formulation. Based on the MLPG method, which is truly
meshless, Atluri and Shen (2002a) made a comparison study of the efficiency and
accuracy of a variety of meshless trial and test functions. Through a mixed MLPG
approach, Atluri, Han and Rajendran (2004) presented a new implementation of the
meshless finite volume method for the analysis of elasto-static problems. Compre-
hensive literature surveys of meshless methods were undertaken by Atluri (2004),
Atluri and Shen (2002b), Belytschko, Krongauz and Organ (1996) and Liu (2003).

Apart from the earlier Galerkin-based meshless methods, some collocation-based
approaches using different types of approximate or interpolate functions have been
developed for solving the strong formulation of elastic solids (or fluids) in the litera-
ture. A point collocation method based on the reproducing kernel (RK) approxima-
tion has been proposed by Aluru (2000) for numerical solution of partial differential
equations with appropriate boundary conditions. The method has been shown to be
accurate for some one- and two-dimensional problems of elastic solids. Oñate et al.
(1996) presented a finite point method based on the weighted least squares interpo-
lation for the analysis of convective-diffusive transport and compressible fluid flow
problems. Sladek et al. (2006, 2007) studied the plane piezoelectricity and thermo-
piezoelectricity using the MLPG method, which was also applied to the transient
heat conduction in 3D anisotropic FG solids (Sladek et al., 2008) and the stress and
crack analysis in 3D axisymmetric FG material bodies (Sladek et al., 2005).

Recently, a meshless collocation method based on the differential reproducing ker-
nel (DRK) approximation has been developed and applied to the analysis of multi-
layered and FG piezoelectric and magneto-electro-elastic shells and plates by Wu
Chiu and Wang (2008b, c). The novelty of this DRK approximation-based method
is in its modifications for calculating derivatives of the RK approximants. In the
standard RK method, the shape functions for derivatives of the RK approximants
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are obtained by directly differentiating the RK approximants; whereas, in the DRK
approximation-based collocation method, they are obtained using a set of differen-
tial reproducing conditions, which simplifies the relevant computations.

In this paper, a meshless collocation method based on the DRK interpolation is
presented. Unlike the earlier RK and DRK approximations, in which the shape
functions of RK approximants do not possess the Kronecker delta properties, those
in this DRK interpolation do by means of separating each shape function of the
RK function into a primitive function possessing the Kronecker delta properties
and an enrichment function constituting the reproducing conditions. The essential
boundary conditions can thus be readily applied, exactly like the implementation
in the finite element method. A meshless DRK interpolation-based collocation
method is developed and applied to the analysis of FG piezoelectric hollow cylin-
ders with open-circuit and closed-circuit surface conditions and under a variety of
electro-mechanical loads. A parametric study for the effect of the material-property
gradient on the static behavior of the FG piezoelectric hollow cylinders is also un-
dertaken.

2 Basic equations of 3D piezoelectricity

A simply-supported, FG piezoelectric circular hollow cylinder with open-circuit
and closed-circuit surface conditions and subject to electro-mechanical loads is
considered. The configuration and coordinates of the cylinder are shown in Fig.
1. The material properties are regarded as heterogeneous through the thickness co-
ordinate. A set of the orthogonal curvilinear coordinates (α,β ,ζ ) is located on the
middle surface of the hollow cylinder. The total thickness, length and radius of the
cylinder are 2h, L and R, respectively. In addition, x3 = R + ζ , in which ζ is the
distance measured from the mid-surface of the cylinder in the thickness direction.

The linear constitutive equations valid for the nature of the symmetry class of the
piezoelectric material considered are given by

σi = ci jε j− ekiEk, (1)

Dl = el jε j +ηlkEk, (2)

where σi and ε j (i, j=1_6) are the contracted notation for the stress and strain com-
ponents, respectively; Dl (l=1_3) and Ek(k=1_3) denote the electric displacement
components and the electric field components, respectively; ci j, eki and ηlk are the
elastic, piezoelectric and dielectric permeability coefficients, respectively. These
material properties are considered as heterogeneous through the thickness coor-
dinate (i.e., ci j(x3), ηlk(x3) and eki(x3)). For an orthotropic solid, the previous
material coefficients are given by
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Figure 1: The geometry and coordinates of a hollow cylinder.

c =



c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

 , e =



0 0 e31
0 0 e32
0 0 e33
0 e24 0

e15 0 0
0 0 0

 ηηη =

η11 0 0
0 η22 0
0 0 η33

 .

The strain-displacement relationships are

ε1
ε2
ε3
γ23
γ13
γ12


=



∂1 0 0
0 (1/x3)∂2 (1/x3)
0 0 ∂3
0 ∂3− (1/x3) (1/x3)∂2
∂3 0 ∂1

(1/γ)∂2 ∂1 0




u1
u2
u3

 , (3)

in which ∂i = ∂/∂xi; u1,u2 and u3 are the displacement components.

The stress equilibrium equations without body forces are given by

x3σ1,1 + τ12,2 +(x3τ13),3 = 0, (4)
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x3τ12,1 +σ2,2 +(1/x3)
(
x2

3τ23
)
,3 = 0, (5)

x3τ13,1 + τ23,2 +(x3σ3) ,3−σ2 = 0. (6)

The equation of electrostatics for the piezoelectric material without the electric
charge density is

x3D1,1 +D2,2 +(x3D3) ,3 = 0. (7)

The relations between the electric field and electric potential are

Ek =−Φ,k /gk (k = 1,2,3) , (8)

where Φ denotes the electric potential; and gk (k=1, 2, 3) are the scale factors of
the cylindrical coordinate system, in which g1 = g3 = 1 and g2 = x3.

