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Abstract: For biochemical systems, where some chemical species are repre-
sented by small numbers of molecules, discrete and stochastic approaches are more
appropriate than continuous and deterministic approaches. The continuous deter-
ministic approach using ordinary differential equations is adequate for understand-
ing the average behavior of cells, while the discrete stochastic approach accurately
captures noisy events in the growth-division cycle. Since the emergence of the
stochastic simulation algorithm (SSA) by Gillespie, alternative algorithms have
been developed whose goal is to improve the computational efficiency of the SSA.
This paper explains and empirically compares the performance of some of these
SSA alternatives on a realistic model. The budding yeast cell cycle provides an ex-
cellent example of the need for modeling stochastic effects in mathematical mod-
eling of biochemical reactions. This paper presents a stochastic approximation of
the cell cycle for budding yeast using Gillespie’s stochastic simulation algorithm.
To compare the stochastic results with the average behavior, the simulation must be
run thousands of times. A load balancing algorithm improved overall performance
on a parallel supercomputer.

Keywords: Stochastic simulation algorithm (SSA), cell cycle, budding yeast,
parallel computing, load balancing.

1 Introduction

The cell-division cycle is the sequence of events that take place in a eukaryotic
cell leading to its replication. A growing cell replicates all its components and di-
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vides them into two daughter cells, so that each daughter has the information and
machinery necessary to repeat the process [Murray and Hunt (1993)]. Mathemati-
cal modeling and computational methods are needed to understand complex yeast
control systems. Deterministic mathematical modeling for the budding yeast cell
cycle gives the average behavior of populations of dividing cells [Chen, Calzone,
Csikasz-Nagy, Cross, Novak, Tyson (2004)]. However, some major regulatory pro-
teins occur in small numbers such that minor changes in timing and reaction rates
can have major inputs on outcomes. Thus, the stochastic approach provides more
accurate results than does the deterministic one. In addition, when cell cycle con-
trols are compromised by mutation, random fluctuations are important for modeling
the effects of the mutants. Therefore, it is desirable to translate a deterministic cell
cycle model into a stochastic model, and simulate the model with an appropriate
stochastic method.

Gillespie’s stochastic simulation algorithm (SSA) [Gillespie (1976); Gillespie (1977)]
is a well-known algorithm using Monte Carlo methods to simulate the chemi-
cal reactions. The SSA is an asymptotically exact stochastic method to simulate
chemical systems, but the SSA is often slow because it simulates every reaction.
Since the SSA emerged, there have been many attempts to improve the computa-
tional efficiency [Gibson and Bruck (2000); Gillespie (2001); Cao, Gillespie, Pet-
zold (2005)], however, the core principles remain the same. Other recent work in
stochastic simulation includes Rajan and Raha (2008).

One notable attempt to improve the SSA is the tau-leaping method [Gillespie (2001)].
Tau-leaping attempts to achieve increased computational efficiency by leaping over
many fast reactions. The implicit tau-leaping method compensates for difficulty
with stiff systems [Rathinam, Petzold, Cao, Gillespie (2003)]. Stiff systems are
characterized by well separated fast and slow time scales in a dynamic system,
the fastest of which is stable. Some approaches try to reduce time consumption
with different assumptions such as quasi steady-state approximation (QSSA) [Rao
and Arkin (2003)] and total quasi steady-state approximation (tQSSA) [Cilibetro,
Capuani, Tyson (2007)] for stiff systems. This paper compares computational ef-
ficiency and exactness between SSA, tau-leaping, implicit tau-leaping, QSSA, and
tQSSA based on numerical experiments first with a model using simple chemical
reactions and stiff systems, and then with the budding yeast model. StochKit [Li,
Cao, Petzold, Gillespie (2008)] is used to do stochastic simulation of the budding
yeast model. Because StochKit supports various approximate simulation methods
based on the SSA such as explicit and implicit tau-leaping methods, the compu-
tational efficiency of the approximation methods can be compared easily by using
StochKit.

