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Solid Element with Four-Point Integration in Plane for
Bulk Forming

Ting Du1, J. P. Xu1, Y.Q. Liu2 and Z. B. Zhang1

Abstract: An eight-node hexahedral element with four-point quadrature in plane
is developed using the assumed strain method, which can eliminate volumetric
locking of incompressible material and absence of the portion of shear velocity
strain related with hourglass mode to suppress hourglass mode and shear locking.
In this approach, the radial return algorithm is adopted for more precise calculation
of internal forces, stress and strain. In addition, a co-rotational coordinates system
is established to make bending simulation much more effective, and the system is
applicable to arbitrary 3D anisotropic yield criteria. A large elastic-plastic defor-
mation of unconstrained thick plate bending example is then carried out with the
comparison between ASQBI and ADS solid element. Numerical results of thick
metal plate ironing and cylindrical piece embossing are remarkably identical to
experimental results and less computation (only one hours is needed using new el-
ement in this examples while 5.5 hours using DEFORM 3D software) and higher
accuracy are obtained using this new solid element by comparing with DEFORM
3D’s result, which meets the demand of Shenyang Mint.

Keywords: Four-point integration; Hexahedral element; Volumetric locking; Shear
locking; Hourglass mode; Bulk forming.

1 Introduction

In the late 1970s, Kosloff and Frazier (1978) developed the quadrilateral and hex-
ahedral element based on one-point integration and hourglass control, but both of
them failed in passing the patch test [Strang G(1972)]. Since 1980s, more effective
reduced integration (RI) methods have emerged.
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Firstly, Flanagan and Belytschko (1981) proposed two types of hourglass control
schemes for both 2D and 3D problems: viscous and elastic, however they required
user-defined parameters to control hourglass force. Belytschko et al. (1984) pre-
sented an updated hourglass control to eliminate rank deficiency of stiffness matrix,
and the constructed hourglass shape vectors satisfied the consistency conditions to
pass patch test. Liu et al. (1985) expanded B matrix in a Taylor series about the
element centre up to bilinear terms to get six gradient sub-matrices, and then ob-
tain six hourglass forces in terms of general three-dimensional constructive law.
Koh and Kikuchi (1987) employed DRI (Directional Reduced Integration) method
along one or two referential coordinate directions to stabilize mainly 2D element
without locking problems. Belytschko and Binderman (1993) developed one-point
integration solid element with hourglass control and four-point integration with-
out hourglass control, entitled the ASQBI or ADS element. Only the non-constant
part of standard strain field was projected to an assumed strain field, thus the vol-
umetric locking of incompressible materials, shear locking and hourglass modes
in thin plate were removed successfully. Using B-matrix method in reference [see
Liu, Ong and Uras (1985)], Liu et al. (1994) adopted strain gradient sub-matrices
related to shear strain terms in co-rotational coordinate system to eliminate shear
locking, and then developed NUHEXIN-4 solid element with four-point integra-
tion. On the basis of Liu’s method [Liu, Hu and Belytschko (1994)], stress and
strain were expanded in a Taylor series about the element centre up to bilinear
terms, and the constant part of stress was used to calculate internal force and non-
constant part, which could be obtained by simplifying constructive matrix and cor-
responding strain, to calculate hourglass force. Thus, the locking problems were
controlled effectively in reference [Hu and Nagy(1997); Filho and Awruch(2004)].
During the past decade, many practical one-point or multiple-points integration
solid-shell and solid elements have been presented [Lee, Cho, Lee (2002); Basar
and Kintzel (2003); Gato, and Shie (2008); G. M. Kulikov1 and S. V. Plotnikova
(2008); Cui, Liu (2008)]. One-point integration solid element with hourglass con-
trol, named Jet3D element by Li and Cescotto (1997), could be applied in large
deformation nonlinear elastic-plastic problems. In their work, rank sufficiency of
stiffness matrix made the element stable, assumed strain method made the ele-
ment isochoric everywhere to remove volumetric locking, and setting some shear
parameters automatically linked with the studied structural dimension effectively
avoided shear locking. Liu, Guo and Tang (1998) proposed HEXDS solid element
for large deformation nonlinear elastic-plastic problems by adding return mapping
algorithm in the previous NUHEXIN-4 solid element for updating stress and strain.
Wang and Wagoner (2005) presented WW3D solid element for large deformation
nonlinear problems, which was characterized by assumed strain method for avoid-
ing volumetric locking in nearly incompressible or incompressible materials, ab-
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sent of strain terms corresponding with shear locking and hourglass modes and FI
method. Constructing new stability matrix based on Hu-Washizu variation princi-
ple, Fredriksson and Ottosen (2007) discussed the value of Eh matrix of regular and
irregular element in details. In recent years, a new class of numerical approaches
known commonly as meshfree methods hase been developed to completely avoid
different locking phenomena encountered in Finite Element Method. Atluri and
his colleagues [Atluri and Zhu(1998); Atluri and Shen (2002); Atluri (2004); S.
N. Atluri, Z. D. Han and A. M. Rajendran (2004); Z. D. Han, A. M. Rajendran
and S.N. Atluri(2005); S. N. Atluri, H. T. Liu and Z. D. Han.(2006)] proposed a
general framework for developing the well-known Meshless Local Petrov-Galerkin
(MLPG) approach, which is a truly meshless method without under-integration and
hour-glass control and provides flexibility in choosing the local weak forms, the
trial functions, and the independent test functions for solving systems of partial
differential equations.

