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A Unified Computational Approach to Instability of
Periodic Laminated Materials
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Abstract: The present work is devoted to the investigation of the internal insta-
bility in laminated materials. The paper is concerned with the development of a
unified computational procedure for numerical realisation of the method as applied
to various constitutive equations of the layers, different loading schemes (uniaxial
or biaxial loading) and different precritical conditions (large or small precritical de-
formations). It contains many examples of critical stresses/strains calculations for
particular composites as well as analysis of different buckling modes.
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1 Introduction

The compressive strength of currently used advanced layered materials – e.g., cross-
ply and multi-directional carbon fibre reinforced plastics, glass fibre reinforced
plastics, aramid fibre-aluminium laminates, glass fibre-aluminium laminates, car-
bon fibre-aluminium laminates, hybrid titanium composite laminates etc. – is gen-
erally 30–40% lower than the tensile strength, see Budiansky and Fleck (1994),
Soutis and Turkmen (1995), Schultheisz and Waas (1996), Niu and Talreja (2000).
Thus it is recognised that the compressive strength is often a design-limiting factor.

A better understanding of the compressive strength and failure mechanisms is there-
fore crucial to the development of improved modern materials [Zhang, Huang
and Atluri (2008), Fitzgerald, Goldbeck-Wood, Kung, Petersen, Subramanian and
Wescott (2008)]. The task of deriving three-dimensional (3-D) analytical solutions
to describe the response of laminated materials is considered as one of great impor-
tance [Kouri and Atluri (1993), Patrício, Mattheij and With (2008, 2009), Solano,
Costales, Francisco, Martín Pendás, Miguel Blanco, Lau, He and Ravindra Pandey
(2008), Kashtalyan and Menshykova (2007, 2009), Menshykova, Menshykov and
Guz (2009)]. Analytical solutions, if obtained, enable us to analyse the behaviour
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of a structure on the wide range of material properties, and loading schemes, with-
out the restrictions imposed by simplified approximate methods.

The work of Dow and Grunfest (1960) was the first to consider the microbuckling of
fibres as a form of fracture of a unidirectional composite under compression. Since
then, the beginning of fracture process under compression is usually associated
with the buckling of the microstructure of the material when the critical load is
determined by parameters characterising the microstructure of the composite rather
than by the dimensions and shape of the specimen or structural member, i.e. with
the internal instability phenomena according to Biot (1965). In this paper we adopt
the same assumption of linking the onset of fracture and the loss of stability in the
internal structure of the material.

This paper concerns with the most accurate approach to study this phenomenon. It
is based on the model of a piecewise-homogeneous medium, when the behaviour
of each component of the material is described by the 3-D equations of solid me-
chanics, without any simplifications for the modelling of material behaviour in the
vicinity of the cracks. The corresponding equations for the plane problem are ob-
tained in the usual way from the set of equations for three-dimensional problems.
The results of this approach give the most accurate information about the consid-
ered phenomenon and can be used as a benchmark for simplified models.

Probably the first solutions to the problem of internal instability for a layered ma-
terial obtained within the most accurate (exact) approach were reported by Guz
(1969), Babich and Guz (1969, 1972), where the problem for linear-elastic layers
under uniaxial compression was solved. This solution was included in numerous
books, for example, Guz, (1990), and comprehensive reviews on the topic, e.g., by
Guz (1992, 2009). This problem seems to remain topical for more than thirty years
and is still being “re-examined”. A paper by Parnes and Chiskis (2002) reports
the solution (by a very approximate method, based on the modelling rigid layers as
2-D beams embedded in the matrix) of precisely the same problem that was solved
more than thirty(!) years ago in Guz (1969), Babich and Guz (1972) within the
exact approach.