Stochastic methods require that the model be cast in terms of population because
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they consider reactions with individual molecules. The problem is, however, that
Ordinary Differential Equation (ODE) models are usually based on concentra-
tion values. Therefore, the concentration-based model has to be changed into a
population-based model to simulate using a stochastic method. Previous work
[Wang, Randhawa, Shaffer, Cao, Baumann (2008)] explained the conversion pro-
cess using JigCell [Virginia Tech (2009)] in detail. StochKit [Li, Cao, Petzold,
Gillespie (2008)] is used to do stochastic simulation of the converted budding yeast
model. StochKit supports various approximate simulation methods based on the
SSA, but only the exact SSA is used to get precise results.

Because the SSA simulates every time step, the SSA is much slower than a deter-
ministic simulation. Moreover, the simulation must be run thousands of times to
generate enough data to determine the correct distribution of the behavior. There-
fore, it is desirable to run many independent SSA simulations in parallel. StochKit
supports MPI for parallel SSA runs, but the user assigns jobs for each processor.
Sometimes, the processor times for individual runs are quite different, which cause
a system resource inefficiency. This paper presents a dynamic load balancing algo-
rithm that improves the parallel efficiency.

The SSA and approximation methods are explained in the next section. The bud-
ding yeast cell cycle model and the dynamic load balancing algorithm are presented
next. Finally new biological results and numerical comparisons are given.

2 Stochastic simulation algorithms

2.1 SSA

Suppose a biochemical system or pathway involves N molecular species {S1, ...,SN}.
Xi(t) denotes the number of molecules of species Si at time t. People would like
to study the evolution of the state vector X(t) = (X1(t), ...,XN(t)) given that the
system was initially in the state vector X(t0). Suppose the system is composed
of M reaction channels {R1, ...,RM}. In a constant volume Ω, assume that the
system is well-stirred and in thermal equilibrium at some constant temperature.
There are two important quantities in reaction channels R j: the state change vector
v j = (v1 j, ...,vN j), and propensity function a j. vi j is defined as the change in the Si

molecules’ population caused by one R j reaction, and a j(x)dt gives the probability
that one R j reaction will occur in the next infinitesimal time interval [t, t +dt).
The SSA simulates every reaction event [Gillespie (1976); Gillespie (1977)]. With
X(t) = x, p(τ, j|x, t)dτ is defined as the probability that the next reaction in the
system will occur in the infinitesimal time interval [t + τ, t + τ + dτ), and will be
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an R j reaction. By letting a0(x)≡ ∑
M
j=1 a j(x), the equation

p(τ, j|x, t) = a j(x)exp(−a0(x)τ), (1)

can be obtained. On each step of the SSA, two random numbers r1 and r2 are
generated from the uniform (0,1) distribution. From probability theory, the time for
the next reaction to occur is given by t + τ , where

τ =
1

a0(x)
ln(

1
r1

). (2)

The next reaction index j is given by the smallest integer satisfying

j

∑
j′=1

a j′(x) > r2a0(x). (3)

After τ and j are obtained, the system states are updated by X(t +τ) := x+v j, and
the time is updated by t := t +τ . This simulation iteration proceeds until the time t
reaches the final time.

2.2 Explicit tau-leaping

The SSA is an exact stochastic method for chemical reactions, however, it is very
slow for many practical systems because the SSA simulates one reaction at a time.
One approximate simulation approach is tau-leaping [Gillespie (2001)]. The basic
idea of the tau-leaping method is that many reactions can be simulated at each
step with a preselected time τ . The tau-leaping method requires that the selected
τ must be small enough to satisfy the “leap condition”: The expected state change
induced by the leap must be sufficiently small that propensity functions remain
nearly constant during the time step τ .

K j(τ;x, t) is defined as the number of times, given X(t) = x, that reaction channel
R j will fire in the time interval [t, t + τ) where j = 1, . . ., M. If X(t) = x, then the
state can be updated by

X(t + τ) = x+
M

∑
j=1

K j(τ;x, t)v j. (4)

K j(τ;x, t) is modeled by a Poisson random variate. The explicit tau-leaping method
assumes

K j(τ;x, t) = Pj(a j(x)τ), (5)

where Pj is a Poisson random variate with mean and variance a j(x)τ .



