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Abstract: Urban traffic is a key factor for the development of a city. There exist
many different approaches facing traffic optimization. In our case we have focused
on traffic lights optimization. We have designed and tested a new architecture to
optimize traffic light cycle times. The purpose of this research is to demonstrate
the good performance of our architecture in a congested scenario. We have simu-
lated several congestion situations for a very large real world traffic network – “La
Almozara” in Zaragoza, Spain. Our results seem encouraging in this extreme situ-
ation. As we increase the load in the network we get a the better traffic behavior of
our architecture. Finally, new research directions are presented.
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rithms, Traffic Congestion.

1 Introduction

At the present time we live a global energy and environmental crisis. The sci-
entific community argues that the global warming process is, at least partially, a
consequence of modern societies development. A key area in that situation is the
citizens mobility. World economies seem to require fast and efficient transportation
infrastructures for a significant fraction of the population.

The non-stopping overload process that traffic networks are suffering calls for new
solutions. In the vast majority of cases it is not viable to extend that infrastruc-
tures due to costs, lack of available space, and environmental impacts. Thus, traffic
departments all around the world are very interested in optimizing the existing in-
frastructures to obtain the very best service they can provide.

1 M.J. Galán Moreno, J.J. Sánchez Medina, L. Álvarez and E. Rubio Royo are members of CICEI,
ULPGC, SPAIN.
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In the last decade many initiatives have been developed to give the traffic network
new management facilities for its better exploitation. They are grouped in the so
called Intelligent Transportation Systems.

Examples of these approaches are the Advanced Traveler Information Systems
(ATIS) and Advanced Traffic Management Systems (ATMS). Most of them pro-
vide drivers or traffic engineers the current traffic real/simulated situation or traffic
forecasts. They may even suggest actions to improve the traffic flow.

To do so, researchers have done a lot of work improving traffic simulations, spe-
cially through the development of accurate microscopic simulators. In the last
decades the application of that family of simulators was restricted to small test
cases due to its high computing requirements. Currently, the availability of cheap
faster computers has changed this situation.

Some famous microsimulators are MITSIM(Yang (1997)), INTEGRATION (Rakha,
Van Aerde, Bloomberg, and Huang (1998)), AIMSUN2 (Barcelo, J.L., Garcia, Flo-
rian, and Le Saux (1996)), TRANSIMS (Nagel and Barrett (1997)), etc. They will
be briefly explained in the following section.

Although traffic research is mainly targeted at obtaining accurate simulations there
are few groups focused at the optimization or improvement of traffic in an automatic
manner – not dependent on traffic engineers experience and “art”.

One of the most important problems in traffic optimization is traffic light cycles1

optimization. This is a hard Combinatorial Problem which seems not to have a
known deterministic solution at the present time.

In our group we have been working on the optimization of traffic lights cycles for
the better performance of urban traffic networks. As shown in Brockfeld, Barlovic,
Schadschneider, and Schreckenberg (2001), traffic light cycles have a strong influ-
ence in traffic flow results. For that reason we decided to focused on that problem.
We have combined a Genetic Algorithm (GA) as optimization technique with a
traffic microscopic simulator running on a scalable MIMD multicomputer2.

We have tested the forementioned three pillar model with some works (Sánchez,
Galán, and Rubio (2004), Sánchez, Galán, and Rubio (2005b), Sánchez, Galán,
and Rubio (2005a), Sánchez, Galán, and Rubio (2006), Sánchez, Galán, and Rubio
(2007) and Sanchez-Medina, Galan-Moreno, and Rubio-Royo (2008)). By means
of this work our aim is to study how it works in a congested big network. We have

1 Traffic light cycle: the finite sequence of states– e.g. green, orange, etc. – that a traffic light runs
iteratively.

2 MIMD: Multiple Instruction Multiple Data: A type of parallel computing architecture where many
functional units perform different operations on different data. For example a network of PC’s
working in parallel.
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used the traffic data supplied by the local government of Zaragoza – Spain. We have
simulated the traffic at this network with the supplied statistics of traffic inflow. In
a second phase we have increased the traffic input far beyond the current statistics
and then we have optimized the traffic lights times for the new situation. The
results show our model to be suitable for optimizing such times also in a congestion
scenario.