Later the exact solutions were derived also for more complex problems: for or-
thotropic, non-linear elastic and elastic-plastic, compressible and incompressible
layers including the case of large (finite) deformations – see, for example, Guz
(1989a,b, 1998), Guz and Dekret (2006, 2009a,b), Guz and Guz (2000a,b,c), Guz
and Soutis (2001a,b), Guz and Herrmann (2003), Dekret (2008a,b) and the reviews
by Guz (1990, 1992, 2005, 2009). Recently, the application of the developed meth-
ods to the materials with pronounced heterogeneity at nano-scale was also exam-
ined [Guz and Rodger, Guz and Rushchitsky (2007), Guz, Rushchitsky and Guz,
(2007), Guz and Rushchitsky (2004, 2007)].
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The importance and the complexity of the considered phenomena caused a large
number of publications which put forward various approximate methods aimed at
tackling the problems with different levels of accuracy – see, for example, Rosen
(1965), Schuerch (1966), Sadovsky, Pu and Hussain (1967) and the reviews by
Budiansky and Fleck (1994), Soutis and Turkmen (1995), Schultheisz and Waas
(1996), Niu and Talreja (2000). It was concluded after the detailed analyses [Guz
(1990, 1992), Soutis and Turkmen (1995), Niu and Talreja (2000)], that the approx-
imate methods are not very accurate when compared to experimental measurements
and observations.

For instance, the model suggested by Rosen (1965) involves considerable simplifi-
cations, modelling the reinforcement layers by the thin beam theory and the matrix
as an elastic material using one-dimensional stress analysis. It makes the results of
this method inaccurate even for simple cases. It was shown by Guz (1990, 1992),
Guz and Soutis (2000), Soutis and Guz (2001) that the approximate model can give
a significant discrepancy in comparison with the exact approach and with experi-
mental data even for the simplest case of a composite with linear elastic compress-
ible layers undergoing small pre-critical deformations and considered within the
scope of geometrically linear theory. For small fibre volume fractions the approxi-
mate approach gives physically unrealistic critical strains. It does not describe the
phenomenon under consideration even on the qualitative level, since it predicts a
different mode of stability loss from that obtained by the 3-D exact analysis. For
more complex models, which take into account large deformations and geometrical
and physical non-linearity (e.g. those considered in this chapter), the approximate
theories are definitely inapplicable and one can expect even a bigger difference be-
tween the exact and approximate approaches. The exact approach utilised through-
out this paper allows us to take into account large deformations, geometrical and
physical non-linearities and load biaxiality that the simplified methods cannot con-
sider.

Another approach, which is commonly used, is based on the investigation of fibre
kinking. From the early literature on compressive fracture it was easy to get the
impression that fibre instability (microbuckling) and kinking are competing mech-
anisms. However, it is now accepted that a kink band is an outcome of the mi-
crobuckling failure of actual fibres, as observed experimentally by Guynn, Bradley
and Ochoa (1992) and Moran, Liu and Shih (1995). Fibre microbuckling occurs
first, followed by propagation of this local damage to form a kink band. A com-
prehensive comparative analysis of the Rosen model, Argon-Budiansky (kinking)
model, and Batdorf-Ko model was presented by Soutis and Turkmen (1995). Stud-
ies of the kinking phenomenon were also reviewed by Budiansky and Fleck (1994).
It was shown by Soutis and Turkmen (1995) that the existing kinking analyses are
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able to account for some, but not all, of the experimental observations. They cor-
rectly predict that shear strength and fibre imperfections are important parameters
affecting the compressive strength of the composite. However, within this model it
is not possible to say exactly how the strength will vary with fibre content; and the
value of misalignment is chosen arbitrarily. This model requires knowledge of the
shear strength properties, the initial fibre misalignment and, the most importantly,
the kink-band orientation angle which is a post-failure geometric parameter.

The simplified models are not analysed in this paper. This paper is concerned with
the development of a unified computational procedure for numerical realisation of
the most accurate (“exact”) method as applied to various constitutive equations
of the layers, different loading schemes (uniaxial or biaxial loading) and different
precritical conditions (large or small precritical deformations). It contains many ex-
amples of calculation of critical stresses/strains for particular composites as well as
analysis of different buckling modes. Some comparisons with available experimen-
tal data were discussed earlier by Guz (1990), Berbinau, Soutis and Guz (1999),
Winiarski and Guz (2008).

2 Formulation of the problem

Let us briefly consider the statement of the problem of internal instability (mi-
crobuckling) for layered composites. The detailed formulations for particular types
of layered materials were given, for example, in Guz and Soutis (2000), Guz and
Herrmann (2003).

 
Figure 1: Cartesian co-ordinate system and loads for a layered composite system.
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The thicknesses of the layers of a composite are 2hr and 2hm, see Fig. 1. Two
different loading schemes are studied: the uniaxial compression and the biaxial
compression. The solution of the problem is obtained for four modes of stability
loss see Guz and Herrmann (2003).