Based on the WW3D element, a new solid element is formulated in the present pa-
per, which makes use of four-point integration in plane, return mapping algorithm
and adaptive mesh refine technology. This element inherits the property of WW3D
element, such as no volumetric locking, shear locking and spurious modes, and
decreases CPU time by fifty percent. Simulation examples of thick plate bending,
thick metal plate ironing and cylindrical piece embossing are presented in the third
section.

2 Four-point integration solid element in plane

2.1 Shape function of hexahedral element

Solid element in referential coordinate system is shown in Fig. 1 with eight nodes
and three translation degrees exclusion of rotation degrees of freedom for each
node. ξ , η and ζ are respectively three axes of the referential coordinate system,
the shape function of which are expressed as the spatial coordinates xiin element
are approximated in terms of nodal coordinates xi

j

N j = (1+ξ jξ )(1+η jη)(1+ζ jζ )/8 j = 1,2...,8 (1)

Eq. (1) is expanded as:

N j = [1+ξ jξ +η jη +ζ jζ +(η jζ j)ηζ +(ξ jζ j)ξ ζ +(ξ jη j)ξ η +(ξ jη jζ j)ξ ηζ ]/8

(2)
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Figure 1: Solid element in referential coordinate system

Spatial coordinate of an arbitrary point in element xi is interpolated by

xi =
8

∑
j=1

N jXi j = (ST + lT
1 ξ + lT

2 η + lT
3 ζ +mT

1 ηζ +mT
2 ξ ζ +mT

3 ξ η +mT
4 ξ ηζ )Xi/8

i = 1,2,3 (3)

Isoperimetric element is used in this program, so displacements of an arbitrary
point in element can be interpolated by

ui =
8

∑
j=1

N jUi j = (ST + lT
1 ξ + lT

2 η + lT
3 ζ +mT

1 ηζ +mT
2 ξ ζ +mT

3 ξ η +mT
4 ξ ηζ )Ui/8

=(U0
i +U l1

i ξ +U l2
i η +U l3

i ζ +Um1
i ηζ +Um2

i ξ ζ +Um3
i ξ η +Um4

i ξ ηζ )/8 i = 1,2,3

(4)

where

ST = (1,1,1,1,1,1,1,1); lT
1 = (1,−1,−1,1,1,−1,−1,1);

lT
2 = (1,1,−1,−1,1,1,−1,−1); lT

3 = (1,1,1,1,−1,−1,−1,−1);

mT
1 = (1,1,−1,−1,−1,−1,1,1); mT

2 = (1,−1,−1,1,−1,1,1,−1);
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mT
3 = (1,−1,1,−1,1,−1,1,−1); mT

4 = (1,−1,1,−1,−1,1,−1,1);