Four different lateral surface conditions are considered, as follows:

Case 1. In the cases of closed-circuit and prescribed mechanical load surface con-
ditions,

τ13 = τ23 = Φ = 0 on ζ =±h; (9a)

and σ3 = q̄+
3 on ζ = h ,

σ3 = 0 on ζ =−h. (9b)

Case 2. In the cases of closed-circuit and prescribed electric potential surface con-
ditions,

τ13 = τ23 = σ3 = 0 on ζ =±h; (10a)

and Φ = Φ̄+ on ζ = h ,

Φ = 0 on ζ =−h. (10b)

Case 3. In the cases of open-circuit and prescribed mechanical load surface condi-
tions,

τ13 = τ23 = D3 = 0 on ζ =±h; (11a)

and σ3 = q̄+
3 on ζ = h ,

σ3 = 0 on ζ =−h. (11b)
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Case 4. In the cases of open-circuit and prescribed electric displacement surface
conditions,

τ13 = τ23 = σ3 = 0 on ζ =±h; (12a)

and D3 = D̄+
3 on ζ = h ,

D3 = 0 on ζ =−h. (12b)

The edge boundary conditions of the cylinder are considered as fully simple sup-
ports, suitably grounded, and are given as

σ1 = u2 = u3 = Φ = 0, at x1 = 0 and x1 = L. (13)

There are twenty-two basic equations in the 3D piezoelectricity, as listed in (1)–(8).
These are essentially a system of simultaneously partial differential equations with
variable coefficients. In the present paper, a meshless collocation method based on
the present DRK interpolation is developed for the coupled analysis of functionally
graded piezoelectric hollow cylinders under the loading conditions of Cases 1–4 in
(9a, b)–(12a, b).

3 Nondimensionalization

In order to scale all the field variables within a close order of magnitude and prevent
unexpected numerical instability in the computation process, we define a set of
dimensionless coordinates and variables, as follows:

x = x1/
√

Rh, θ = x2/
√

R/h, z = ζ/h, γθ = 1+(hz/R) = x3/R,

u = u1/
√

Rh, v = u2/
√

Rh, w = u3/R,

σx = σ1/Q, σθ = σ2/Q, τxθ = τ12/Q,

τxz = τ13/(Q
√

h/R), τθz = τ23/(Q
√

h/R), σz = σ3R/(Qh),

Dx = D1
√

h/R/e, Dθ = D2
√

h/R/e, Dz = D3/e, ϕ = Φe/Qh, (14)

where R, Q and e stand for the characteristic length, the reference elastic and piezo-
electric coefficients, respectively.

In the formulation, the elastic displacements (u,v,w), the transverse shear and nor-
mal stresses (τxz,τθz,σz) and the electric displacement and potential (Dz, ϕ) are
selected as the primary field variables. The other field variables are the secondary
ones, and these can be expressed in terms of the primary variables. Introducing the
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set of dimensionless coordinates and variables (14) and using the method of direct
elimination, we obtain a set of state space equations in terms of the primary field
variables as follows:

∂

∂ z



u
v
σz

Dz

τxz

τθz
w
ϕ


=



0 0 0 0 k15 0 k17 k18
0 k22 0 0 0 k26 k27 k28

k31 k32 k33 k34 k17 k27 k37 0
0 0 0 k44 k18 k28 0 k48

k51 k52 k53 k54 k44 0 k57 0
k61 k62 k63 k64 0 k66 k67 0
k53 k63 k73 k74 0 0 k77 0
k54 k64 k74 k84 0 0 k87 0





u
v
σz

Dz

τxz

τθz
w
ϕ


, (15)

where

k15 = h/c̃55R, k17 =−∂x, k18 =−(hẽ15/Rc̃55)∂x,

k22 = h/Rγθ , k26 = h/c̃44R, k27 =−(1/γθ )∂θ , k28 =−(hẽ24/Rγθ c̃44)∂θ ,

k31 =
(
Q̃21/γθ

)
∂x, k32 =

(
Q̃22/γ

2
θ

)
∂θ , k33 = h(a2−1)/Rγθ ,

k34 = b2e/Qγθ , k37 = Q̃22/γ
2
θ ,

k44 =−h/Rγθ , k48 =(h/R)
[(

ẽ2
15/c̃55

)
+ η̃11

]
∂xx +

(
h/Rγ

2
θ

)[(
ẽ2

24/c̃44
)
+ η̃22

]
∂θθ ,

k51 =−
[
Q̃11∂xx +

(
Q̃66/γ

2
θ

)
∂θθ

]
, k52 =−

[(
Q̃12 + Q̃66

)
/γθ

]
∂xθ ,

k53 =−(a1h/R)∂x, k54 =−(b1e/Q)∂x, k57 =−
(
Q̃12/γθ

)
∂x,

k61 =−
[(

Q̃21 + Q̃66
)
/γθ

]
∂xθ , k62 =−

[
Q̃66∂xx +

(
Q̃22/γ

2
θ

)
∂θθ

]
,
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k63 =−(a2h/Rγθ )∂θ ,

k64 =−(b2e/Qγθ )∂θ , k66 =−2h/Rγθ , k67 =−
(
Q̃22/γ

2
θ

)
∂θ ,

k73 = Qh2
η̄/R2, k74 = ēeh/R, k77 =−a2h/Rγθ ,

k84 =−c̄e2/Q, k87 =−b2e/Qγθ ;

and the relevant coefficients in the previous terms of li j and ki j are given in Ap-
pendix A.

The in-surface stress and electric displacement components are dependent field
variables that can be expressed in terms of the primary variables in the following
form

σp = B1u+B2w+B3σz +B4Dz (16)

d = B5σs +B6ϕ, (17)

where

σp =


σx

σθ

τxθ

 , u =
{

u
v

}
, σs =

{
τxz

τθz

}
, d =

{
Dx

Dy

}
,

B1 =

 Q̃11∂x
(
Q̃12/γθ

)
∂θ

Q̃21∂x
(
Q̃22/γθ

)
∂θ(

Q̃66/γθ

)
∂θ Q̃66∂x

 ,

B2 =

Q̃12/γθ

Q̃22/γθ

0

 , B3 =

a1Qh/R
a2Qh/R

0

 , B4 =

b1e/Q
b2e/Q

0

 ,

B5 =
[
(ẽ15h/c̃55R) 0

0 (ẽ24h/c̃44R)

]
, B6 =

[
−(h/R)

(
ẽ2

15/c̃55 + η̃11
)

∂x

−(h/Rγθ )
(
ẽ2

24/c̃44 + η̃22
)

∂θ

]
.
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The dimensionless form of the boundary conditions on the lateral surfaces are spec-
ified as follows:

Case 1. In the cases of closed-circuit and prescribed mechanical load surface con-
ditions,

τxz = τθz = ϕ = 0 on z =±1; (18a)

and σz = q̄+
z on z = 1 ,

σz = 0 on z =−1, (18b)

where q̄+
z = q̄+

3 (R/Qh).
Case 2. In the cases of closed-circuit and prescribed electric potential surface con-
ditions,

τxz = τθz = σz = 0 on z =±1; (19a)

and ϕ = ϕ̄+ on z = 1 ,

ϕ = 0 on z =−1, (19b)

where ϕ̄+ = Φ̄+ (e/Qh).
Case 3. In the cases of open-circuit and prescribed mechanical load surface condi-
tions,

τxz = τθz = Dz = 0 on z =±1; (20a)

and σz = q̄+
z on z = 1 ,

σz = 0 on z =−1. (20b)

Case 4. In the cases of open-circuit and prescribed electric displacement surface
conditions,

τxz = τθz = σz = 0 on z =±1; (21a)

and Dz = D̄+
z on z = 1,

Dz = 0 on z =−1, (21b)

where D̄+
z = D̄+

3 /e.