Using the piecewise-homogeneous medium model and the equations of the 3-D
stability theory Guz (1999) the following eigen-value problem must be solved.

The stability equations for each layer are, see Guz (1999),

∂

∂xi
tr
i j = 0,

∂

∂xi
tm
i j = 0; i, j = 1, 2, 3, (1)

where ti j is the non-symmetrical Piola-Kirchhoff stress tensor (nominal stress ten-
sor). Tensor ti j has the following form:

ti j = κi jαβ

∂uα

∂xβ

+δi jλ
−1
j p, ti j = ωi jαβ

∂uα

∂xβ

(2)

for incompressible solids (λ1λ2λ3 = 1 is the incompressibility condition, λ j is the
elongation/shortening factor in the direction of the OX j axis) and

ti j = ωi jαβ

∂uα

∂xβ

(3)

for compressible solids. The components of the tensors κi jαβ and ωi jαβ depend on
the properties of the layers and the loads. The most general expressions for κi jαβ

and ωi jαβ could be found in Guz (1999):

κi jαβ = λ jλα [δi jδαβ Aβ i +(1−δi j)(δiαδ jβ µi j +δiβ δ jα µ ji)]+δiβ δ jαS0
ββ

, (4)

ωi jαβ = λ jλα [δi jδαβ A′
β i +(1−δi j)(δiαδ jβ µ

′
i j +δiβ δ jα µ

′
ji)]+δiβ δ jαS0

ββ
,

where Ai j(A′i j) and µi j(µ ′i j) are the quantities which characterise the axial and shear
stiffnesses. The quantity characterising the precritical state (the stress component
S0

11 or the strain component ε0
11) is the parameter in respect to which the eigen-value

problem should be solved.

To complete the problem statement, the boundary conditions for each interface
should be written. The layer interfaces could consist of zones of perfectly con-
nected (bonded) layers and defects such as cracks or delaminations. In this study
we consider the composites with perfectly bonded layers or “perfectly lubricated”
(sliding without friction) interfaces. For the perfectly bonded layers we have the
continuity conditions for the stresses and displacements

tr
3i = tm

3i, ur
i = um

i , i = 1,3, (5)
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and for “the perfectly lubricated layers”, see Aboudi (1987), Librescu and Schmidt
(2001), only the continuity of the normal components is retained at the surface, with
boundary conditions for perturbations of stresses and displacements in the form of

tr
31 = tm

31 = tr
32 = tm

32 = 0, tr
33 = tm

33, ur
3 = um

3 . (6)

Note that in practical cases the assumption of perfect bonding between neighbour-
ing layers in composites does not correspond to reality due to different imperfec-
tions always present in real laminated materials. Unfortunately considering the
composite with such defects it is sometimes difficult to identify a set of the defects
and its influence on the stability of the composite material. Hence, we suggest the
following estimation. It is obvious that the critical strain εcr for a real composite
with imperfections of interfacial adhesion must be larger than the critical strain ε

pl
cr

for the same structure with perfectly lubricated layers, but smaller than the criti-
cal strain ε

pb
cr for the structure with perfectly bonded layers. Thus, we obtain the

following bounds for the critical strain:

ε
pl
cr ≤ εcr ≤ ε

pb
cr . (7)

3 Analytical solution

Solutions of equation (1) (i.e. perturbations of stresses and displacements) for each
of the layers can be expressed through the functions X and Ψ, which are the solu-
tions of the following equations, see Guz (1999)(

∆1 +ξ
2
1

∂ 2

∂x2
3

)
Ψ = 0, (8)

(
∆1 +ξ

2
2

∂ 2

∂x2
3

) (
∆1 +ξ

2
3

∂ 2

∂x2
3

)
X = 0,

where ∆1 = ∂ 2

∂x2
1
+ ∂ 2

∂x2
2
.

The parameter ξ j depends on the components of the tensor κi jαβ (or ωi jαβ ) and,
therefore, on the properties of the layers and on the loads. It was proved in Guz
(1989) that for elastic compressible and elastic incompressible layers ξ 2

j > 0, Im

ξ 2
j = 0 and for elastic-plastic incompressible layers Imξ

2
2,3 6= 0, ξ 2

3 = ξ 2
2 .

