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Multi-Point Shape Optimization of Airfoils at Low
Reynolds Numbers

D.N. Srinath1, Sanjay Mittal1 and Veera Manek2

Abstract: A continuous adjoint method is formulated and implemented for the
multi-point shape optimization of airfoils at low Re. The airfoil shape is parametrized
with a non-uniform rational B-Spline (NURBS). Optimization studies are carried
out for two different objective functions. The first involves an inverse function on
the lift coefficient over a range of Re. The objective is to determine a shape that
results in a lift coefficient of 0.4 at three values of Re : 10, 100 and 500. The second
objective involves a direct function on the lift coefficient over a range of angles of
attack, α . The lift coefficient is maximized simultaneously for α = 4o, 8o and 12o

while the Re is held constant. The final shapes from both the cases are compared
with those from the single-point optimization at each of the operating point. It is
seen that the multi-point shapes are significantly different. They also have a better
off-design performance than the geometries from single-point designs.

Keywords: airfoils, multi-point, shape optimization, adjoint methods, low Reynolds
numbers, finite element

1 Introduction

Optimization methods can be broadly classified as one of the two types: gradient
and non-gradient based. In the gradient based methods, the gradient of a desired
objective function with respect to the defined parameters is utilized to obtain a
search direction. These methods are capable of finding only a local optima. The
possibility of the local optima being a global one depends on the initial guess. Gra-
dients have been computed via different methods in the past. Probably, the simplest
method of evaluating the gradients is via using finite differences. In these methods
the function to be minimized (or maximized) is perturbed by a small quantity. The
gradient can then be computed by using a Taylor series expansion. These meth-
ods can become very expensive if the cost of computing the objective function is
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high. For example, if the objective function depends on the solution of the Navier-
Stokes equations, then for n design parameters, n + 1 flow computations would
be required to obtain the gradient. Also, the magnitude of perturbation is prob-
lem specific and not known apriori. Other methods that have been developed to
compute the gradient at reduced cost include the complex Taylor series expansion
approach [Burg and Newman (2003)], automatic differentiation [Sherman, Taylor,
Green, P.A.Newman, Hou, and Korivi (1994)], direct differentiation [Hou, Sheen,
and Chuang (1992)] and adjoint based methods [M.B.Giles and Pierce (2000)]. For
mixed complementarity problems, Liu and Atluri [Liu and Atluri (2008)] recently
developed a method that converts the optimization problem into a set of nonlin-
ear algebraic equations. They found that this approach provides accurate solutions
and be easily extended to include constraints that involve nonlinear equalities as
well as inequalities. Non-gradient based methods like genetic algorithms [Obyashi
(1996)], on the other hand, use only the objective function to obtain an optima.
They are capable of finding a global optima but are generally expensive because
they require a large number of number of function evaluations.

Optimization, in the context of engineering applications, can be carried either on
the topology or the shape [Bendsoe and Sigmund (2002)]. Topology optimization
[Tapp, Hansel, Mittelstedt, and Becker (2004); Cisilino (2006); Wang, Lim, Khoo,
and Wang (2007); Liu and Atluri (2008)] deals with the determination of an op-
timal distribution of material within the design space of a structure while shape
optimization involves determining the optimal shape of a given structure. Vari-
ous methods have been employed to carry out topology optimization of structures.
Some examples are: the homogenization approach [Bendsoe and Kikuchi (1988)],
variable density approach [Bendsoe and Sigmund (1999)], evolutionary structural
optimization approach [Zhou and Rozvany (2001)], and optimality criteria method
[Juan, Shuyao, Yuanbo, and Guangyao (2008)]. In this work, we focus on shape
optimization using an adjoint based method. Adjoint methods, for shape optimiza-
tion, have been utilized in diverse areas such as aerospace [Mohammadi (2004);
Kim, Alonso, and Jameson (2000)], marine [Soto, Lohner, and Yang (2004)] and
bio-medical engineering [Abraham, Behr, and Heinkenschloss (2005)].