XT
i = (Xi1,Xi2,Xi3,Xi4,Xi5,Xi6,Xi7,Xi8) nodal coordinates

UT
i = (Ui1,Ui2,Ui3,Ui4,Ui5,Ui6,Ui7,Ui8) nodal displacements

U0
i = STUi, U l1

i = lT
1 Ui, U l2

i = lT
2 Ui, U l3

i = lT
3 Ui

Um1
i = mT

1 Ui, Um2
i = mT

2 Ui, Um3
i = mT

3 Ui, Um4
i = mT

4 Ui

The physical meanings of several coefficients in Eq. (4) are interpreted as follows:

U0
i represents three displacements at the element center accounting for three rigid

body translations; U lk
i represents the constant terms of displacement gradient, and

define nine displacement modes: three uniform normal strain modes and six uni-
form shear strain modes. Umk

i represents the non-constant terms of displacement
gradient, and define twelve hourglass modes: six pure bending modes, three torsion
modes and three warping modes. Since the linear independent among ST , lT

i and
mT

j :

ST li = 0 i = 1,2,3 (5)

ST m j = 0 j = 1,2,3,4 (6)

lT
i m j = 0 (7)

lT
i lk = δik k = 1,2,3 δik is Kronecker delta (8)

mT
n m j = δn j, n = 1,2,3,4 (9)

Element displacement field could be explained as the linear combination of the
above vectors: ST , lT

i and mT
j , in which ST , lT

i and mT
j represent rigid motion,

constant deformation modes and spurious deformation modes, respectively. See
more information in paper [Li KP and Cescotto S(1997); Wang J and Wagoner
RH(2005)].

3 Deformation gradient field and properties of two displacement modes

Only another form of displacement field is given here, with detailed information
about deduce process in paper [Li KP and Cescotto S(1997)].

ui = (GT
0
+x j bT

j +hkγ
T
k )Ui, j = 1,2,3 k = 1,2,3,4 (10)

with

C =
1
8

lT
1 X1 lT

2 X1 lT
3 X1

lT
1 X2 lT

2 X2 lT
3 X2

lT
1 X3 lT

2 X3 lT
3 X3

−1

(11)
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bk = Cαklk k,α = 1,2,3 (12)

GT
0 = (S− (ST X j)b j)/8 j = 1,2,3 summation on repeated subscript (13)

γk = (mk−(mT
k X j)b j)/8 j = 1,2,3 k = 1,2,3,4 summation on repeated subscript

(14)

h1 = ηζ ; h2 = ξ ζ ; h3 = ξ η ; h4 = ξ ηζ (15)

From the above formulations, the following orthogonalities of Eq.s from (16) to
(22) are verified:

bT
i Xk = γik k, i = 1,2,3 (16)

bT
i S = 0 i = 1,2,3 (17)

bT
i m j = 0 i = 1,2,3 and j = 1,2,3,4 (18)

ST m j = 0 j = 1,2,3,4 (19)

γ
T
i S = 0 i = 1,2,3 (20)

γ
T
i m j = mT

i m j = δi j i, j = 1,2,3,4 (21)

γ
T
i X j = 0 i = 1,2,3,4 and j = 1,2,3 (22)

The displacement gradient could be obtained by taking derivatives of Eq. (10)

ui, j =
∂ui

∂x j
= (bT

j +hk, jγ
T
k )Ui = u0

i, j +uh
i, j, summation on repeated subscript (23)

where

u0
i, j = bT

j Ui; uh
i, j = hk, jγ

T
k Ui k = 1,2,3,4, summation on repeated subscript

(24)

It can be observed from Eq. (23) that the displacement gradient is divided into
two parts: constant and non-constant part and both of them will be briefed in the
following sections.

Arbitrary linear displacement modes of eight nodes

Ui = αiS +αi jX j (25)
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According to the orthogonalities of Eqs (16) and (17), we can obtain the following
form by substituting Eq. (25) into Eq. (24)

u0
i, j = bT

j Ui = bT
j (αiS +αikXk) = αikbT

j Xk = αikη jk = αi j (26)

According to the orthogonalities of Eqss (20) and (22), one gets

uh
i, j = hk, jγ

T
j (αiS +αi jX j) = 0 (27)

Then

ui, j = uh
i, j (28)

It can be clearly seen that the linear field can be rebuilt when the displacement
modes of nodes is linear, and satisfies the consistency condition of element while
the hourglass gradient mode vanishes.