The characteristic determinants associated with the four modes of stability loss
were derived earlier in Guz (1989a,b, 1990, 1992) for various constitutive equa-
tions of the layers, different loading schemes (uniaxial or biaxial loading) and dif-
ferent precritical conditions (large or small precritical deformations). Similarly, the
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characteristic equations can be derived for other modes of stability loss. However,
the modes with the larger periods in transverse direction are usually not of practical
interest. In this paper, the characteristic determinants are presented in the unified
form in order to facilitate a uniform computational procedure for solving them:

- for perfectly bonded layers

det

∥∥∥∥∥∥∥∥
β11 β12 β13 β14
β21 β22 β23 β24
β31 β32 β33 β34
β41 β42 β43 β44

∥∥∥∥∥∥∥∥ = 0, (9)

- for perfectly lubricated layers

det

∥∥∥∥∥∥∥∥
β11 β12 0 0
β21 β22 β23 β24
0 0 β13 β14

β41 β42 β43 β44

∥∥∥∥∥∥∥∥ = 0. (10)

The elements of the determinant for different types of materials and for different
loading schemes are given in Guz (1990, 1992), Guz and Soutis (2000, 2001a,b),
Guz and Herrmann (2003), Soutis and Guz (2001, 2006).

4 Computational procedure

To facilitate the analysis of characteristic determinants, the software package with
the graphical user-friendly interface was developed using MATLAB 7.6.0 (R2008a).
The software contains the database of material properties for typical layered com-
posites and the library of components of the tensors κi jαβ and ωi jαβ , Eq. (4). The
fully automated numerical procedure consists of the following steps. First, the char-
acteristic determinants, Eqs. (9) and (10), are computed depending on the user’s
choice of loading schemes (uniaxial or biaxial loading), initial conditions (large
or small precritical deformations), and interfacial properties (perfectly bonded and
perfectly lubricated layers). Then the results are analysed, and the critical con-
trolled parameters of the internal instability (including the critical wavelength) are
searched for. This analysis is conducted for all four considered modes of stability
loss. At the final stage the modes are compared and the critical mode is found.

Some of the results for the cases of perfectly bonded and perfectly lubricated layers
are presented in the next Section of this paper.
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5 Results for different layered materials

5.1 Hyperelastic incompressible layered materials

Let the composite consists of alternating non-linear hyperelastic layers – many new
materials fall into this category, see Ling and Atluri (2007).

Suppose that the materials of these layers are incompressible and a simplified ver-
sion of the Mooney’s potential, namely the so-called neo-Hookean potential, may
be chosen to describe them in the following form

Φ
r = 2Cr

10Ir
1(ε

0
i j), Φ

m = 2Cm
10Im

1 (ε0
i j), (11)

where Φ is the strain energy density function (elastic potential), C10 is a material
constant, and I1(ε) is the first algebraic invariant of the Cauchy-Green strain tensor.
This potential is also called the Treloar’s potential, after the author who obtained
it from an analysis of a model for rubber regarded as a macromolecular network
structure made of very long and flexible interlinking chains, see Treloar (1975).

Then the characteristic equations (9) and (10) can be specified for particular modes
of stability loss following Guz (1989a) and Guz and Herrmann (2003). The result-
ing transcendental equations in terms of λ1 (shortening factor) and αr (normalised
wavelength) will be different for each of the modes. In the case of biaxial loading
Guz and Herrmann (2003):

1) for perfectly bonded layers

- for the first (shear) mode

−λ
−3(1+λ

6
1 )2[1−Cr

10(C
m
10)
−1]2 tanhαrλ

−3
1 tanhαmλ

−3
1

−4λ
3
1 [1−Cr

10(C
m
10)
−1]2 tanhαr tanhαm

+[2− (1+λ
6
1 )Cr

10(C
m
10)
−1]2 tanhαrλ

−3
1 tanhαm

+[1+λ
6
1 −2Cr

10(C
m
10)
−1]2 tanhαr tanhαmλ

−3
1

+(1−λ
6
1 )2Cr

10(C
m
10)
−1(tanhαr tanhαrλ

−3
1 + tanhαm tanhαmλ

−3
1 ) = 0. (12)