Aerodynamic design of airfoils by numerical methods has received much attention
in recent years. Flow solvers are combined with an optimization method for this
purpose. Adjoint based methods [Pironneau (1973, 1974); Jameson (1988); Mo-
hammadi and Pirroneau (2004); Okumura and Kawahara (2000)] have been pop-
ular for aerodynamic design because the cost of computing the gradient is inde-
pendent of the number of design variables. Non-gradient based methods such as
genetic algorithms [Obyashi (1996)], while being robust, are not preferred due to
the large computational costs involved. Airfoil shape optimization has been car-
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ried out by many researchers in the past [Anderson and Venkarakrishnan (1997);
Soto, Lohner, and Yang (2004); Anderson and Bonhaus (1999); Kim, Alonso, and
Jameson (2000)]. Progress has also been made in optimization of 3D wings [Brezil-
lion and Gauger (2004); Elliot and Perraire (1997)]. However, almost all of these
efforts find optimal shapes at one fixed operating condition. In practice, airfoils
are expected to perform efficiently over a range of operating conditions. Shapes
obtained by optimizing at one operating point, often, have poor off-design perfor-
mance. One way of addressing this drawback is to include off-design conditions in
the problem definition. This may be achieved via multi-point optimization methods
where performance over a range of operating conditions is considered.

Drela [Drela (1998)] studied the behavior of an optimization cycle in the presence
of a large number of design variables in two dimensions. He noticed that, in the
presence of sufficient design mode resolution, improved performance is seen only
near the design condition. The design from a single-point optimization tends to
have severely degraded off-design performance. On this basis he suggested that for
a multi-point problem increasing the number of design variables requires a corre-
sponding increase in the number of operating (sampling) points. Since the cost of
computing the optima increases with increase in number of sampling points, reduc-
ing the number of design variables to an absolute minimum is essential. Reducing
the number of design variables also eliminates the possibility of the optimal shape
being "noisy".

A popular method to solve multi-point optimization problems is the weighted-sum
method [Nemec, Zingg, and Pulliam (2004)]. Different weights are assigned to
each of the sampling points. The relative magnitude of the weights indicate the
importance accorded to the respective sampling points. These weights are not
known apriori and are often selected arbitrarily. Prior experience is required to
estimate these weights. If appropriate weights are not assigned the optimal shape
will most likely have sub-optimal performance. Also, optimal performance over
a range of operating conditions requires selection of appropriate operating points.
Again, these are unknown apriori. Zingg and Elias [Zingg and Elias (2006)] devel-
oped an automated procedure to appropriately select the operating points and their
weights. In their method, depending on the performance over a range of operating
conditions, additional sampling points are included. A few methods like the profile
optimization method of Li et al.[Li, Huyse, and Padula (2002)] and the probabilis-
tic approach of Huyse et al.[Huyse, Padula, Lewsi, and Li (2002)] can be utilized
to optimize over a range of operating conditions.

Most of work done in multi-point optimization has been for high Re applications.
The present work investigates multi-point optimization of airfoils at low Re. Two
cases are considered. In the first case, an optimal airfoil that results in a specified lift
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coefficient, over a range of Reynolds numbers, is sought. The second case involves
obtaining an airfoil that achieves maximum lift coefficient, over a range of angles
of attack, for a particular Re. The optimal airfoils from both the cases are compared
with the shapes obtained from single-point optimization. The geometry of the air-
foil is parametrized by a fourth order Non-Uniform Rational B-Splines (NURBS)
curve [Farin (1990)]. A stabilized finite element method based on streamline-
upwind Petrov/Galerkin(SUPG) and pressure stabilized Petrov/Galerkin(PSPG) [Tez-
duyar, Mittal, Ray, and Shih (1992)] stabilization techniques is employed to solve,
both, the flow and adjoint equations. The Limited memory-Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm [Byrd, Lu, Nocedal, and Zhu (1995)] is used
to minimize the objective function.