Cell Cycle Modeling for Budding Yeast with Stochastic Simulation Algorithms 31

In order to select the largest value of τ that satisfies the leap condition, the Jaco-
bian matrices for the propensity functions are used [Gillespie (2001); Gillespie and
Petzold (2003)]. One new approach is to select τ such that relative changes in the
propensity functions are bounded [Cao, Gillespie, Petzold (2006)]. This new τ se-
lection procedure is faster and more accurate than previous methods. Therefore,
the explicit tau-leaping method proceeds as follows. Select a τ that satisfies the
leap condition. Generate the Poisson random variables for each reaction and adjust
the leap time by t := t + τ and the states by X(t + τ) := x+∑

M
j=1 K j(τ;x, t)v j. This

simulation iteration also proceeds until the time t reaches the final time t f .

2.3 Implicit tau-leaping

Implicit tau-leaping addresses the shortcomings of explicit tau-leaping when the
systems are stiff [Rathinam, Petzold, Cao, Gillespie (2003)]. Stiff systems are
characterized by well separated fast and slow time scales in a dynamic system,
with the fast mode being stable. In a stiff system, solutions by explicit tau-leaping
are unstable unless the time stepsize τ is kept smaller than the smallest (fastest)
time scale in the system [Rathinam, Petzold, Cao, Gillespie (2003)].

Tau-leaping as described previously is an explicit method because the propensity
functions a j are evaluated at the current known state x. Therefore, the future state
X(t + τ) is an explicit function of X(t), and the states can be updated by the equa-
tion,

Xet(t + τ) = x+
M

∑
j=1

v jPj(a j(x)τ), (6)

where the superscript “et” indicates that the explicit method is used. The implicit
method is described by

X it(t + τ) = x+
M

∑
j=1

v j

[
τa j
(
X it(t + τ)

)
+Pj(a j(x)τ)− τa j(x)

]
, (7)

where the superscript “it” stands for the implicit method. The implicit equation is
solved by Newton’s method, and the floating point state X it(t +τ) is rounded to the
nearest integer values.

2.4 QSSA

The explicit and implicit tau-leaping methods achieve increased computational ef-
ficiency by attempting to leap over many fast reactions. The quasi-steady state
approximation (QSSA) [Rao and Arkin (2003)] improves the efficiency by relying
on this steady state assumption: the net rate of formation is approximately equal to



32 Copyright © 2009 Tech Science Press CMES, vol.51, no.1, pp.27-52, 2009

zero when the fast reacting species are in steady state. Consider common enzyme
kinetic reactions using Michaelis-Menten kinetics. For substrate S, enzyme E, and
product P, the Michaelis-Menten reaction is

E +S
k1−→←−

k−1
E : S k2−→ P+E, (8)

where k1, k−1, and k2 are the rate constants. E:S is the enzyme-substrate complex
after the combination of substrate and enzyme. The rate equations corresponding
to this reaction are

d[S]
dt

=−k1[S][E]+ k−1[E : S], (9)

d[E : S]
dt

=−d[E]
dt

=−(k−1 + k2)[E : S]+ k1[S][E], (10)

d[P]
dt

= k2[E : S], (11)

where [X ] denotes the concentration of the species X . Assume that total enzyme
concentration ET = [E]+ [E : S] and [S]� [E : S]. From the assumption, the char-
acteristic time scale of [S] is very slow in comparison to that of [E : S], and [E : S]
reaches steady state quickly. From the quasi-steady state assumption, the rate equa-
tion for [E : S] is approximated by

d[E : S]
dt

= 0. (12)

Mathematically, it is possible to obtain a single rate equation,

d[S]
dt

=−k2[E : S] =− k2ET [S]
Km +[S]

, (13)

where Km = (k−1 + k2)/k1.

Similarly, the quasi-steady state assumption can be applied to the stochastic formu-
lation. The QSSA in stochastic kinetics implies that the net rate of change for the
conditional probability distribution of the fast reacting species is equal to zero. For
the above Michaelis-Menten kinetics, the separate master equation for the enzyme-
substrate complex is

dP([E : S] | [Ŝ]; t)
dt

= 0, (14)
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where [Ŝ] = [S]+[E : S]. From the above equation, one can easily derive the reduced
system

Ŝ−→ P, (15)

with the propensity function

a(s) =
k2ET [Ŝ]
Km +[Ŝ]

. (16)

Finally, the SSA is applied to this reduced system, and shows improved computa-
tional efficiency compared with using SSA on the original system.