- for the second (extension) mode

−λ
−3(1+λ

6
1 )2[1−Cr

10(C
m
10)
−1]2 tanhαrλ

−3
1 cothαmλ

−3
1

−4λ
3
1 [1−Cr

10(C
m
10)
−1]2 tanhαr cothαm

+[2− (1+λ
6
1 )Cr

10(C
m
10)
−1]2 tanhαrλ

−3
1 cothαm

+[1+λ
6
1 −2Cr

10(C
m
10)
−1]2 tanhαr cothαmλ

−3
1
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+(1−λ
6
1 )2Cr

10(C
m
10)
−1(tanhαr tanhαrλ

−3
1 + cothαm cothαmλ

−3
1 ) = 0. (13)

- for the third mode

−λ
−3(1+λ

6
1 )2[1−Cr

10(C
m
10)
−1]2 cothαrλ

−3
1 cothαmλ

−3
1

−4λ
3
1 [1−Cr

10(C
m
10)
−1]2 cothαr cothαm

+[2− (1+λ
6
1 )Cr

10(C
m
10)
−1]2 cothαrλ

−3
1 cothαm

+[1+λ
6
1 −2Cr

10(C
m
10)
−1]2 cothαr cothαmλ

−3
1

+(1−λ
6
1 )2Cr

10(C
m
10)
−1(cothαr cothαrλ

−3
1 + cothαm cothαmλ

−3
1 ) = 0. (14)

- for the fourth mode

−λ
−3(1+λ

6
1 )2[1−Cr

10(C
m
10)
−1]2 cothαrλ

−3
1 tanhαmλ

−3
1

−4λ
3
1 [1−Cr

10(C
m
10)
−1]2 cothαr tanhαm

+[2− (1+λ
6
1 )Cr

10(C
m
10)
−1]2 cothαrλ

−3
1 tanhαm

+[1+λ
6
1 −2Cr

10(C
m
10)
−1]2 cothαr tanhαmλ

−3
1

+(1−λ
6
1 )2Cr

10(C
m
10)
−1(cothαr cothαrλ

−3
1

+ tanhαm tanhαmλ
−3
1 ) = 0. (15)

2) for perfectly lubricated layers

- for the first (shear) mode

4λ
3
1

(
Cr

10
Cm

10
tanhαr + tanhαm

)
−

(
1+λ

6
1
)2

(
Cr

10
Cm

10
tanh

αr

λ 3
1

+ tanh
αm

λ 3
1

)
= 0. (16)

- for the second (extension) mode

4λ
3
1

(
Cr

10
Cm

10
tanhαr + cothαm

)
−

(
1+λ

6
1
)2

(
Cr

10
Cm

10
tanh

αr

λ 3
1

+ coth
αm

λ 3
1

)
= 0. (17)

- for the third mode

4λ
3
1

(
Cr

10
Cm

10
cothαr + cothαm

)
−

(
1+λ

6
1
)2

(
Cr

10
Cm

10
coth

αr

λ 3
1

+ coth
αm

λ 3
1

)
= 0. (18)

- for the fourth mode

4λ
3
1

(
Cr

10
Cm

10
cothαr + tanhαm

)
−

(
1+λ

6
1
)2

(
Cr

10
Cm

10
coth

αr

λ 3
1

+ tanh
αm

λ 3
1

)
= 0. (19)
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The shortening factor λ1 is related to the value of strain ε0
11 by the following equa-

tion

u0
i = (λi−1)xi, λi = const, ε

0
i j = (λi−1)δi j, (20)

where u0
i is the axial displacement and ε0

i j is the strain (in terms of the elonga-
tion/shortening factor λ j in the direction of the OX j axis). The values of displace-
ment and strain corresponding to the precritical state are marked by the superscript
‘0’ to distinguish them from perturbations of the same values (u0

i and ui, ε0
i j and εi j

respectively).

In order to obtain the characteristic equations for the uniaxial loading, λ
−3
1 , λ 3

1 , and
λ 6

1 should be replaced respectively with λ
−2
1 , λ 2

1 , and λ 4
1 in Eqs. (12–19).