2 Mathematical Formulation

2.1 Flow equations

Consider a domain Ω, with boundary Γ, that is occupied by a fluid of density ρ and
dynamic viscosity µ . The governing equations for a steady incompressible flow of
this fluid are given as:

ρuuu.∇uuu + ∇.σσσ = 000 on Ω (1)

∇.uuu = 0 on Ω (2)

where uuu is the velocity and σσσ the stress tensor. For a Newtonian fluid the stress
tensor is given as σσσ = −pIII + µ[∇uuu +(∇uuu)T ] where, p is the pressure and III the
identity tensor. The boundary conditions are either on the flow velocity or stress.
Both, Dirichlet and Neumann type boundary conditions are accounted for:

uuu = ggg on Γg (3)

nnn.σσσ = hhh on Γh (4)

where, nnn is the unit normal vector on the boundary Γ. Here, Γg and Γh are the
subsets of the boundary Γ. More details on the boundary conditions are given in
Figure 1. The drag and lift force, (D,L), on the body can be calculated using the
following expression:

(D , L) =
∫

ΓB

σσσnnndΓ (5)

where, ΓB represents the surface of the body.
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Figure 1: Schematic of the problem set-up: boundary conditions. ΓU , ΓD and ΓS

are the upstream, downstream and lateral boundaries, respectively and ΓB is the
body surface.

2.2 The continuous adjoint approach

Let ΓB be the segment of the boundary, Γ, whose shape is to be determined. Let
βββ = (β1, . . . ,βm) be the set of shape parameters that govern its shape. Further,
an objective function, Ic(UUU ,βββ ), is defined that depends on the flow variables UUU =
(uuu, p) and shape parameters βββ . The optimization problem involves determining
the shape parameters that minimize (or maximize) the objective function, Ic(UUU ,βββ ).
The flow equations (1) and (2) may be written as ℜℜℜ = (ℜℜℜuuu,ℜp), where ℜℜℜuuu is the
momentum equation and ℜp the continuity equation. These equations appear as
constraint conditions on the objective function, Ic(UUU ,βββ ), and have to be satisfied
while Ic is minimized (or maximized). An augmented objective function is con-
structed to convert the constrained problem to an unconstrained one. The flow
equations are augmented to the original objective function by introducing a set of
Lagrange multipliers or adjoint variables, ΨΨΨ = (ψψψuuu,ψp).

I = Ic +
∫

Ω

Ψ.ℜℜℜdΩ (6)

It can be noticed that the augmented objective function degenerates to the original
one if the flow variables, UUU , satisfy equations (1) and (2). The variation of the
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augmented objective function is given as:

δ I =
∂ I
∂UUU

δUUU +
∂ I
∂βββ

δβββ +
∂ I
∂ΨΨΨ

δΨΨΨ. (7)

It is seen from Equation (7) that δ I depends on variations of UUU , βββ and ΨΨΨ. These
variations are given as:

∂ I
∂ΨΨΨ

= ℜℜℜ(UUU ,βββ ) (8)

∂ I
∂UUU

=
(

∂ Ic

∂UUU
+
∫

Ω

ΨΨΨ
T ∂ℜℜℜ

∂UUU
dΩ

)
(9)

∂ I
∂βββ

=
(

∂ Ic

∂βββ
+
∫

Ω

ΨΨΨ
T ∂ℜℜℜ

∂βββ
dΩ

)
(10)

The optimal solution is achieved when the variation of the augmented objective
function vanishes, i.e., δ I = 0. For this condition to be satisfied, each of the three
expressions in equations (8)-(10) should go to zero. Equation (8) leads to the flow
equations (1) and (2). Equation (9) results in the adjoint equations which can be
utilized to compute the adjoint field. The gradient of the augmented objective func-
tion, as given by equation (10), quantifies the sensitivity of the objective function
with respect to the design parameters. It is utilized to refine the direction of search
of the optimal shape parameters. The optimal solution is obtained when the gradi-
ent approaches zero. More details on the computation of the adjoint equations are
given in the next section.