Arbitrary hourglass displacement modes of eight nodes:

Ui = di jm j (29)

Considering the orthogonality of Eq. (18), one gets by substituting Eq. (29) into
Eq. (24)

u0
i, j = bT

j di jm j = 0 (30)

According to the orthogonalities of Eq. (24) and Eq. (21), one can get

uh
i, j = hk, jγ

T
k (dinmn) = hk, jdinγ

T
k mn = hk, jdinmT

k mn (31)

If the displacement modes of nodes are in hourglass modes, those modes have no
influence on element’s constant strain field. In other words, new 3D element using
assumed strain method doesn’t damage element’s constant strain field, and thus the
convergence of new element would be ensured. The building of assumed strain
field will be introduced in the following section.

For nonlinear problems, one only needs to replace (−
√

3,
√

3,0), (−
√

3,−
√

3,0)

with (
√

3,−
√

3,0), f int =
∫

Ωe
B̄σdΩ =

n
∑

i=1
wiJiB̄iσi respectively.

u̇i, j = (bT
j +hk, jγ

T
k )U̇i (32)
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Noting velocity gradient as

∇υ =



ux,x

uy,y

uz,z

ux,y +uy,x

ux,z +uz,x

uz,y +uy,z

 = B

U̇1
U̇2
U̇3

 = BU̇ (33)

where

B =



bT
1 +hk,1γT

k 0 0
0 bT

2 +hk,2γT
k 0

0 0 bT
3 +hk,3γT

k
bT

2 +hk,2γT
k bT

1 +hk,1γT
k 0

bT
3 +hk,3γT

k 0 bT
1 +hk,1γT

k
0 bT

3 +hk,3γT
k bT

2 +hk,2γT
k

 , k = 1,2,3,4,

summation on repeated subscript (34)

FI method would lead to volumetric or shear locking, while RI method’s main
disadvantage is the presence of hourglass modes[Belytschko T, Liu WK and Moran
B et al. (2002)]. When the element suffers spurious modes, it would result in zero
energy, so such modes are also called zero energy modes. As shown in Eq. (30),
it would give rise to twelve hourglass modes because of integration only in the
element center.

3.1 Hu-Washizu variational principle

Hu-Washizu variational principle [Fish J and Belytschko T(1998)] for nonlinear
problems is expressed as

0 = δ ∏(υ , ˙̄ε, σ̄) =
∫

Ωe
δ ˙̄εT

σdΩ+
∫

Ωe
σ̄

T (∇υ− ˙̄ε)dΩ−δU̇T f ext (35)

where δ denotes variation symbol, Ωe is element domain, υ is velocity field, ˙̄ε is
interpolated deformation rate, σ̄ is interpolated stress, σ is stress obtained from
the stress-strain law, U̇ is velocity of nodes and f ext is external nodal loads. It is
necessary to illustrate that the dot above ˙̄ε isn’t a meaning of derivative, but a strain
variation during an incremental time step.

According to the simplified form of the Hu-Washizu variational principle described
by Simo and Hughes (1986), interpolate stress is assumed to be orthogonal to the
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difference between the symmetric part of the velocity gradient and the interpolated
deformation rate, so Eq. (34) is written as

0 = δ ∏( ˙̄ε) =
∫

Ωe
δ ˙̄εT

σdΩ−δU̇T f ext (36)

Obviously, variation principle is independent of the interpolated stress, which doesn’t
appear in the final equations and needn’t to be defined. Now let’s define

˙̄ε = B̄

U̇1
U̇2
U̇3

 = B̄U̇ (37)

Substituting Eq. (36) into Eq. (35), we get

0 = δ ∏( ˙̄ε) =
∫

Ωe
δU̇T B̄σdΩ−δU̇T f ext = δU̇T (

∫
Ωe

B̄σdΩ− f ext)

then

f int = f ext (38)

where

f int =
∫

Ωe
B̄σdΩ (39)

Since this dynamic explicit program aims to solve large deformation nonlinear
elastic-plastic problems, stress σ = σ( ˙̄ε) is related with σ and ˙̄ε . In order to adapt
3D anisotropic yield criteria and make much more performance on avoiding shear
locking, a local coordinate frame is defined, which is embedded in each element
and rotates with element [Wang J and Wagoner RH(2005)].