2.5 tQSSA

In the previous section, the quasi-steady state approximation (QSSA) eliminates the
fastest reacting variable under some assumptions. In Michaelis-Menten kinetics,
the necessary condition for the QSSA is S0� ET , where S0 is the initial substrate
concentration, and ET is the total enzyme concentration. In a protein interaction
network (PIN), however, the enzymes and substrates often swap their roles [Blüth-
gen and Herzel (2003)]. Therefore, the QSSA condition will not be true for such
a PIN. Borghans et al. [Borghans, de Bore, Segel (1996)] proposed that the proper
slow timescale variable is [Ŝ] = [S]+ [E : S] instead of [S]. In terms of this variable,
the deterministic equations are

ET = [E]+ [E : S] = constant, (17)

[E : S]2−
(
ET +KM +[Ŝ]

)
[E : S]+ET [Ŝ] = 0, (18)

d[Ŝ]
dt

=−k2[E : S]. (19)

This is called the total quasi-steady state approximation (tQSSA). To derive the
equations for the stochastic simulation under the tQSSA, reduce the system to

Ŝ−→ P (20)

with the propensity function

a(s) = k2[E : S], (21)

where

[E : S] =
(
ET +Km +[Ŝ]

)
−
√(

ET +Km +[Ŝ]
)2−4ET [Ŝ]

2
. (22)

Finally, the SSA is applied to this reduced system, and shows improved computa-
tional efficiency compared with using SSA on the original system. Moreover, the
tQSSA overcomes the modeling shortcomings of the QSSA.
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Figure 1: Wiring diagram of budding yeast.

3 A stochastic cell cycle model

The molecular machinery of eukaryotic cell cycle control is known in more detail
for budding yeast, Saccharomyces cerevisiae, than for any other organism. There-
fore, the unicellular budding yeast is an excellent organism for which to study cell
cycle regulation. Molecular biologists have dissected and characterized individual
cell cycle components and their interactions to derive a consensus picture of the
regulatory network of the budding yeast. Figure 1 shows the wiring diagram for
the budding yeast model [Virginia Tech (2009)]. The diagram should be read from
the bottom-left toward the top-right. Solid arrows represent biochemical reactions,
and dashed lines represent how components may influence one another. Empirical
results of simulation runs for a stochastic formulation of the budding yeast model
are presented in the following section.

Each run of the stochastic simulation provides potentially different results, and the
real goal is to deduce the true population distribution for the potential outcomes.
This requires potentially many thousands of simulation runs. Each simulation run
requires different amounts of processor time. When hundreds of simulation runs are
assigned statically to a processor, the total simulation times can be quite different
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across the processors, causes a serious load imbalance. A dynamic load balancing
algorithm was developed that more evenly distributes work to the processors.

The basic idea of the load balancing algorithm is a master/slave paradigm that dy-
namically adjusts the task chunk size. Pseudocode (with constants tuned for the
problem at hand) for the load balancing follows.

Algorithm GetTask(n, p, task)
1. . Input: n = number of remaining tasks,
2. p = number of processors
3. . Output: chunk = number of tasks for a processor
4. begin
5. setPoint← floor (n/p)
6. if setPoint > 99 then
7. chunk← floor (setPoint×0.8)
8. else if setPoint > 5 then
9. chunk← floor (setPoint×0.5)
10. else then
11. chunk← 1
12. end if
13. end

The idea of varying the task chunk size as the size of the task queue decreases is
well known in parallel computing, where it is called guided self-scheduling. Fig-
ures 2 and 3 clearly show the advantage of the load balancing algorithm. Using
Virginia Tech’s 2200 processor (2.3 GHz PowerPC 970FX) System X, 100 worker
processors were used for 10,000 stochastic simulations for a budding yeast pro-
totype double mutant. Figure 2 shows the time that each processor required to
complete its assigned tasks. The variance between processors is high. Figure 3
shows processor times using the dynamic workload distribution. Here, the variance
in processor times is negligible, even though individual runs of the simulation have
large fluctuations in their cell cycles.