2.3 Adjoint equations

The equations and boundary conditions for the adjoint variables are obtained by
setting the expression given in Equation (9) to zero. This leads to:

ρ(∇uuu)T
ψψψuuu − ρ(uuu.∇)ψψψuuu − ∇.σσσψψψ = 000 on Ω (11)

∇.ψψψuuu = 0 on Ω. (12)

Here σσσψψψ is similar to the stress tensor and is given by σσσψψψ = −ψpIII + µ[∇ψψψuuu +
(∇ψψψuuu)

T ]. The variables ψψψuuu and ψp are referred to as the adjoint velocity and ad-
joint pressure, respectively. Unlike the flow equations the equations for the adjoint
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variables are linear. The boundary conditions on the adjoint variables are:

ψψψuuu = 000 on ΓU (13)

sss = 000 on ΓD (14)

s1 = 0, ψu2 = 0 on ΓS (15)

−
∫

ΓB

δ (σσσ ...nnn))).ψψψuuu dΓdt +
∂ Ic

∂uuu
δuuu +

∂ Ic

∂ p
δ p = 000 on ΓB (16)

where, sss = {uuuψψψuuu − ψp + µ[∇ψψψuuu + (∇ψψψuuu)
T ]}.nnn. ΓU , ΓD and ΓS are the upstream,

downstream and lateral boundaries and ΓB is the body surface (see Figure 1). We
observe that the boundary conditions on the adjoint variables, on the surface of the
body, depend on the definition of the objective function.

2.4 Multi-point objective function

The multi-point objective function is defined using the weighted-sum method. Let
Nd p be the number of design points, Ii the objective function at the iith point and wi

its user-defined weight. Ii is the augmented objective function given by Equation
(6). The cumulative objective function is defined as:

I =
Nd p

∑
i=1

wi Ii. (17)

The gradient, for the multi-point objective function, is given by:

∂ I
∂βββ

=
Nd p

∑
i=1

wi

(
∂ Ii

∂βββ

)
. (18)

3 Finite element formulation

3.1 The flow equations

The domain Ω is discretized into elements Ωe, e = 1,2, . . . ,nel , where nel is the
number of elements. Let S h

u and S h
p be the appropriate finite element spaces and

V h
u and V h

p the weighing function spaces for velocity and pressure, respectively.
The stabilized finite element formulation of Equations (1) and (2) is written as
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follows: find uuuh ∈S h
u and ph ∈S h

p such that ∀wwwh ∈ V h
u , qh ∈ V h

p ,

∫
Ω

wwwh.ρ uuu.∇∇∇uuu dΩ +
∫

Ω

ε(wwwh : σσσ(ph,uuuh)) dΩ

+
∫

Ω

qh
∇∇∇.uuuh dΩ +

nel

∑
e=1

∫
Ωe

1
ρ

(τSUPGρuuuh.∇∇∇wwwh + τPSPG∇∇∇qh).

[ρ uuu.∇∇∇uuu − ∇∇∇.σσσ ] dΩ
e

+
nel

∑
e=1

∫
Ωe

τLSIC∇∇∇.wwwh
ρ∇∇∇.uuuh dΩ

e =
∫

Γh
wwwh.hhhh dΓ. (19)