3.2 Assumed velocity strain field

In order to eliminate transverse shear locking or volumetric locking, only non-
constant part of B matrix is projected and constant is kept in Belytschko and Bin-
derman [7]:

B = B0 +Bα (40)

B̄ = B0 + B̄α (41)
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where

B0 =



bT
1 0 0
0 bT

2 0
0 0 bT

3
bT

2 bT
1 0

bT
3 0 bT

1
0 bT

3 bT
2

 Bα =



hk,1γT
k 0 0

0 hk,2γT
k 0

0 0 hk,3γT
k

hk,2γT
k hk,1γT

k 0
hk,3γT

k 0 hk,1γT
k

0 hk,3γT
k hk,2γT

k

 (42)

In order to remove volumetric locking in nearly incompressible or incompressible
materials, this program remains the same isochoric field as in WW3D element.
There is a little difference from WW3D element in which parts of shear velocity
strain are wiped off. Then the expression of the projected B matrix is written as
follows

B̄α =

2
3 (h2,1γT

2 +h3,1γT
3 +h4,1γT

4 ) − 1
3 (h1,2γT

1 +h3,2γT
3 +h4,2γT

4 ) − 1
3 (h1,3γT

1 +h2,3γT
3 +h4,3γT

4 )
− 1

3 (h2,1γT
2 +h3,1γT

3 +h4,1γT
4 ) 2

3 (h1,2γT
1 +h3,2γT

3 +h4,2γT
4 ) − 1

3 (h1,3γT
1 +h2,3γT

3 +h4,3γT
4 )

− 1
3 (h2,1γT

2 +h3,1γT
3 +h4,1γT

4 ) − 1
3 (h1,2γT

1 +h3,2γT
3 +h4,2γT

4 ) 2
3 (h1,3γT

1 +h2,3γT
3 +h4,3γT

4 )

h1,2γT
1 h2,1γT

2 0
h1,3γT

1 0 h3,1γT
3

0 h2,3γT
2 h3,2γT

3


(43)

From the above expression, element meets isochoric everywhere in element which
means that element dilatation is zero. The following is the verification.

D = ˙̄εx + ˙̄εy + ˙̄εz = bT
i Ui summation on repeated subscript (44)

Since element is constant volume, volumetric variation overall element is zero:

0 =
∫

Ωe
DdΩ =

∫
Ωe

( ˙̄εx + ˙̄εy + ˙̄εz)dΩ (45)

On the use of
∫

Ωe hi, jdΩ = 0, Eqs (36), (40) and (42), Eq. (44) is simplified:

0 =
∫

Ωe
( ˙̄εx + ˙̄εy + ˙̄εz)dΩ

=
∫

Ωe
(bT

1 U1 +bT
2 U2 +bT

3 U3)dΩ = (bT
1 U1 +bT

2 U2 +bT
3 U3)Ve

(46)

xi =
8
∑
j=1

N jXi j = (ST + lT
1 ξ + lT

2 η + lT
3 ζ +mT

1 ηζ +mT
2 ξ ζ +mT

3 ξ η +mT
4 ξ ηζ )Xi/8

denotes the element volume. So Eq. (43) is verified.
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Here four-point integration in plane method is applied to evaluated internal force.
Those points are located as follows:

(
√

3,
√

3,0), (−
√

3,
√

3,0), (−
√

3,−
√

3,0), (
√

3,−
√

3,0)

Based on Gauss integration for Eq. (38), we can obtain

f int =
∫

Ωe
B̄σdΩ =

n

∑
i=1

wiJiB̄iσi (47)

where n denotes the number of integration points, and wi, Ji, B̄i, σi denote the
weight coefficient of ith point, determinant of Jacobian matrix, lT

3 matrix and stress
vectors respectively. Generally, weight coefficients are set to be 2 for four-point in-
tegration. The choice of integration points is a little different from other references,
and we choose four points in plane and multiple layers along thickness direction to
detect stress and strain states in transversal and thickness direction.

The return mapping algorithm, 3D anisotropic yield criteria and adaptive mesh
refine algorithm are ignored here due to the length of a journal paper.

4 Simulation examples

Considering the limit of dynamic explicit method, this program is suitable for dy-
namic or quasi-static problems. So examples about static couldn’t be executed.
One bending simulation of thick metal and two bulk forming examples are imple-
mented.