At the edges, the following quantities are satisfied:

σx = v = w = ϕ = 0, at x = 0 and x = L/
√

Rh. (22)
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4 The DRK Interpolation

In the present paper, a meshless DRK interpolation-based collocation method is
developed for the analysis of FG piezoelectric hollow cylinders under the electro-
mechanical loads (Cases 1–4). The present DRK interpolation functions and their
relevant derivatives are described, as follows.

4.1 Reproducing kernel interpolation functions

It is assumed that there are NP discrete points randomly selected and located at
z = z1,z2, · · · ,zNP, respectively, in the domain Ω. In the present formulation, a
function F(z) is interpolated as Fa (z) and defined as

Fa(z) =
NP

∑
l=1

Nl(z)Fl

=
NP

∑
l=1

[
φ̄l (z)+ φ̂l (z)

]
Fl,

(23)

where Nl (z) is the shape function of Fa (z) corresponding to the related node at
z = zl; Fl is the nodal value of Fa(z) at z = zl; φ̂l (z) (l=1, 2,. . . , NP) denote the prim-
itive functions used to introduce Kronecker delta properties; φ̄l (z) (l=1, 2,. . . , NP)
denote the enrichment functions for imposing the nth-order reproducing conditions,
and are given by φ̄l(z) = wa(z− zl)PT (z− zl) b̄(z); PT (z− zl) denotes the polyno-
mial basis, and is given as PT (z− zl) =

[
1 (z− zl) (z− zl)2 · · · (z− zl)n

]
; n

denotes the highest order of the basis functions; b̄(z) is the undetermined func-
tion vector, and will be determined by satisfying the reproducing conditions; and
wa(z− zl) is the weight function centered at zl , with a support size a.

By selecting the complete nth-order polynomials as the basis functions to be repro-
duced, we obtain a set of reproducing conditions to determine the undetermined
functions of b̄i(z)(i = 1,2, · · · ,n+1) in (23). The reproducing conditions are give
as

NP

∑
l=1

[
φ̄l (z)+ φ̂l (z)

]
zr

l = zr r ≤ n. (24)

Equation (24) represents (n+1) reproducing conditions, and can be rearranged in
the explicit form of

r = 0 :
NP

∑
l=1

φ̄l (z) = 1−
NP

∑
l=1

φ̂l (z) , (25)
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r = 1 :
NP

∑
l=1

φ̄l (z)(z− zl) = z
NP

∑
l=1

φ̄l (z)−
NP

∑
l=1

φ̄l (z)zl = 0−
NP

∑
l=1

φ̂l (z)(z− zl) (26)

r = 2 :
NP

∑
l=1

φ̄l (z)(z− zl)
2 = z2

NP

∑
l=1

φ̄l (z)−2z
NP

∑
l=1

φ̄l (z)zl +
NP

∑
l=1

φ̄l (z)z2
l

= 0−
NP

∑
l=1

φ̂l (z)(z− zl)
2

(27)

...

r = n :
NP

∑
l=1

φ̄l (z)(z− zl)
n = 0−

NP

∑
l=1

φ̂l (z)(z− zl)
n . (28)

The matrix form of the previous reproducing conditions is given as

NP

∑
l=1

P(z− zl) φ̄l (z) =
NP

∑
l=1

P(z− zl)wa (z− zl)PT (z− zl)b̄(z)

= P(0)−
NP

∑
l=1

P(z− zl) φ̂l (z) ,

(29)

where P(0) =
[
1 0 0 · · · 0

]T .

According to the reproducing conditions in (29), we may obtain the undetermined
function vector b̄(z) in the following form

b̄(z) = A−1(z)

[
P(0)−

NP

∑
l=1

P(z− zl)φ̂l (z)

]
, (30)

where A(z) =
NP
∑

l=1
P(z− zl)wa (z− zl)PT (z− zl).

Substituting (30) into (23) yields the shape functions of Fa (z) in the form of

Nl (z) = φ̄l (z)+ φ̂l (z) (l = 1,2, . . . ,NP), (31)

where φ̄l(z) = wa(z− zl)PT (z− zl)A−1(z)
[

P(0)−
NP
∑

l=1
P(z− zl) φ̂ (z)

]
.

It is noted that if we select a set of primitive functions satisfying the Kronecker
delta properties (i.e., φ̂l (zk) = δlk), then according to (31) the enrichment functions
should vanish at all the nodes (i.e., φ̄l (zk) = 0). A set of the shape functions, Nl(z),
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with Kronecker delta properties is thus obtained (i.e., Nl(zk) = δlk). It is appar-
ent that there are many possibilities to select the set of primitive functions. A set
of finite element shape functions has been suggested by Huerta, Fermandez and
Mendez (2000), while a set of normalized weight functions for which the support
size of each sampling node does not cover any neighbouring nodes has been sug-
gested by Chen et al. (2003). In the present paper, a function of the quartic spline
with its support size not covering any neighbouring nodes is assigned to be the
primitive function for each sampling node.

It is realized from (31) that Nl(z) vanishes when z is not in the support of the node
at z = zl . The influence of the shape functions in the support of each sampling
node monotonically decreases as the relative distance to the node increases, and
this preserves the local character of the present scheme.

4.2 Derivatives of reproducing kernel interpolation functions

Since the reproducing kernel interpolation function in the present scheme, Fa(z), is
given in (23), the first-order derivative of Fa(z) with respect to z is then expressed
as

dFa(z)
dz

=
NP

∑
l=1

N(1)
l (z)Fl

=
NP

∑
l=1

(
φ̄

(1)
l (z)+

dφ̂l(z)
dz

)
Fl,

(32)

where N(1)
l (z) (l=1,2,. . . , NP) denote the shape functions of the first-order deriva-

tive of Fa(z) with respect to z; and φ̄
(1)
l (z) = wa(z− zl)PT (z− zl) b̄1 (z).