The first three terms and the right-hand side in the variational formulation given
by Equation (19) constitute the Galerkin formulation of the problem. The terms
involving the element level integrals are the stabilization terms added to the ba-
sic Galerkin formulation to enhance its numerical stability. These terms stabi-
lize the computations against node-to-node oscillations in advection dominated
flows and allow the use of equal-in-order basis functions for velocity and pressure.
The terms with coefficients τSUPG and τPSPG are based on the SUPG (Streamline-
Upwind/Petrov-Galerkin) and PSPG (Pressure-stabilized/Petrov-Galerkin) method
[Tezduyar, Mittal, Ray, and Shih (1992)]. The term with coefficient τLSIC is also
a stabilization term based on the least squares of the incompressibility constraint
and is found to be useful for large Reynolds number flows. Equal-in-order basis
functions for velocity and pressure, that are linear in space (three-noded triangular
elements) are used. A three point quadrature is employed for numerical integra-
tion. This approach, based on the finite element method, has been successfully
applied to solving various fluid flow problems. In three dimensions, it is some-
times difficult to generate well-resolved meshes for complex geometries. Mesh-
less methods provide a nice framework to deal with such situations. According to
Atluri and Zhu [Atluri and Zhu (2000)], the main objective of meshless methods
is to get rid of or at least alleviate the difficulty of meshing and remeshing the en-
tire structure, by only adding or deleting nodes in the entire structure. A number
of meshless methods have been developed. Some examples are the element free
Galerkin method [Belytschko, Organ, and Y.Krongauz (1994)], reproducing kernel
particle method [Liu, Chen, Chang, and Belytschko (1996)], meshless local bound-
ary equation(MLBIE) method [Zhu, Zhang, and Atluri (1998)] and meshless local
Petrov-Galerkin method (MLPG) [Atluri and Zhu (1998, 2000); Atluri and Shen
(2002); Atluri, Han, and Rajendran (2003)] . Lin and Atluri [Lin and Atluri (2002)]
compared the SUPG and MLPG approaches for convection diffusion problems and
found them to provide comparable results.
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3.2 The adjoint equations

A stabilized SUPG/PSPG finite element method is proposed to solve the adjoint
equations (11) and (12). Let S h

ψψψuuu
and S h

ψp
be the appropriate finite element spaces

and V h
ψψψuuu

and V h
ψp

the corresponding weighting function spaces for the adjoint ve-
locity and adjoint pressure. The stabilized finite element formulation of Equations
(11) and (12) is written as follows: given uuuh and ppph satisfying Equations (1) and
(2), find ψψψh

u ∈S h
ψψψuuu

and ψψψh
p ∈S h

ψp
such that ∀wwwh

ψψψuuu
∈ V h

ψψψuuu
, qh

ψp
∈ V h

ψp
,

∫
Ω

wwwh
ψψψuuu

.ρ
(

(∇∇∇uuuhhh)T
ψψψ

h
uuu − uuu.∇∇∇ψψψuuu

)
dΩ +

∫
Ω

ε(wwwh
ψψψuuu

) : σσσψ(ψh
p,ψψψ

h
uuu) dΩ

+
∫

Ω

qh
ψp

∇∇∇.ψψψh
uuu dΩ +

nel

∑
e=1

∫
Ωe

1
ρ

(
−τSUPG ρuuuh.∇∇∇wwwh

ψψψuuu
+ τPSPG∇∇∇qh

ψp

)
.[

ρ

(
(∇∇∇uuuhhh)T

ψψψ
h
uuu − uuu.∇∇∇ψψψuuu

)
− ∇∇∇.σσσψ(ψh

p,ψψψ
h
uuu)
]

dΩ
e

+
nel

∑
e=1

∫
Ωe

τLSIC∇∇∇.wwwh
ψψψuuu

ρ∇∇∇.ψψψh
uuu dΩ

e = 000. (20)

The stabilization coefficients τSUPG, τPSPG and τLSIC in the formulation proposed
in equation (20) are computed based on the flow variables (uuu, p).

4 Parametrization

The choice of design variables depends on the parametrization used to represent
the surface. One would like to use a parametrization that offers a rich design space.
At the same time, too many degrees of freedoms can lead to a noisy shape that is
associated with problems related to mesh generation. In the present work, NURBS
(Non-Uniform Rational B-Splines) [Farin (1990)] have been used to parametrize
the airfoil geometry. Figure 2 shows the representation of NACA 0012 airfoil at
α = 0o with 13 control points. The control polygon is also shown. The control
points comprising of the trailing and leading edges are held fixed to maintain pre-
assigned chord length and angle of attack. The y-coordinates of the remaining con-
trol points are used as design variables. Each design variable is allowed to move
between a lower and upper bound which have been set to avoid unacceptable shape
distortions.