Table 1: Execution times for static distribution.

Parallel Runtime Time (seconds)
Tp(average) 6144.93
Wall clock time 7040.72
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Figure 2: Static workload distribution.
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Figure 3: Dynamic workload distribution.

Tables 1 and 2 show the average and total times for the static and dynamic workload
distributions. It is observed that dynamic workload distribution reduces system
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Table 2: Execution times for load balanced distribution.

Parallel Runtime Time (seconds)
Tp(average) 5992.43
Wall clock time 6066.84

resource use by approximately 14%.

4 Numerical experiments for simple reactions

The irreversible isomerization system and the Goldbeter-Koshland switch are used
here to compare various stochastic algorithms. The irreversible isomerization shows
the computational efficiency of the explicit tau-leaping method compared with the
SSA on a nonstiff system. The GK switch is a suitable stiff model to compare var-
ious stochastic algorithms (see, e.g., [Barik, Paul, Baumann, Cao, Tyson (2008)]).
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Figure 4: The SSA simulation (solid lines) and the explicit tau-leaping simulation
(dotted lines) for the irreversible isomerization. The error control parameter ε is
0.03 (left) and 0.15 (right).

4.1 Irreversible isomerization

The first application is the simplest chemical reaction, the irreversible isomerization

S1
c1−→ 0. (23)
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Ŝp

Ŝ
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Figure 5: The SSA simulation (solid lines) and the explicit tau-leaping simulation
(dotted lines) for the GK switch. State space (ST ,DT ,ET ) is (a):(900, 9, 45) and
(b):(900, 90, 450).
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Figure 6: The SSA simulation (solid lines) and the implicit tau-leaping simulation
(dotted lines) for the GK switch. State space (ST ,DT ,ET ) is (a):(900, 9, 45) and
(b):(900, 90, 450).
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Figure 7: The SSA simulation (solid lines) and the QSSA simulation (dotted lines)
for the GK switch. State space (ST ,DT ,ET ) is (a):(900, 9, 45) and (b):(900, 90,
450).
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Table 3: The number of runs and elapsed CPU time (sec) with the SSA and explicit
tau-leaping method, where t f = 5, c1 = 1, X1 = 104, and ε = 0.03.

Number of runs 1000 5000 10000 50000
SSA 48.74 240.40 487.76 2433.28
Explicit Tau-leaping 2.73 14.21 28.37 143.29

The initial parameters for this system are reaction rate constant c1 = 1, and 104 S1
molecules at time 0. Figure 4 shows the SSA and explicit tau-leaping results. The
final time is t f = 5 and the error control parameters are ε = 0.03 (left) and ε = 0.15
(right). In order to compare the exactness, 5000 runs are used for both methods.
Figure 4 shows mean and mean ± one standard deviation. These three lines in
the figure are visually identical. Figure 4 shows that increasing ε , while making
tau-leaping faster, affects the accuracy. The exact SSA method requires 9925 steps
to reach the final time (t f = 5). The tau-leaping method requires 167 (34) leap
steps for ε = 0.03 (ε = 0.15). Table 3 compares the computational efficiencies of
the explicit tau-leaping method and the SSA. Explicit tau-leaping is about 17 times
faster than the SSA with an appropriate approximation for this model.

Table 4: The number of runs and elapsed CPU time (sec) for the SSA, explicit
tau-leaping, implicit tau-leaping, QSSA, and tQSSA algorithms.