The differential reproducing conditions for a set of complete nth-order polynomials
are given as

NP

∑
l=1

[
φ̄

(1)
l (z)+

dφ̂l(z)
dz

]
zr

l = rzr−1 r ≤ n. (33)

Equation (33) represents (n+1) differential reproducing conditions, and can be re-
arranged in the explicit form of

r = 0 :
NP

∑
l=1

φ̄
(1)
l (z) = 0−

NP

∑
l=1

dφ̂l (z)
dz

, (34)
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r = 1 :
NP

∑
l=1

φ̄
(1)
l (z)(z− zl) = z

NP

∑
l=1

φ̄
(1)
l (z)−

NP

∑
l=1

φ̄
(1)
l (z)zl

= −1−
NP

∑
l=1

dφ̂l (z)
dz

(z− zl) (35)

r = 2 :
NP

∑
l=1

φ̄
(1)
l (z)(z− zl)

2 = z2
NP

∑
l=1

φ̄
(1)
l (z)−2z

NP

∑
l=1

φ̄
(1)
l (z)zl +

NP

∑
l=1

φ̄
(1)
l (z)z2

l

= 0−
NP

∑
l=1

dφ̂l (z)
dz

(z− zl)
2

(36)

...

r = n :
NP

∑
l=1

φ̄
(1)
l (z)(z− zl)

n = 0−
NP

∑
l=1

dφ̂l (z)
dz

(z− zl)
n . (37)

Equations (34)–(37) are rewritten in the matrix form of

NP

∑
l=1

P(z− zl)φ̄
(1)
l (z) =

NP

∑
l=1

P(z− zl)wa(z− zl)PT (z− zl)b̄1(z)

=−P(1)(0)−
NP

∑
l=1

P(z− zl)
dφ̂l (z)

dz
,

(38)

where (−1)
[
P(1)(0)

]
=− dP(z−zl)

dz

∣∣∣
z=zl

=
[
0 −1 0 · · · 0

]T .

The undetermined function vector b̄1(z) can then be obtained and given by

b̄1(z) = A−1(z)

[
−P(1)(0)−

NP

∑
l=1

P(z− zl)
dφ̂l (z)

dz

]
. (39)

Substituting (39) into (32) yields the shape functions of the first-order derivative of
the RK interpolation functions with respect to x in the form of

N(1)
l (z) = φ̄

(1)
l (z)+

dφ̂l(z)
dz

, (40)

where φ̄
(1)
l (z) = wa (z− zl)PT (z− zl)A−1 (z)

[
−P(1) (0)−

NP
∑

l=1
P(z− zl)

dφ̂l(z)
dz

]
.
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Carrying out the same derivation for the higher-order derivatives of Fa (z) leads to

dkFa(z)
dzk =

NP

∑
l=1

N(k)
l (z)Fl, (41)

where N(k)
l (z) = φ̄

(k)
l (z)+ dkφ̂l(z)

dzk ,

φ̄
(k)
l (z) = wa (z− zl)PT (z− zl)A−1 (z)

[
(−1)k P(k) (0)−

NP

∑
l=1

P(z− zl)
dkφ̂l (z)

dzk

]
,

P(k)(0) =
dkP(z− zl)

dzk

∣∣∣∣
z=zl

.

4.3 Weight functions

In implementing the present scheme, the weight function and the primitive function
at each sampling node must be selected in advance. The normalized Gaussian
function and the quartic spline function are adopted as the weight function and the
primitive function, respectively, and are given as

Normalized Gaussian function:

w(s) =

 e−(s/α)2−e−(1/α)2

1−e−(1/α)2
for s≤ 1

0 for s > 1
, (42)

Quartic spline:

w(s) =

{
−3s4 +8s3−6s2 +1 for s≤ 1
0 for s > 1

, (43)

where wa(z− zl) = w(s) and s = |z− zl|/a. In the literature α is usually set as 0.3.

It is noted that a very small value of a may result in an unexpected numerical error
when the calculation for the coefficients of the system matrix is performed. On the
other hand, the value of a also has to be small enough to preserve the local character
of the present scheme. Hence, a compromise range of the value of a will be studied
later to ensure the accuracy and convergence of the present scheme.
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5 Applications

The static behavior of the simply-supported, FG piezoelectric hollow cylinders
with open-circuit and closed-circuit surface conditions and operating under electro-
mechanical loads (Cases 1–4) is studied. The applied electro-mechanical loads are
expanded as the double Fourier series in the form of

q̄+
3 =

∞

∑
m̂=1

∞

∑
n̂=1

(
q̄+

3

)
m̂n̂ sin(m̂πx1/L)cos(n̂x2) or

q̄+
z =

∞

∑
m̂=1

∞

∑
n̂=1

(
q̄+

z
)

m̂n̂ sin(m̃x)cos(ñθ) (44a)

Φ̄
+ =

∞

∑
m̂=1

∞

∑
n̂=1

(
Φ̄

+)
m̂n̂ sin(m̂πx1/L)cos(n̂x2) or

ϕ̄
+ =

∞

∑
m̂=1

∞

∑
n̂=1

(
ϕ̄

+)
m̂n̂ sin(m̃x)cos(ñθ) , (44b)

D̄+
3 =

∞

∑
m̂=1

∞

∑
n̂=1

(
D̄+

3

)
m̂n̂ sin(m̂πx1/L)cos(n̂x2) or

D̄+
z =

∞

∑
m̂=1

∞

∑
n̂=1

(
D̄+

z
)

m̂n̂ sin(m̃x)cos(ñθ) , (44c)

where m̃ = m̂π
√

Rh/L, ñ = n̂
√

h/R in which m̂ and n̂ are positive integers.