5 The optimizer

The optimization algorithm used in the present work is the L-BFGS (Limited memory-
Broyden-Fletcher-Goldfarb-Shanno) procedure [Byrd, Lu, Nocedal, and Zhu (1995)].
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Figure 2: Parametrization of a NACA0012 airfoil with NURBS curve using 13
control points. Points 1, 7 and 13 are held fixed while the y-coordinates of the
remaining control points are used as design variables.

This is a limited memory quasi-Newton method for solving large nonlinear opti-
mization problems that are constrained by upper and lower bounds on the design
variables. The algorithm is well suited for problems when the information for the
second derivative (the Hessian) is difficult to obtain.

6 Algorithm

The algorithm for the design procedure is as follows:

1. Begin with an initial geometry and generate the finite element mesh.

2. Compute flow variables uuu and p using Equation 19.

3. Compute adjoint variables ψψψuuu and ψp using Equation 20.

4. Compute the gradient using Equation 10.

5. Repeat steps 2, 3 and 4 for Nd p sampling points.

6. Compute the multi-point objective function and its gradient using Equations
17 and 18, respectively.

7. Pass the gradient information to the optimizer and update the shape/design
parameters βββ .

8. Modify the finite element mesh to accommodate the new shape. A mesh
moving scheme is used in the present work.

9. Repeat the above till the condition for convergence, either on the gradient or
objective function, is satisfied.
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7 Results

Multi-point optimization is carried out for two cases. The first involves an inverse
objective function on the lift coefficient at a specific angle of attack of the airfoil
over a range of Re. The second case involves a direct objective function over a
range of angles of attack. In this case the Re is held constant. The mesh used for
both the computations is same. A close-up view of a sample mesh generated over
the NACA0012 airfoil at α = 0o is shown in Figure 3. It has 9828 nodes and 19406
triangular elements with 200 nodes on the surface. A structured mesh is used near
the surface while an unstructured mesh, obtained via Delaunay triangulation, is
generated in the rest of the domain.

Figure 3: Close-up view of a sample mesh. It has 9828 nodes and 19406 triangular
elements with 200 nodes on the surface.

7.1 Multi-point design at different Re

The objective is to design an airfoil with Cl = 0.4 at three values of Re: 10,100 and
500. The angle of attack is fixed at α = 4o. The objective function to be minimized
is given as:

Ic = w1Ic1 |Re=10 + w2Ic2 |Re=100 + w3Ic3 |Re=500 (21)

where w1, w2 and w3 are weights corresponding to the objective function at the
respective Re. Ici is defined as

Ici =
1
2
(Cl − 0.4)2 i = 1,2,3 (22)

In the present computations, w1, w2 and w3 are all set to 1.0. The NACA 0012 air-
foil at α = 4o is used as the initial guess. Figures 4(a) and (b) show the variation of
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Figure 4: Multi-point shape design of airfoil having Cl = 0.4 at Re = 10, 100 and
500 at α = 4o: variation of (a)Cl and (b)Cd with Re of the optimal shape along with
those of single-point optimal design and NACA 0012 airfoils.

the lift and drag coefficient, respectively, for the NACA 0012 airfoil with Re. As ex-
pected, Cd shows a monotonic decrease with Re while Cl exhibits a non-monotonic
behavior at Re ∼ 50. This is caused by the fact that the pressure contribution to
Cl decreases while the viscous contribution increases with increase in Re. Further
details can be found in the work by Srinath and Mittal [Srinath and Mittal (2009)].

Figure 5(a) shows the final shape obtained at the end of the design cycle. The
optimal airfoil is seen to have a thick and rounded leading edge and a large ’dimple’
at, approximately, the quarter chord section. The lower surface is almost flat. The
pressure distribution over the NACA 0012 and the optimal airfoil is shown in the
first and second columns of of Figure 6 at Re = 10, 100 and 500, respectively.
The optimal airfoil, at all the Re, has a larger peak suction on the upper surface as
compared to the NACA 0012 airfoil. Also the pressure on the lower surface is larger
for the optimal airfoil. This leads to increased lift generated by the optimal airfoil.
The iteration history of the objective function and the L2 norm of the gradient are
shown in Figures 7(a) and (b). 25 iterations are required for the objective function
to satisfy the convergence criteria which, in this case, is specified as achieving the
L2 norm of gradient below 10−5.