The rest of this article is organized as follows. In the following subsection we give
a wide survey of the current State of the Art. In 1.1.3 we briefly expose our own
contribution to the matter. In section 2 we explain with some detail the proposed
methodology. In section 3 the experiments performed, the restrictions assumed
and the results obtained are shown. In section 4 we discuss the results and their
implications. Some final concussions and future work ideas are given in the section
5.

1.1 State of the Art

In this subsection we want to give a survey of some significant works in the area.
We have used Genetic Algorithms as non-deterministic optimization technique. Fo-
cusing now on our research area, we have categorized works in three classes: those
mostly related to Advanced Traveler Information Services (ATIS); those mainly
about Advanced Traffic Management Systems (ATMS), and in a third subset we
have called Advanced Traffic Optimization Systems (ATOS), those where traffic is
not just managed but optimized – or tried to be optimized – in an automatic manner,
without human interaction.

1.1.1 Advanced Traveler Information Services

Advanced Traveler Information Services are those services that can potentially help
drivers to make better decisions in order to reduce their travel time. There are many
initiatives in this area. Here we show some examples.

In Florian (2004), this thesis provides an empirical study of the impact of ATIS on
transportation network quality of service using an application of DynaMIT (Dy-
namic network assignment for the Management of Information to Travelers). The
main results are that the provision of dynamic route guidance can simultaneously
benefit the individual performance of drivers, both guided and unguided, as well as
the system performance of existing transportation infrastructure.

In Hafstein, Chrobok, Pottmeier, Schreckenberg, and Mazur (2004) a high resolu-
tion cellular automata freeway traffic simulation model applied to a Traffic Infor-
mation System. They provide a simulation for current traffic zones without loop
detectors, and 30 min. and 60 min. future traffic forecasts. They run a java applet
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in a web page in order to give the network users this useful information.

1.1.2 Advanced Traffic Management Systems

Advanced Traffic Management Systems are those systems that help engineers to
better manage traffic networks. There are many works around this topic, most of
them focused on traffic simulation. Some examples are the following.

The INTEGRATION model has been used to simulate traffic for the Salt Lake
Metropolitan Area (Rakha, Van Aerde, Bloomberg, and Huang (1998)).The ob-
jective of this paper is threefold. First, the feasibility of modeling a large-scale
network at a microscopic level of detail is presented. Second, the unique data col-
lection challenges that are involved in constructing and calibrating a large-scale
network microscopically are described. Third, the unique opportunities and appli-
cations from the use of a microscopic as opposed to a macroscopic simulation tool
are described.

The MITSIM model (Yang (1997)) has been used to evaluate aspects of both the
traffic control system and the ramp configurations of the Central Artery/Tunnel
project in Boston. It explicitly incorporates traffic prediction, time variant traffic
information, and dynamic route choice.

AIMSUN2 has been used to simulate the Rings Roads of Barcelona Barcelo, J.L.,
Garcia, Florian, and Le Saux (1996). Uses parallel computers to shorten the execu-
tion time.

Traffic simulation using CA models has also been performed on vector supercom-
puters to simulate traffic in shortest possible time (Nagel and Schleicher (1994a)).

The INTELSIM model is used in Aycin and Benekohal (1998) and Aycin and
Benekohal (1999). In those works a linear acceleration car-following model has
been developed for realistic simulation of traffic flow in intelligent transportation
systems (ITS) applications. The authors argue that the new model provides contin-
uous acceleration profiles instead of the stepwise profiles that are currently used.
The brake reaction times and chain reaction times of drivers are simulated. As a
consequence, they say that the good performance of the system in car-following
and in stop-and-go conditions make this model suitable to be used in ITS.

Moreover, in Aycin and Benekohal (1999) they compare many car-following meth-
ods with their proposed method, and with field data.

In Bham and Benekohal (2004) they proposed a “high fidelity” model for simula-
tion of high volume of traffic at the regional level. Their model uses concepts of
Cellular Automata and Car-Following models. They propose the concept of Space
Occupancy (SOC) used to measure the traffic congestion. Their aim is to simu-
late high volume of traffic with shorter execution time using efficient algorithms
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on a personal computer. Like in our case, they based their simulator on Cellular
Automata concepts. Although their model could be more accurate than the one of
ourselves, in our work we go further using our simulator inside a GA for optimizing
the traffic – not just for simulating traffic.

In Tveit (2003), Dr. Tveit, a senior researcher with SINTEF3, explains that a com-
mon cycle time4 for a set of intersections is a worse approach than a distributed and
individualized one. His conclusions appear sound and convincing, so we consider
them in our approach. In our system every intersection has independent cycles.