The critical value for the particular mode (λ (N)
cr , N is the number of the mode) can

be found as a maximum of the corresponding curve. The maximum of these values
will be the critical shortening factor of the internal instability for the considered
layered material

λ
pl
cr = max

N
{λ (N)

cr }= max
N
{max

αr
λ

(N)
1 } , (21)

λ
pb
cr = max

N
{λ (N)

cr }= max
N
{max

αr
λ

(N)
1 } .

Note that maximum shortening factors correspond to minimal strains and, there-
fore, to minimal loads according to Eq. (20). The curves corresponding to the
3rd and the 4th modes lie beneath the curves corresponding to the 1st and the 2nd

modes, see Guz and Herrmann (2003). Therefore, the 1st and 2nd modes appear to
be the most common modes of practical interest.

The computed critical values of shortening factors for hyperelastic composites with
perfectly bonded layers under uniaxial loading are presented in Figs. 2–4. The
comparison of the results for the fist and second modes of stability loss are pre-
sented in Fig. 2 and Fig. 3. The shortening factor tends to zero with the decrease
of the material constants ratio and the difference between results for the first and
the second modes of stability loss becomes smaller (Fig. 2). In Fig. 3 one can
see how the ratio of the layer thicknesses influences the value of shortening factor
for first two modes. The shortening factors for the first and the second modes co-
incide while the reinforcement layer is thin comparing to the matrix layer. In the
considered case the difference between the results for the fist and the second modes
becomes noticeable when the ratio of the layer thicknesses reaches a certain value
(0.09 for the case of Fig. 3). It increases with the increase of the ratio of the layer
thicknesses.



A Unified Computational Approach to Instability of Periodic Laminated Materials 249

The 3-D plots in Fig. 4 show the whole picture of the dependences between the
shortening factor, the ratio of layer thicknesses and the ratio of material constants
for the first and the second modes of the stability loss.

 

Figure 2: Shortening factor against the ratio of material constants; hr/hm = 0.5

 
Figure 3: Shortening factor against the ratio of the layer thicknesses; Cr/Cm = 0.2

5.2 Compressible linear elastic layered materials

Let us consider a composite consisting of alternating linear-elastic isotropic com-
pressible layers with different elastic properties (the Young’s moduli E and the
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Figure 4: The 1st and the 2nd modes of
stability loss

 

Figure 5: The 1st and the 2nd modes,
km = 0.25, νr = 0.21

Poisson’s ratios ν). Then for the reinforcement layer we have

(σ0
i j)

r = δi j
Erνr

(1+νr)(1−2νr)
ε

0
nn +

Er

1+νr
ε

0
i j, (22)

and for the matrix

(σ0
i j)

m = δi j
Emνm

(1+νm)(1−2νm)
ε

0
nn +

Em

1+νm
ε

0
i j. (23)

The components of tensor ωi jαβ for such materials are given by Guz (1999) and
Guz and Soutis (2000) for different types of loading. Following the procedure
described in the previous Subsection, i.e. substituting the expressions for ωi jαβ

into the characteristic equations (9) and (10), the characteristic equation can be
specified for the considered type of composite material, see Guz (1990, 1992), Guz
and Soutis (2000, 2001a) for more details.

For all modes we have transcendental equations in terms of two variables, ε0
11 (ap-

plied strain) and αr (normalised half-wavelength). Solving the characteristic equa-
tions for different modes of stability loss, the dependences ε

(N)
11 (αr) are obtained

(N = 1, 2, 3, 4 is the number of the mode). A minimum of the corresponding de-
pendence is the critical value for the particular mode – ε

(N)
cr . The critical strain of

internal instability for the considered layered material is the minimal of these four
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values (ε pl
cr in the case of perfectly lubricated layers, and ε

pb
cr in the case of perfectly

bonded layers):

ε
pl
cr = min

N
ε

(N)
cr = min

N

(
min

αr
ε

(N)
11

)
, (24)

ε
pb
cr = min

N
ε

(N)
cr = min

N

(
min

αr
ε

(N)
11

)
.