5.1 The method of double Fourier series expansion

The method of double Fourier series expansion is applied to reduce the system of
partial differential equations (15) to a system of ordinary differential equations. By
satisfying the edge boundary conditions, we express the primary variables in the
following form

(u,τxz) =
∞

∑
m̂=1

∞

∑
n̂=1

(um̂n̂(z),τxzm̂n̂(z))cos m̃xcos ñθ , (45)

(v,τθz) =
∞

∑
m̂=1

∞

∑
n̂=1

(vm̂n̂(z),τθzm̂n̂(z))sin m̃xsin ñθ , (46)

(w,σz,ϕ,Dz) =
∞

∑
m̂=1

∞

∑
n̂=1

(wm̂n̂(z),σzm̂n̂(z),ϕm̂n̂(z),Dzm̂n̂(z))sin m̃xcos ñθ . (47)
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For brevity, the symbols of summation are omitted in the following derivation.
Using the set of dimensionless coordinates and field variables (14) and substituting
(45)–(47) in (15), we have the resulting equations, as follows:

d
dz



um̂n̂

vm̂n̂

σzm̂n̂

Dzm̂n̂

τxzm̂n̂

τθzm̂n̂
wm̂n̂

ϕm̂n̂


=



0 0 0 0 k̄15 0 k̄17 k̄18
0 k̄22 0 0 0 k̄26 k̄27 k̄28

k̄31 k̄32 k̄33 k̄34 −k̄17 −k̄27 k̄37 0
0 0 0 k̄44 −k̄18 −k̄28 0 k̄48

k̄51 k̄52 k̄53 k̄54 k̄44 0 k̄57 0
k̄61 k̄62 k̄63 k̄64 0 k̄66 k̄67 0
−k̄53 −k̄63 k̄73 k̄74 0 0 k̄77 0
−k̄54 −k̄64 k̄74 k̄84 0 0 k̄87 0





um̂n̂

vm̂n̂

σzm̂n̂

Dzm̂n̂

τxzm̂n̂

τθzm̂n̂
wm̂n̂

ϕm̂n̂


, (48)

where l̄i j and k̄i j are given in Appendix B.

Equation (48) represents a system of eight simultaneously linear ordinary differen-
tial equations in terms of eight primary variables. A meshfree collocation method
based on the present DRK interpolation is applied to determine the primary vari-
ables in the elastic and electric fields. Once these primary variables are determined,
the dependent variables can then be calculated using (16)–(17).

5.2 Multilayered hollow cylinders

The present DRK interpolation-based collocation method is applied to the coupled
electro-elastic analysis of multilayered hybrid elastic and piezoelectric cylinders.
Selecting Np nodal points along the thickness coordinate from bottom to top sur-
faces of the mth-layer and applying the present DRK interpolation functions to (48)
at each nodal point, we obtain(

Np

∑
l=1

N(1)
l (z(m)

p )
(

F̂(m)
i

)
l

)
− k̄(m)

i j

(
Np

∑
l=1

Nl(z
(m)
p )

(
F̂(m)

j

)
l

)
= 0

for i, j = 1,2,3, · · · ,8 and p = 1,2,3, · · · ,Np, (49)

where F̂(m) =
{

û(m) v̂(m) σ̂
(m)
z D̂(m)

z τ̂
(m)
xz τ̂

(m)
θz ŵ(m) ϕ̂(m)

}T
and

(
F̂(m)

j

)
l

denotes the nodal value of jth primary variable in F̂(m) at the lth nodal point of the
mth-layer. In the present analysis, we let ∆x(m)

3 = 2h(m)/(Np−1), m = 1,2,3 · · · ,NL
where 2h(m) denotes the thickness of the mth-layer and 2h(m) = ζ

(m)
Np
−ζ

(m)
1 .

The DRK interpolation functions are applied to the boundary conditions on the
lateral surfaces as follows:
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Case 1.
(

F̂(1)
5

)
1
= 0,

(
F̂(1)

6

)
1
=0,
(

F̂(1)
3

)
1
=0,
(

F̂(1)
8

)
1
=0,(

F̂(NL)
5

)
Np

= 0,
(

F̂(NL)
6

)
Np

= 0,
(

F̂(NL)
3

)
Np

= q̄0,
(

F̂(NL)
8

)
Np

= 0,

where

q̄0 =
(
q̄+

3

)
m̂n̂ R/Qh. (50a)

Case 2.
(

F̂(1)
5

)
1
= 0,

(
F̂(1)

6

)
1
=0,
(

F̂(1)
3

)
1
=0,
(

F̂(1)
8

)
1
=0,(

F̂(NL)
5

)
Np

= 0,
(

F̂(NL)
6

)
Np

= 0,
(

F̂(NL)
3

)
Np

= 0,
(

F̂(NL)
8

)
Np

= ϕ̄0,

where

ϕ̄0 =
(
Φ̄

+)
m̂n̂ e/Qh. (50b)

Case 3.
(

F̂(1)
5

)
1
= 0,

(
F̂(1)

6

)
1
=0,
(

F̂(1)
3

)
1
=0,
(

F̂(1)
4

)
1
=0,(

F̂(NL)
5

)
Np

= 0,
(

F̂(NL)
6

)
Np

= 0,
(

F̂(NL)
3

)
Np

= q̄0,
(

F̂(NL)
4

)
Np

= 0, (50c)

Case 4.
(

F̂(1)
5

)
1
= 0,

(
F̂(1)

6

)
1
=0,
(

F̂(1)
3

)
1
=0,
(

F̂(1)
4

)
1
=0,(

F̂(NL)
5

)
Np

= 0,
(

F̂(NL)
6

)
Np

= 0,
(

F̂(NL)
3

)
Np

= 0,
(

F̂(NL)
4

)
Np

= D̄0,

where

D̄0 =
(
D̄+

3

)
m̂n̂ /e. (50d)

The continuity conditions at interfaces between adjacent layers are also given by(
F̂(m)

i

)
Np

=
(

F̂(m+1)
i

)
1

for i = 1,2,3, · · · ,8 and m = 1,2, · · · ,(NL−1). (51)

By means of an assembly process similar to that used in the FEM, we may combine
(49)–(51) to construct a set of system equations of the multilayered hollow cylinder
which consists of [8xNLx(Np−1)] simultaneously algebraic equations in terms of
[8xNLx(Np−1)] unknowns. The primary variables at each nodal point can then be
obtained by solving the previously obtained equations. As a consequence, the sec-
ondary variables can be calculated using (16) and (17), and the through-thickness
distributions of various variables can be interpolated using (23).
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5.3 Functionally graded hollow cylinders

In the present paper, the material properties of the FG piezoelectric hollow cylinder
are assumed to obey an exponent-law dependent on the thickness coordinate of the
cylinder, and are given as

mi j (z) = m(b)
i j eκ[(z+1)/2], (52)

where the superscript b in parentheses denotes the bottom surface of the cylinder;
and κ denotes the material-property gradient index, which represents the degree of
the material-property gradient along the thickness coordinate. It is noted that κ = 0
corresponds to the homogeneous material, κ < 0 to the graded soft material, and
κ > 0 to the graded stiff material.