Number of runs 1000 5000 10000 50000
SSA 44.57 216.77 434.10 2175.45
Explicit Tau-leaping 4.75 18.23 46.57 181.31
Implicit Tau-leaping 18.43 89.13 181.29 887.44
QSSA 2.63 13.23 26.33 132.47
tQSSA 2.67 13.33 26.79 133.68

4.2 Goldbeter-Koshland switch

The Goldbeter-Koshland switch (GK switch) consists of a substrate-product pair (S
and Sp) that is interconverted by two enzymes (E and D):

D+Sp
k1d−→←−

k−1d

D : Sp
k2d−→ S +D, (24)

E +S
k1e−→←−

k−1e
E : S

k2e−→ Sp +E. (25)
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The parameter set for the GK switch came from [Barik, Paul, Baumann, Cao,
Tyson (2008)]. The parameter values are ST = 900, k1d = 0.05555min−1, k−1d =
0.83min−1, k2d = 0.17min−1, k1e = 0.05min−1, k−1e = 0.8min−1, and k2e = 0.1min−1.
In order to observe how the relationship between ST and ET affects the results, the
two cases (DT ,ET ) = (9,45) and (DT ,ET ) = (90,450) are compared. Ŝp and Ŝ are
defined by Ŝp = Sp +D : Sp and Ŝ = S +E : S.

Figures 5 and 6 show the mean and mean ± one standard deviation trajectories
of Ŝp and Ŝ for the explicit and implicit tau-leaping approximation algorithms and
the SSA. When Ŝp reaches steady state, the standard deviations of the SSA are
approximately 4.3 (a) and 13.2 (b). In the explicit method, the error parameter
value (ε = 0.15) was chosen so that the standard deviation matched that of the
SSA. The fixed step value (τ = 0.12) was chosen similarly for the implicit method.
Table 4 shows that the explicit method is faster than the implicit method for the
same accuracy, due to the cost of the Newton iteration in the implicit method.

Figures 7 and 8 show the mean and mean ± one standard deviation trajectories of
Ŝp and Ŝ for the QSSA and tQSSA algorithms. Figure 7(b) shows that the results
with the QSSA are different from those for the SSA. The explanation in the QSSA
section implies that the QSSA requires ST � ET . If ST ≈ ET or ST � ET , then
the results from the QSSA algorithm are not reliable. Figure 7(a) shows that if
ST � ET , then the results of the QSSA algorithm are similar to those from the
SSA. In contrast with Fig. 7, Fig. 8 shows that the tQSSA algorithm works when
ST ≈ ET or ST � ET .

In terms of CPU time, Tab. 4 shows that the QSSA and tQSSA algorithms are the
fastest approximate algorithms. The QSSA and tQSSA algorithms are almost 20
times faster than the SSA. The explicit and implicit tau-leaping approximations
also have improved computational time over the SSA.

5 Cell cycle results

5.1 Event implementation

Stochastic methods require the model to be in terms of population because they
consider reactions with individual molecules. Because the original budding yeast
model is based on normalized concentration values, a conversion process from an
ODE model into a model in terms of number of molecules is needed. The con-
version process is done using JigCell [Wang, Randhawa, Shaffer, Cao, Baumann
(2008)], and consists of two phases, unit checking and model conversion. Unit
checking verifies physical unit consistency inside the model. Model conversion
converts the model by changing values of species and parameters based on the unit
information.
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After creating the population-based budding yeast model, there is technical issue
that must be addressed. In Systems Biology Markup Language (SBML), an event
is triggered when some condition is met. There are events defined to divide the cell
or mark checkpoints within the cell cycle stages. A typical deterministic event has
the form:

if (X > threshold)
then (Event is triggered)

Because of the random nature of stochastic simulation, as illustrated in Fig. 9, un-
wanted events can be triggered when a deterministic SBML event is used for the
stochastic model. In Fig. 9, an unwanted event (B) can be triggered with a wanted
event (A) by using a deterministic event handling equation.

Figure 9: Event handling.

To prevent unwanted events, the event logic has to be rewritten to tolerate the situa-
tion where the value of X oscillates around the threshold. A second threshold value
can be defined from the threshold and the direction of the test (greater than or less
than). For budding yeast, this second threshold equals .5*threshold (for a greater-
than test) or 1.5*threshold (for a less-than test). For instance, the event code above
would be changed to:

if (X < second threshold)
then (EventFlag ← TRUE)

if (X > threshold AND EventFlag = TRUE)
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then (event is triggered;
EventFlag ← FALSE)

StochKit [Li, Cao, Petzold, Gillespie (2008)] was used to do stochastic simulation
of the converted budding yeast model, using the SSA option for the most precise
results. JigCell can generate the StochKit model file by using the population based
budding yeast model file.