Since one of the primary motive of carrying out multi-point design is to improve
off-design performance, flow over the optimal airfoil is computed for various Re.
Figure 4 shows the variation of the lift and drag coefficients of the optimal airfoil
with respect to Re. The various Re at which shape optimization is carried out
are also marked in the figure, for reference. The optimal airfoil has Cl < 0.4 for
10≤ Re≤ 100. It produces slightly larger Cl for 100 < Re≤ 500.
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Figure 5: Inverse design of airfoil with Cl = 0.4 at α = 4o: (a) multi-point design
(at Re = 10, 100 and 500) and single point design at (b) Re = 10, (c) Re = 100 and
(d) Re = 500.
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Figure 6: Inverse design of airfoil having Cl = 0.4: pressure distribution over
NACA 0012 and optimal airfoils from multi-point and single-point design at
α = 4o.

7.1.1 Single-point versus multi-point design

In this section the performance of single- and multi-point design are compared.
Optimal shapes are obtained for single-point designs at Re = 10, 100 and 500 for
Cl = 0.4. The single-point optimal shapes are shown in Figures 5(b), (c) and (d). It
is seen that the airfoil obtained from the multi-point design is significantly different
from that of single-point design. Pressure distribution for these airfoils at their
design Re are shown in Figure 6.

The variation of Cl with respect to Re for each of the single-point optimal shapes is
shown in Figure 4. The optimal airfoil at Re = 10 has Cl = 0.4 at its designated Re.
However, it produces lesser lift with increasing Re. The optimal airfoil at Re = 100
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Figure 7: Multi-point design of an airfoil having Cl = 0.4 at Re = 10, 100 and 500:
iteration history of (a)objective function, Ic and (b)L2 norm of the gradient. The
angle of attack is 4o.

has Cl lesser than its design value of 0.4 at Re < 100 but shows an increasing
trend beyond Re = 25. At Re = 500 this airfoil produces slightly lesser lift than
the designated Cl . The optimal airfoil at Re = 500 produces substantially lesser
lift at lesser Re. In comparison, the multi-point airfoil, while matching its design
requirements, has a better off-design performance.

7.2 Multi-point design at different α

The objective in this case is to determine an airfoil that has the largest lift coefficient
at various angles of attack at Re = 500. Three angles of attack are considered:
α = 4o, 8o and 12o. The objective function is given by

Ic = w1Ic1 |α=4o + w2Ic2 |α=8o + w3Ic3 |α=12o (23)

As in the previous case, weights w1, w2 and w3 are set to 1.0. In the above expres-
sion, Ici is given by

Ici = −1
2

C2
l i = 1,2,3 (24)

Figure 8(a) shows the final shape obtained at the end of the design cycle. The
optimal airfoil is seen to be a curved plate. Figure 9(a) shows the variation of Cl
with respect to α for the optimal airfoil. The optimal airfoil generates 159%, 103%
and 85% more lift than the NACA 0012 airfoil at α = 4o, 8o and 12o, respectively.
The pressure distribution over NACA 0012 and the optimal airfoil are shown in the
first and second columns of Figure 10, respectively. An extended region of higher
pressure exists on the lower surface at all the three angles of attack studied.
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Figure 8: Maximization of lift coefficient at Re = 500: optimal shapes obtained
with (a)multi-point design at α = 4o, 8o and 12o (b) single point design at (b)α =
4o, (c)8o and (d)12o.
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Figure 9: Maximization of lift coefficient at α = 4o, 8o, 12o and Re = 500: variation
of (a) Cl and (b) Cd with Re of the optimal shape along with those of single-point
optimal design and NACA 0012 airfoils.