5.3 Materials containing elastic-plastic layers

Now, let us consider the following layered composite: the reinforcement behaves as
a linear-elastic isotropic compressible material, Eq. (22), and the matrix response is
elastic-plastic incompressible described by the following relationship for equivalent
stress (σ0

I ) and strain (ε0
I ):

σ
0
I = Am(ε0

I )km , (25)

where km and Am are material constants for elastic-plastic matrix. The constitutive
equation (25) is typical for metal matrix composites, see Honeycombe (1968), Pin-
nel and Lawley (1970), Guz (1989b, 1998). Again, using the expressions for ωi jαβ

and κi jαβ , Guz (1990), Guz and Herrmann (2003), one can deduce the transcen-
dental equations for each of the considered modes of stability loss, see Guz (1989b,
1998).

The computed results for metal matrix elastic-plastic composites under biaxial
loading are presented in Figs. 5–8. The results show how the bonds between the
layers affect the solution for the first two modes of stability loss. The 3-D plots in
Figs. 5–8 give the critical strain versus different properties of the material. In Fig.
5 and Fig. 6 the results for perfectly bonded layers are shown and the results for
perfectly lubricated layers are presented in Fig. 7 and Fig. 8.

5.4 Bounds for the critical controlled parameters

In this subsection, the critical values of controlled parameters for perfectly bonded
and perfectly lubricated layers are compared for hyperelastic and metal matrix com-
posites under different types of loading.

According to Eq. (7), these values form the bounds for the critical controlled pa-
rameters (i.e. either for critical strains or for critical shortening factors) for practi-
cal composites with imperfections of interfacial adhesion. If for critical strain the
bounds have the form of Eq. (7), for critical shortening factors taking into account
Eq. (20) they are

λ
pb
cr ≤ λcr ≤ λ

pl
cr . (26)
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Figure 6: The 1st and the 2nd modes,
νr = 0.21, hr/hm = 0.1

 

Figure 7: The 1st and the 2nd modes,
km = 0.25, νr = 0.21

 

Figure 8: The 1st and the 2nd modes, νr = 0.21,hr/hm = 0.05
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It should be underlined that practical composites contain not only interlaminar, but
also various sorts of intralaminar defects. The effect of intralaminar damage can
be accounted for by considering layers with reduced stiffness properties – see, for
example, Kashtalyan and Soutis (2001, 2006, 2007).

The computed results for four modes of stability loss of the hyperelastic incom-
pressible layered material are shown in Figs. 9 and 10. One can see that the bounds
for shortening factor are wider when the ratio of material constants is lower. For
the second mode the results for perfectly bonded and perfectly lubricated layers
start to coincide when the ratio of material constants reaches a certain value (40
for the case of Fig. 9). The results of computation for layered composites with
elastic-plastic matrix are shown in Figs. 11 and 12.

For the first and second modes of stability loss the critical strain remains constant
and the difference between the results for perfectly bonded and perfectly lubricated
layers does not change while the ratio of the layer thicknesses is lower than a certain
value (0.027 for the case of Fig. 11). Then with the increase of the difference
between layer thicknesses the bounds for critical strain become narrower.

 

Figure 9: The bounds for the 1st and the
2nd modes of the hyperelastic compos-
ite under uniaxial loading; hr/hm = 0.2

Figure 10: The bounds for the 3rd and
the 4th modes of the hyperelastic com-
posite under uniaxial loading; hr/hm =
0.2

The bounds for critical strain are shown in Fig. 12 as a function of km. With the
increase of the coefficient km, the distance between the upper and the lower curves
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Figure 11: The bounds for the 1st and
the 2nd modes of the metal matrix com-
posite under biaxial loading; Am/E =
0.0005, νr = 0.21, km = 0.25.

 

Figure 12: The bounds for the 1st and
the 2nd modes of the metal matrix com-
posite under biaxial loading; Am/E =
0.0001, hr/hm = 0.25, νr = 0.21.

significantly decreases for the first mode of stability loss and remains almost the
same for the second mode.

The computed bounds appear to give a reasonable estimation for the critical con-
trolled parameters and may be considered as the first approximation on the way
to the exact solution of the problem of stability in compression along interfacial
defects. Further work is required to compare the results with experimental obser-
vations and measurements.

6 Conclusions

In the paper the investigation of the internal instability for different types of lay-
ered materials, namely hyperelastic incompressible, compressible linear elastic and
materials with elastic-plastic layers was held. The analysis of different loading
schemes and precritical conditions was carried out using developed software pack-
age with fully automated numerical procedure. MATLAB was used to create the
software which has graphical user friendly interface and the database of material
properties.
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