Figure 10: Deterministic cell cycles.
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Figure 11: Stochastic cell cycles.
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5.2 Wild type simulation results with the SSA

The deterministc budding yeast model from Chen’s paper [Chen, Calzone, Csikasz-
Nagy, Cross, Novak, Tyson (2004)] was converted to a stochasitc model. To com-
pare the stochastic results with the deterministic cell cycle simulation, mass and
several representative species’ trajectories are shown in Figs. 10 and 11. The deter-
ministic result is from the XPP ODE simulator using JigCell. For comparison, the
stochastic simulation results are converted back to normalized concentrations.

Table 5: Execution time comparisons with different methods for wild type budding
yeast.

Method Time(seconds) The Number of Steps
Direct SSA 25.03 2,495,000
Explicit Tau-leaping(1) with ε = 0.01 82.893 2,444,000
Explicit Tau-leaping(1) with ε = 0.05 312.07 1,232,000
Explicit Tau-leaping(1) with ε = 0.15 618.41 290,000
Explicit Tau-leaping(2) with ε = 0.01 28.90 2,442,000
Explicit Tau-leaping(2) with ε = 0.05 29.44 2,319,000
Explicit Tau-leaping(2) with ε = 0.15 29.16 1,835,000
Implicit Tau-leaping with τ = 0.001 7965.18 500,000
Implicit Tau-leaping with τ = 0.005 1920.34 100,000
Implicit Tau-leaping with τ = 0.010 1012.87 50,000

5.3 Wild type results comparisons

Table 5 shows the results of the stochastic budding yeast simulation with direct
SSA, explicit tau-leaping, and implicit tau-leaping methods. The final time is
t f = 500. In order to select the largest value of τ that satisfies the leap condi-
tion, the Jacobian matrices for the propensity functions are used for the explicit
tau-leaping(1) method [Gillespie and Petzold (2003)]. Another approach, explicit
tau-leaping(2), is to select τ such that relative changes in the species are bounded
[Cao, Gillespie, Petzold (2006)]. For the implicit method, the package StochKit
does not provide an adaptive stepsize selection strategy, thus fixed step values were
used in the experiment.

For direct SSA, the average time to run the simulation is approximately 25 seconds
with 2,495,000 steps. From the results with simple chemical reactions, the ex-
plicit and implicit tau-leaping methods improved computational time over the SSA
while obtaining equally accurate simulation results. However, for the budding yeast
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model, the tau-leaping methods took more simulation time. The Jacobian matrices
for the propensity functions are used for explicit tau-leaping(1), and the time was
increased for a reduced number of steps. Thus the computational time for handling
Jacobian matrices is larger than the computational time for steps. Even for the new
tau selection method tau-leaping(2), the computational time did not improve over
that of the SSA. This unexpected result is caused by the stiffness present in the cell
cycle model. Ideally, for a stiff system the implicit tau-leaping or QSSA methods
should be applied. However, here the implicit tau-leaping method took even more
time than the explicit tau-leaping method, even with many fewer steps. One reason
is because the implicit tau-leaping method has to solve a nonlinear system of equa-
tions in each step, which is quite expensive when the system size is large. Another
reason is that currently there is no general stepsize selection algorithm for the im-
plicit tau-leaping method, thus here only the fixed time step option in StochKit can
be used, which severely limits the efficiency of the implicit tau-leaping method.
The QSSA and tQSSA methods have great performance when a system has clear
separation between fast and slow scales. However, for an oscillating system such
as the cell cycle model, the fast and slow scales do not separate so well. Moreover,
the scales of many reactions in the system switch in the cell cycle oscillation. Cur-
rently there is no known good way to dynamically partition this type of complex
system and apply QSSA or tQSSA. Therefore, at present, direct SSA is the most
appropriate method for the budding yeast model, and mutants in the next section
were tested with the direct SSA method.