7.2.1 Single-point vs multi-point design

As in the previous case, the optimal airfoil obtained with multi-point design is com-
pared with those obtained from single-point design. The optimal airfoils obtained
for maximum lift at α = 4o, 8o, 12o are shown in Figures 8(b), (c) and (d), respec-
tively. The single-point optimal airfoil obtained at α = 4o has a large bulge on the
lower rear surface while at 12o the bulge shifts to the upper rear surface. The airfoil
obtained at 8o is very similar to the multi-point optimal airfoil. The pressure distri-
bution over the single-point optimal airfoils are shown in the third column of Figure
10. The optimal airfoil at α = 4o has a high pressure region on the lower surface
owing to the bulge. The variation of Cl and Cd with respect to α for the optimal
airfoils are shown in Figure 9. As expected, the single-point designed airfoils have
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Figure 10: Maximization of lift coefficient at Re = 500: pressure distribution over
NACA 0012 and optimal airfoils obtained from multi-point and single-point design
at α = 4o, 8o, 12o.

their optimum performance at their design angle of attack. In general, at the design
points, their performance is marginally superior to the performance of airfoil from
the multi-point design. However, at off-design conditions, the loss of performance
of the multi-point design is much less than that of the single-point design. The
multi-point design airfoil produces almost the same lift as the single-point design
airfoils at α = 8o and 12o. At 4o the multi-point designed airfoil has a Cl that is 22%
lesser than the single-point design airfoil while at 12o its Cl is only 4% smaller than
the single-point design at the corresponding α . The uneven difference at various
α is because the contribution to the objective function, given by Equation 23, from
the various sampling points is not of the same magnitude. The contribution from
the 12o computation is more than that of the 4o. Therefore, the optimizer tends to
look for optimal solutions in the direction of the largest contributor to the objective
function. This can be overcome by suitably weighing the different terms so that
their contribution is similar in magnitude. This, however, has not been undertaken
in the present study. Optimizing the weights themselves is an exercise that will be
taken up in a future study.

8 Conclusions

A continuous adjoint method for multi-point shape optimization of airfoils at low
Re has been formulated and implemented. A stabilized finite element method based
on SUPG/PSPG stabilization has been used to solve, both, flow and adjoint equa-
tions. The airfoil is parametrized by a 4th order NURBS curve with 13 control
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points. The y coordinates of control points are used as the design variables. NACA
0012 airfoil is used as the initial guess in all the computations.

Two different objective functions are studied for the multi-point optimal design of
an airfoil. The first objective function is an inverse function on the lift coefficient.
The objective is to find a shape having lift coefficient of 0.4 at Re = 10, 100 and 500.
The angle of attack is 4o. The final shape is seen to have a rounded leading edge
with a large ’dimple’ around the quarter chord section. This shape is compared
with optimal airfoil shapes obtained individually at Re = 10, 100 and 500. The
multi-point shape is found to be significantly different from the optimal single-
point shapes. The variation of the lift coefficient with respect to the Re is plotted for
each of these shapes. It is noticed that the single point designs perform optimally at
their operation condition and have an inferior off design performance. On the other
hand, the optimal multi-point design, while satisfying its design requirement, has a
better off-design performance.

The second objective function is to maximize the lift coefficient at α = 4o, 8o and
12o. The Re is 500. The optimal shape obtained is a thin curved plate. This
airfoil produces 159%, 103% and 85% more lift than the NACA 0012 airfoil at
the considered α . Single-point designs are computed for these angles of attack.
The multi-point optimal shape is seen to be similar to that obtained from single-
point design at α = 8o. The multi-point airfoil generates 22% and 4% lesser lift
compared to the corresponding single-point design airfoils at α = 4o, 12o. This
difference arises because the weights assigned to each of the terms in the objective
function is same, irrespective of the individual contribution to it. The off-design
performance of the multi-point design is superior to that of single-point design. For
the reasons that have been pointed out, the performance of the multi-point design
is better at larger α .
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