Selecting NP nodal points along the thickness coordinate from bottom to top sur-
faces of the hollow cylinder and applying the present DRK interpolation to (48) at
each nodal point, we obtain(

NP

∑
l=1

N(1)
l (zr)

(
F̂i
)

l

)
− k̄i j

(
NP

∑
l=1

Nl(zr)
(
F̂j
)

l

)
= 0

for i, j = 1,2,3, · · · ,8 and r = 1,2,3, · · · ,NP (53)

Similarly, the DRK interpolation functions are applied to the boundary conditions
on the lateral surfaces of the cylinder, as follows: Case 1.

(
F̂5
)

1 = 0,
(
F̂6
)

1=0,(
F̂3
)

1=0,
(
F̂8
)

1=0,(
F̂5
)

NP = 0,
(
F̂6
)

NP = 0,
(
F̂3
)

NP = q̄0,
(
F̂8
)

NP = 0. (54a)

Case 2.
(
F̂5
)

1 = 0,
(
F̂6
)

1=0,
(
F̂3
)

1=0,
(
F̂8
)

1=0,(
F̂5
)

NP = 0,
(
F̂6
)

NP = 0,
(
F̂3
)

NP = 0,
(
F̂8
)

NP = ϕ̄0. (54b)

Case 3.
(
F̂5
)

1 = 0,
(
F̂6
)

1=0,
(
F̂3
)

1=0,
(
F̂4
)

1=0,(
F̂5
)

NP = 0,
(
F̂6
)

NP = 0,
(
F̂3
)

NP = q̄0,
(
F̂4
)

NP = 0. (54c)

Case 4.
(
F̂5
)

1 = 0,
(
F̂6
)

1=0,
(
F̂3
)

1=0,
(
F̂4
)

1=0,(
F̂5
)

NP = 0,
(
F̂6
)

NP = 0,
(
F̂3
)

1 = 0,
(
F̂4
)

NP = D̄0. (54d)

Again, by means of an assembly process similar to that used in the FEM, we may
combine (53) and (54) to construct a set of system equations of the FG hollow cylin-
der which consists of [8x(NP−1)] simultaneously algebraic equations in terms of
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[8x(NP−1)] unknowns. The primary variables at each nodal point can then be
obtained by solving the previously obtained equations. As a consequence, the sec-
ondary variables can be calculated using (16) and (17) and the through-thickness
distributions of various variables can be interpolated using (23).

Table 1: Elastic, piezoelectric and dielectric properties of composite and piezoelec-
tric materials

Moduli PVDT Graphite/Epoxy PZT-4
c11(Gpa) 3.0 183.433 138.499

c22 3.0 11.662 138.499
c33 3.0 11.662 114.745
c12 1.5 4.363 77.371
c13 1.5 4.363 73.643
c23 1.5 3.918 73.643
c44 0.75 2.870 25.6
c55 0.75 7.170 25.6
c66 0.75 7.170 30.6

e24
(
C/m2

)
0.0 0.000 12.72

e15 0.0 0.000 12.72
e31 -0.15e-02 0.000 -5.2
e32 0.285e-01 0.000 -5.2
e33 -0.51e-01 0.000 15.08

η11 (F/m) 0.1062e-09 1.53e-08 1.306e-08
η22 0.1062e-09 1.53e-08 1.306e-08
η33 0.1062e-09 1.53e-08 1.151e-08

6 Illustrative examples

6.1 Single-layer homogeneous piezoelectric hollow cylinders

For comparison purposes, the present DRK interpolation-based collocation method
is applied to the coupled analysis of simply-supported, single-layer homogeneous
piezoelectric hollow cylinders with closed-circuit boundary conditions and under
axisymmetric electro-mechanical loads. The mechanical load (q̄+

3 = q0 sin(πx1/L) ,q0 =
−1N/m2) and electric potential (Φ+ = ϕ0 sin(πx1/L) ,ϕ0 = 1V) are applied on the
outer surface of the cylinder, respectively (i.e., Cases 1 and 2 with m̂ = 1, n̂=0).
The cylinder is considered to be composed of polyvinyledene fluoride (PVDF) po-
larized along the radial direction. The geometric parameter of R/2h is taken as
R/2h =4. The elastic, piezoelectric and dielectric properties of the PVDF material
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are given in Table 1. A set of normalized variables is defined as the same form of
that used in earlier research (kapuria, Sengupta and Dumir, 1997a; Wu, Syu and
Lo, 2007), and is given as follows:

In the cases of applied mechanical loads,

(ū, w̄) = (u1/2h,u3/2h)/
(
|q0|S2/ET

)
,

(D̄x, D̄z) = (10D1S/ |q0| |dT | ,D3/ |q0|S |dT |) ,

(σ̄x, σ̄θ , σ̄z, τ̄xz) = (σ1,σ2/S,σ3,τ13S)/ |q0| ,

ϕ̄ = 1000ΦET |dT |/2h |q0| . (55)

In the cases of applied electrical potential,

(ū, w̄) = (u1/ϕ0S |dT | ,u3/ϕ0S |dT |) ,

(D̄x, D̄z) =
(

2hD1S/100ϕ0ET |dT |2 ,2hD3/ϕ0ET |dT |2
)

,

(σ̄x, σ̄θ ) = (2hSσ1/ϕ0ET |dT | , 2hSσ2/ϕ0ET |dT |) ,

(σ̄z, τ̄xz) =
(
2hS2

σ3/ϕ0ET |dT | , 20hS2
τ13/ϕ0ET |dT |

)
,

ϕ̄ = Φ/ϕ0, (56)

and S = R/2h, ET = 2.0GPa, |dT |= 30x10−12C / N.

Tables 2–3 show the elastic and electric field variables induced at crucial positions
of the single-layer piezoelectric cylinder under the mechanical load and electric
potential, respectively. In the implementation, a uniform spacing (∆z) for each
pair of neighboring nodal points is used, where ∆z = 2 / (NP - 1) and ∆z = ∆x3/h.
The effects of the highest order of basis functions (n) and the support size (a) on the
present solutions are presented, where the values of (n, a) are taken to be (2, 2.1∆z),
(3, 3.1∆z) and (4, 4.1∆z). The total number of nodal points is taken as NP=7, 9,
11, 21. The accuracy and rate of convergence of the present method are validated
by comparing the present solutions with the available 3D solutions obtained by
Kapuria, Sengupta and Dumir (1997a) using the modified Frobenius series method
and the 3D asymptotic solutions by Wu, Syu and Lo (2007) using the perturbation
method. It is shown from Tables 2–3 that the present solutions with (n=3, a=3.1∆z)
and (n=4, a=4.1∆z) are in excellent agreement with the available 3D solutions.