4.1 Thick plate bending

As shown in Fig. 2, sheet’s geometry for this problem is: length L=50mm, width
w=10mm, thickness H=10mm, punch radius R1=23.5mm, die radius R2=25mm,
die round radius R3=4mm. Other parameters are setting: punch stroke H=14mm,
punch speed v=6m/s.

The material is normal steel, which obey the hardening curve σ = 600(0.001 +
ε)0.22 MPa, and Young’s modulus E=207G Pa, Poisson’s ratio ν=0.3, friction co-
efficient among contact surfaces µ=0.1, Yield stress σy = 200MPa.

It is well-known that it is apt to stimulate hourglass modes in point or line contact.
According to the experience of the solid-shell element application in sheet metal
forming, the more contact is between blank and dies, the harder the occurrence of
hourglass will be. With the punch moving downward, it is a line contact at the
beginning, which is subject to active hourglass modes. From the deformed mesh
in Fig. 3, we could see that spurious modes are under control. In the next part,
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Figure 2: Finite element mode of thick plate

the author makes a detailed comparison of new element with four-point integration
ADS and ASQBI element (Belytschko T and Bindeman LP, 1993) on the basis of
dynamic explicit method.

 

Figure 3: Deformed result of new solid
in front view

 

Figure 4: Deformed result of ASQBI
solid in front view

 

Figure 5: Deformed result of ADS solid
in front view

 

Figure 6: Deformed result of ASQBI
solid in top view

Fig. 3, Fig. 4 and Fig. 5 are the front views showing the deformed results of new
solid, ASQBI and ADS respectively. As mentioned in reference [Belytschko T and
Bindeman LP(1993)], ADS element performs better than ASQBI in elastic-plastic
bending problems, which is verified in Fig. 4 and Fig. 5. In the Y direction of
sections between thick plate and punch, especially in the edge parts, ASQBI el-
ement overstates the deformation as is shown in Fig. 6, while ADS element and
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new element is much closer, as is shown in Fig. 3 and Fig. 5. The Expression of
the new solid element’s σ = 600(0.001 + ε)0.22 is close to that of ADS’s which is
equivalent to the deviatoric part of σy = 200, so new solid element could describe
the deformation of elastic-plastic materials as ADS element. The load-stroke rela-
tions using above solid elements are given in Fig. 7. As we can see, the curve of
new element is much closer to that of the ADS element.
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Figure 7: Comparison of three solid elements

 

Figure 8: Ironing die

 
Figure 9: Ironing punch

4.2 Thick metal plate ironing

The section view in Fig. 8 illustrates the dimension of the ironing die. The die
consists of a semi angle α = 10.2o, arc curve R8 and a straight-line segment. Fig. 9
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shows the dimension of ironing punch. The round R8.5 of punch can prevent stress
concentration. Fig. 10 illustrates the dimension of initial semi-finished product
with Xi7 as its initial wall thickness and Tf = 4.475 mm as the final thickness. The
punch stroke is 35mm. Four layer solid elements along thickness direction are
meshed for product and quadrangle meshes are for ironing die and punch.

The material used in this problem is normal steel, obeying the following hardening
curve σ = 80.3944(0.0151 + ε̄p)0.33944kgf / mm2, Young’s modulusUi6, Poisson’s
ratio ν=0.3, 1kgf = 9.81N, Yield stressσy = 19.4kgf / mm2 . See more information
in reference (Huang YM, Lu YH and Chan JW, 1991).

After defining ironing coefficientR = Ti/Tf , choosingα = 10.2o, frictionµ = 0.03,
and giving two teams of ironing coefficient R = 1.4, Ui1, one gets two teams of
load-stroke relations shown in Fig. 11 and Fig.12 respectively. The relation be-
tween stroke and forming force is much coincident with experimental results in
reference [Huang YM, Lu YH and Chan JW (1991)]. The occurrence of polygonal
line of simulation data is of the out and in around the die angle of the product nodes
alternatively. The force increases with the stroke of punch and keeps stable when
the stroke is up to a certain value theoretically.