5.4 Mutants

To further test their understanding of the cell cycle process, modelers go beyond
comparing simulation outputs from the model with the behavior of the wild type
yeast cell. They also study the behavior for genetic variants, created by gene knock-
outs form the wild type cell. These variations are expressed in the model by chang-
ing some initial conditions, parameters values, or equations from the wild type
budding yeast model. Deterministic models can only show that all cells die, repro-
duce endlessly, or die after some number of divisions. In the stochastic simulation,
different runs of the simulation can yield different outcomes. The number of cycles
until stopping division is different for different trajectories. To generate enough
data to perform a statistical analysis, 10,000 independent simulations are executed
from the same initial point using the load balancing parallel algorithm.

Let the random variable X denote the number of cell divisions before the cell stops
dividing, and assume that the probability p of not dividing is constant and indepen-
dent of the cell’s previous history. Then X has a modified geometric distribution
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given by

P(X = n) = p(1− p)n where n = 0,1, ... (26)

Further, the probability of having n or more cycles is given by

P(X ≥ n) = (1− p)n where n = 0,1, ... (27)

If either probability is plotted on a log scale against n, it will be a straight line with
a slope of log(1− p). In the analysis of the mutant simulations, a best least squares
fit straight line is used to extract the slope and estimate the value of p.
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Figure 12: Probability of getting a colony.

In wet lab experiments, the viability of mutants is assessed by determining whether
single mutant cells could grow into a colony. To determine the relationship between
viability and the probability of ceasing to divide, simulation is used to determine
the probability of one cell producing a colony of size greater than 106 in 32 division
cycles. 32 division cycles correspond roughly to incubating the cells on a plate for
two days. A 1 mm3 colony has about 20× 106 cells. Therefore, it is assumed
that 0.05 mm3 can be visible. The results of these simulations are summarized in
Fig. 12. From this figure, the ability to observe colonies has a roughly switch-like
characteristic with the switching point near p = 0.25.
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It is interesting that some mutants have different fates in different growth media.
For example, some mutants of budding yeast are inviable in “rich” medium (fast
growth rate) but partially viable in “poor” medium (slow growth rate). “Partially
viable” means that cells growing in poor medium have some probability of not
dividing (0 < p < 0.5, p as defined above). In rich medium, p = 1. Partial viability
is not an option in a deterministic model, for which all cells behave identically
(either p = 0 or p = 1).

Simulation results for a prototype model of a partially viable, budding yeast mutant
are reported in Figs. 13 and 14. For fast growth rates, every simulated cell arrests
in the cell cycle (p = 1). If the growth rate is sufficiently slow, then simulated cells
begin to divide with a certain probability 1− p. For the case in Fig. 14, p = 0.22.
From Fig. 12, this implies that the probability of a single cell forming a colony
is 65%, which could be compared to experimental observations for a particular
mutant. The point is that stochastic simulation accounts for the property of partial
viability that a deterministic simulation cannot.

6 Conclusions and future work

The simulation results reported here, while limited, show important characteristics
of each approximation algorithm. The explicit tau-leaping method improves com-
putational efficiency, compared to the SSA, for nonstiff systems, but can be unsta-
ble on stiff systems. The implicit tau-leaping method is stable, but much slower
than the explicit method. The tQSSA algorithm produces excellent agreement with
the SSA and is more efficient by an order of magnitude. Some of these approaches
are simulated with the budding yeast model, and were shown to be impractical for
this realistic cell cycle model.

The budding yeast stochastic simulation results reported here, while limited, show
important characteristic aspects of cell cycle empirical data, such as mixed mu-
tant viability. Because random fluctuations are important to accurately simulate
mutants, some major regulatory proteins occur in small numbers, the stochastic ap-
proach is more realistic and accurate than the deterministic approach for modeling
the budding yeast cell cycle. The guided self-scheduling load balancing algorithm
is effective for managing the large numbers of SSA trajectories required by the
stochastic approach.

The data collected here are only the first step toward calculating population dou-
bling times, and probabilities for successful colony formation of the various mu-
tants. Those probabilities are one of the tests for verifying that the simulations
match experimental results. The results are also perhaps skewed by the fact that
all simulation runs begin with a static initial condition that might not be represen-
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tative of the true population. In future work, the authors will calculate population
statistics and use them to generate appropriate initial conditions.
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