22 Copyright © 2009 Tech Science Press CMES, vol.52, no.1, pp.1-37, 2009

Table
2:

T
he

elastic
and

electric
field

variables
at

crucial
positions

of
single-layer

piezoelectric
hollow

cylinders
under

m
echanicalload

(C
ase

1
w

ith
m̂

=
1,n̂

=
0

and
R
/2h=4)

n
a

T
heories

-ū
(0

,−
h)

-w̄ (
L2 ,−

h )
-D̄

z (
L2 ,−

h )
-σ̄

x (
L2 ,−

h )
-σ̄

θ (
L2 ,−

h )
-τ̄

xz (0
,0)

-σ̄
z (

L2 ,0 )
-ϕ̄ (

L2 ,0 )
2

2.1
∆

z
PresentN

P
=

7
0.646800

1.107194
0.820820

-0.384845
1.234774

0.071501
0.585915

1.622457
N

P
=

9
0.646334

1.106352
0.820561

-0.384655
1.233822

0.070927
0.585662

1.545054
N

P
=11

0.646075
1.105897

0.820378
-0.384524

1.233309
0.071313

0.585845
1.592037

N
P

=21
0.645675

1.105206
0.820077

-0.384301
1.232535

0.071222
0.585840

1.578582
3

3.1
∆

z
PresentN

P
=

7
0.645506

1.104919
0.819944

-0.384201
1.232213

0.071262
0.585902

1.582129
N

P
=

9
0.645516

1.104935
0.819954

-0.384208
1.232232

0.071239
0.585857

1.580362
N

P
=11

0.645519
1.104940

0.819957
-0.384210

1.232237
0.071250

0.585874
1.581213

N
P

=21
0.645521

1.104943
0.819959

-0.384211
1.232241

0.071247
0.585869

1.580984
4

4.1
∆

z
PresentN

P
=

7
0.645501

1.104909
0.819941

-0.384200
1.232203

0.071250
0.585873

1.581207
N

P
=

9
0.645513

1.104930
0.819952

-0.384207
1.232226

0.071246
0.585870

1.580946
N

P
=11

0.645517
1.104937

0.819956
-0.384210

1.232234
0.071248

0.585870
1.581036

N
P

=21
0.645521

1.104943
0.819959

-0.384211
1.232240

0.071247
0.585869

1.581004
3D

asym
ptotic

solutions
0.6455

1.1049
0.8200

-0.3842
1.232
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6.2 Multilayered piezoelectric hollow cylinders

A coupled analysis of multilayered piezoelectric hollow cylinders with closed-
circuit surface conditions and subject to a nonaxisymmetric mechanical load (q̄+

3 =
q0 sin(πx1/L)cos4x2, q0 =−1N/m2) and electric potential (Φ+ = ϕ0 sin(πx1/L)cos4x2,
ϕ0 = 1V) on the outer surface of the cylinder is considered in Tables 4 and 5, re-
spectively. The cylinder is composed of a [00/900/00] laminated composite cylinder
bonded with piezoelectric layers of PZT-4 on the outer and inner surfaces (see Fig.
1). The thickness ratio of each layer is PZT-4 layer : 00-layer : 900-layer : 00-
layer : PZT-4 layer = 0.1h: 0.6h: 0.6h: 0.6h: 0.1h. The geometric parameters
are taken as R/2h=5 and L/R=4. The material properties of the composite material
(Graphite/Epoxy) and piezoelectric material (PZT-4) are given in Table 1. A set of
normalized variables is defined as follows:

In the cases of applied mechanical loads,

(ū, w̄) = (u1c∗/q0 (2h) ,u3c∗/q0 (2h)) ,

(σ̄x, σ̄θ , τ̄xθ , σ̄z, τ̄xz) = (σ1,σ2,τ12,σ3,τ13)/q0,

(D̄x, D̄z) = (D1c∗/q0e∗,D3c∗/q0e∗) , ϕ̄ = Φe∗/q0 (2h) . (57)

where c∗ = 1N/m2, e∗ = 1C/m2.

In the cases of applied electrical potential,

(ū, w̄) = (u1c∗/ϕ0e∗,u3c∗/ϕ0e∗) ,

(σ̄x, σ̄θ , τ̄xθ , σ̄z, τ̄xz) = (σ1,σ2,τ12,σ3,τ13)(2h/ϕ0e∗) ,

(D̄x, D̄z) =
(

2hD1c∗/ϕ0 (e∗)2 ,2hD3c∗/ϕ0 (e∗)2
)

, ϕ̄ = Φ/ϕ0. (58)

The values of elastic and electric field variables induced at the interfaces between
adjacent layers, outer and inner surfaces, and the mid-surface of the hollow cylinder
under the loading conditions of Cases 1 and 2 with m̂ = 1, n̂ = 4 are presented in
Tables 4 and 5, respectively. In the present analysis, the values of n, a and Np are
taken as n=3, a=3.1∆z(m) and Np=7, 9. The present solutions are compared with
the 3D asymptotic solutions available in the literature (Wu, Syu and Lo, 2007), and
Tables 4 and 5 show that they are in excellent agreement. In addition, in views of
the inherent Kronecker delta properties of these DRK interpolation functions, it is
also shown that the present analysis leads to the continuous values of the primary
variables at the interfaces between adjacent layers, and the boundary conditions on
the lateral surfaces are exactly satisfied.
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6.3 Functionally graded piezoelectric hollow cylinders

A coupled analysis of FG piezoelectric hollow cylinders subjected to the loading
conditions of Cases 1–4 on the lateral surfaces with m̂ = 1and n̂ = 4, is considered.
The geometric parameters of the cylinders are R/2h = 10, L/R = 4. The dimen-
sionless variables used in the cases of applied mechanical loads (Cases 1 and 3)
and applied electric potential (Case 2) are identical to those used in Example 6.1
(i.e., (57)–(58)). The set of dimensionless variables in the cases of applied electric
displacement is defined as

(ū, w̄) = (u1e∗/D0 (2h) ,u3e∗/D0 (2h)) ,

(σ̄x, σ̄θ , τ̄xθ , σ̄z, τ̄xz) = (σ1,σ2,τ12,σ3,τ13)e∗/D0c∗,

(D̄x, D̄z) = (D1/D0,D3/D0) ,

ϕ̄ = Φ(e∗)2 /D0c∗ (2h) . (59)