 
Figure 10: Semi-finished products

With the movement of punch, the materials begin to enter the die and are squeezed.
Meanwhile, the force increases correspondingly, as is shown in Fig. 13. When
materials touch die completely in the angle, the force keeps no variation, as is
shown in Fig. 14. After the materials in die angle begin to decrease, the force
decreases, as is shown in Fig. 15. It could be deduced that the length of the interval
in which the force is constant in term of the constant volume of materials before
and after deformation:

b = α ∗R (48)

where Ui3 denotes the wall length shown in Fig. 14. R is the corresponding ironing
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Figure 11: The load-stroke relation with
R=1.5
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Figure 12: The load-stroke relation with
R=1.6

 

Figure 13: Initial touch of product and
die

 

Figure 14: Complete touch of product
and die

coefficient. It could be verified that b = αR = 14∗1.6 = 22.4mm from Fig. 12.

4.3 Cylindrical piece embossing

Fig. 16 and Fig.17 illustrate the embossing top die and bottom die, respectively.
The radius of cylindrical piece is 6 mm and its height is 1.6 mm. Five layer solid
elements along thickness are meshed with initial elements number 30810 and nodes
number 37410 and adaptive mesh refine three degrades is used because of the high
accuracy demanded by client, Shenyang Mint in China. The bottom die is fixed
and the top die’s total movement is only 0.15 mm, so the deformation of piece is
relatively small.

The material used in this example is normal steel, which obeys the hardening curve
σ = K(ε0 + ε)n MPa in which the strengthen coefficient K= 587, initial strainε0 =
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Figure 15: Material in the die decrease

 

Figure 16: Top die

 

Figure 17: Bottom die

0.001, and harden coefficientn = 0.27. Young’s modulus E=207G Pa, Poisson’s
ratio ν=0.3, friction coefficient among contact surfaces µ=0.08, Yield stress σy =
200MPa.

Fig. 18 shows the deformed result of embossing, and the CPU time is 1 hours.
In the region of printed letters and relatively large deformation of the coin, the
deformed meshes are depicted considerably clear. It can be seen that there is no
hourglass (no mesh picture is given due to the large number of meshes). Of course,
the adaptive mesh refine and small deformation are some factors. Figs. 19 and 20
are the strain contour and stress contour of the first layer solid elements respectively.

The above embossing process is also implemented in DEFORM 3D software. Piece
is meshed with tetrahedral element, and the element number is setting to be 185739.
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Figure 18: Deformed simulation result

 

Figure 19: Effective strain contour of
the first layer elements

 

Figure 20: Effective stress contour of
the first layer elements

 

Figure 21: Simulation result of DEFORM 3D

All the parameters setting is the same as the new solid element excepting the hard-
ening curve. The whole CPU time is 5.5 hours, and the simulation result is shown
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in Fig. 21.

By comparing Fig. 18 with Fig. 21, it is found that the result of new element is
much excellent than that of DEFORM 3D. On one hand, the number of tetrahedral
element is limited in DEFORM 3D, so tiny characteristics of the piece couldn’t be
described clearly. On the other hand, 5 layers elements though thickness direction
and precise calculation of internal forces, stress and strain using four-point, could
represent the elastic-plastic state of the material.

5 Conclusions

The new solid element with four-point integration in plane and assumed strain tech-
nology successfully removes locking problems theoretically, and the simulation re-
sults of above examples verify that the hourglass modes can be deleted successfully.
It is predicted that this new solid element could be widely applied in bulk forming
simulation with the continuous improvement of computer performance. The new
element is characterized by the following features:

• No volumetric locking because of the usage of assumed strain method.

• No hourglass modes, good performance in bending, for instance, as is shown
in case 1.

• No extra computation on anti-hourglass force, and no user-defined parame-
ters.

• Multi-layer elements in thickness, four-point integration, return mapping al-
gorithm, 3D constructive law , double side contact algorithm and adaptive
mesh refine technology make the new solid element exhibit excellent advan-
tage in solving lager deformation elastic-plastic problems. Ironing and em-
bossing example demonstrate the accuracy of such element in bulk forming
simulation.

• Compared with WW3D element, the computational cost of the new element
is reduced by nearly fifth percents.

The paper presents the application of a new solid element in bulk forming simula-
tion, and the results turn out to be effective. However, the volumetric locking of
the element is not verified. Therefore, much more work should be devoted to the
development of corresponding implicit algorithm to verify the locking problems of
this solid element.
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