The material properties are assumed to obey the exponent-law dependence on the
thickness coordinate of the cylinder and are given as (52), where the material-
property gradient index κ is taken as κ=-3.0, -1.5, 0.0, 1.5, 3.0 and the material
properties of bottom surface of the cylinder are considered to be the same as PZT-4,
the material properties of which are given in Table 1. The through-thickness distri-
butions of various variables in the elastic and electric fields induced in the cylinders
under four different loading conditions (i.e., Cases 1–4) are presented in Figs. 2–5,
respectively. It is shown in Figs. 2 and 4 that the through-thickness distributions of
various elastic variables induced in the cylinder with closed-circuit surface condi-
tions are almost identical to those induced in the cylinder with open-circuit surface
conditions in the cases of applied mechanical loads, whereas the through-thickness
distributions of electric variables induced in the cylinders with the closed-circuit
and open-circuit surface conditions are largely different from each other. Figs.
2(a)–5(a) and 2(b)–5(b) show that the through-thickness distributions of the elastic
displacements appear to be linear in both homogeneous cylinders (i.e., κ=0) and
functionally graded cylinders (κ 6= 0). Figs. 2(c)–5(c) and 2(d)–5(d) show that
the through-thickness distributions of the in-surface stresses appear to be linear in
homogeneous cylinders, whereas these distributions become higher-degree polyno-
mials in FG cylinders, and these dramatically change through the thickness coor-
dinate when the absolute value of κ becomes larger. Figs. 2(e, f) and 4(e, f) show
that the through-thickness distributions of the transverse shear and normal stresses
appear to be parabolic functions in homogeneous cylinders. These distributions
become higher-degree polynomials in FG cylinders. In addition, the magnitude of
these stresses increases in the bottom half (−1≤ z≤ 0) and decreases in the top half
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Figure 2: The through-thickness distributions of various field variables in an FG
hollow cylinder with the surface conditions of Case 1.
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Figure 3: The through-thickness distributions of various field variables in an FG
hollow cylinder with the surface conditions of Case 2.
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Figure 4: The through-thickness distributions of various field variables in an FG
hollow cylinder with the surface conditions of Case 3.
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Figure 5: The through-thickness distributions of various field variables in an FG
hollow cylinder with the surface conditions of Case 4.
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(0≤ z≤ 1) of the cylinder when κ becomes a negative value, whereas it decreases in
the bottom half and increases in the top half of the cylinder when κ becomes a pos-
itive value. Figs. 3(e, f) and 5(e, f) show that the through-thickness distributions of
transverse shear and normal stresses appear to be higher-degree polynomials when
the cylinders are subjected to the electric loads. These distributions change dra-
matically when the material-property gradient index κ becomes a positive value in
Case 2, while they change dramatically when κ becomes a negative value in Case
4. Figs. 2–5 show that the distributions of elastic and electric variables through
the thickness of FG cylinders reveal different patterns from the distributions with
homogeneous cylinders, and the influence of the material-property gradient index
κ on the field variables is significant. In addition, it is seen from Figs. 2(c, f, g,
h)–5(c, f, g, h) that the prescribed boundary conditions on the lateral surfaces of the
cylinder are exactly satisfied.

7 Concluding remarks

In this paper we have developed a meshfree collocation method based on the differ-
ential reproducing kernel interpolation for the three-dimensional static analysis of
simply-supported, FG piezoelectric hollow cylinders with closed-circuit and open-
circuit surface conditions. Four different lateral surface conditions of the cylin-
ders, namely closed-circuit and applied mechanical load, closed-circuit and applied
electric potential, open-circuit and applied mechanical load, and open-circuit and
applied electric displacement, are considered. The accuracy and the rate of con-
vergence of the present DRK interpolation-based collocation method are evaluated
in comparison with the available 3D solutions and 3D asymptotic solutions, with
which the present solutions are shown to converge rapidly and be in excellent agree-
ment. It is noted that the distributions of elastic and electric variables through the
thickness of FG cylinders reveal different patterns from those distributions of ho-
mogeneous cylinders, and the influence of the material-property gradient index κ

on the field variables is significant.
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Appendix A

The relevant coefficients of ki j in (15) are given by

c̃i j = ci j/Q, ẽi j = ei j/e, η̃i j = ηi jQ/e2;

Qi j = ci j− ci3a j− e3ib j (i, j=1, 2, 6), Q̃i j = Qi j/Q;

ai = (ci3η33 + e3ie33)/∆, bi = (e33ci3− e3ic33)/∆ (i=1, 2), and ∆ = c33η33 +e2
33;

c̄ = c33/∆, η̄ = η33/∆, ē = e33/∆, γθ = 1+(hz/R) . (60)

Appendix B

The coefficients k̄i j in (48) are given by

k̄15 = k15, k̄17 =−m̃, k̄18 =−m̃(hẽ15/Rc̃55) ,
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k̄22 = k22, k̄26 = k26, k̄27 = ñ(1/γθ ) , k̄28 = ñ(hẽ24/Rγθ c̃44) ,

k̄31 =−m̃
(
Q̃21/γθ

)
, k̄32 = ñ

(
Q̃22/γ

2
θ

)
, k̄33 = k33, k̄34 = k34, k̄37 = k37,

k̄44 = k44, k̄48 =−m̃2 (h/R)
[(

ẽ2
15/c̃55

)
+ η̃11

]
− ñ2 (h/Rγ

2
θ

)[(
ẽ2

24/c̃44
)
+ η̃22

]
,

k̄51 = m̃2Q̃11 + ñ2 (Q̃66/γ
2
θ

)
, k̄52 =−m̃ñ

[(
Q̃12 + Q̃66

)
/γθ

]
,

k̄53 =−m̃(a1h/R) , k̄54 =−m̃(b1e/Q) , k57 =−m̃
(
Q̃12/γθ

)
,

k61 =−m̃ñ
[(

Q̃21 + Q̃66
)
/γθ

]
, k62 = m̃2Q̃66 + ñ2 (Q̃22/γ

2
θ

)
, k63 = ñ(a2h/Rγθ ) ,

k64 = ñ(b2e/Qγθ ) , k̄66 = k66, k̄67 = ñ
(
Q̃22/γ

2
θ

)
,

k̄73 = k73, k̄74 = k74, k̄77 = k77, k̄84 = k84, k̄87 = k87.