In Smith (1988) the use of responsive signals5, with network capacity (rather than
total travel cost) as a control criterion is argued. The capacity of the network is
maximized if the signals operate to equalize traffic density on the most occupied
parts of the network. This is another example of multiple local optimizations in-
stead of a global optimization, like the one of ours.

In Logi and Ritchie (2001) a knowledge based system is presented for traffic con-
gestion management. The proposed model comprises a data fusion algorithm, an
algorithm for selection the suitable control plan, and it presents the proposed plan
with an explanation of the reasoning process for helping the traffic operators deci-
sions. They presented also a validation example for displaying the ability of their
system to reduce congestion. From our point of view, although this seems a very
interesting approach to the matter, both the selection of control strategies and the
estimation of future traffic are based on the experience of traffic engineers. In spite
of this, in our methodology we use the combination of two widely accepted and
trusted techniques. We use a more accurate estimation of future traffic – thought a
microsimulator – and a genetic algorithm for the optimization of the traffic flow.

1.1.3 Advanced Traffic Optimization Systems

TRANSIMS project used CA models to simulate traffic for the city of Fortworth-
Dallas using parallel computers (Nagel and Barrett (1997)). This paper presents
a day-to-day re-routing relaxation approach for traffic simulations. Starting from
an initial plan-set for the routes, the route-based microsimulation is executed. The
result of the microsimulation is fed into a re-router, which re-routes a certain per-
centage of all trips.
3 SINTEF means The Foundation for Scientific and Industrial Research at the Norwegian Institute

of Technology.
4 Common cycle time: This is a very simple way of programming traffic lights in an intersection or

groups of intersections. All the traffic lights share a cycle length. The starting point of each one
of the states or stages in the particular cycle of every traffic light may be different, but the cycle
period is the same for all of them.

5 Responsive signals: Traffic signals capable of adapting their state to the current traffic situation
near them.
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In Wey (2001), an isolated intersection is controlled applying techniques based
on linear systems control theory to solve the linear traffic model problem. The
main contribution of this research is the development of a methodology for alle-
viating the recurrent isolated intersection congestion caused by high transportation
demand using existing technology. Again this work deals with very small scale
traffic networks — one intersection.

In Schutter and Moor (1997) the authors present a single intersection – two two
ways streets – model describing the evolution of the queue lengths in each lane as
a function of time, and how (sub)optimal traffic switching schemes for this system
can be determined.

In Febbraro, Giglio, and Sacco (2002) Petri Nets are applied to provide a modular
representation of urban traffic networks. An interesting feature of this model is the
possibility of representing the offsets among different traffic light cycles as embed-
ded in the structure of the model itself. Even though it is a very interesting work,
the authors only optimize the coordination among different traffic light cycles. Our
cycle optimization methodology is a complete flexible one because we implicitly
optimize not only traffic light offsets but also every stage length.

Another interesting work using Petri Nets is Li, Tang, Mu, and Shi (2004) where
they are applied to control a single intersection by means of programmable logic
controllers (PLCs). They compare three methods for modeling the traffic lights at
an intersection and found out that the more suitable is the one that combines Petri
nets with PLCs. Again, in this research just one intersection is optimized, and not
a whole traffic network.

In Spall and Chin (1994) the authors presented a neural network (NN) approach for
optimizing traffic light cycles. A neural network is used to implement the traffic
lights control function. The training process of the NN is fed exclusively with
real data. This being so, it would only be useful in systems with an on-line data
acquisition module installed. However, so far such systems are not common at all.

The “offset-time”6 between two traffic lights is optimized using Artificial Neural
Networks (ANNs) at López, Hernandez, Hernandez, and Garcia (1999). Although
our system does not treat explicitly the offset time parameter we think that our
system faces traffic optimization in a much more flexible manner.

In GiYoung, JeongJin, and YouSik (2001) a real-time local optimization of one
intersection technique is proposed. It is based on fuzzy logic. Although an adaptive
optimization may be very interesting – we checked out this in Sánchez, Galán, and
Rubio (2004) – we believe that a global optimization is a more complete approach

6 Offset-time: the time since a traffic light turns green until the next traffic light – for example, in a
boulevard – turns also green.
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to the problem.

In You-Sik, Hyunsoo, and Chong-Kug (1999) authors present a fuzzy control sys-
tem for extending or shortening the fixed traffic light cycle. By means of elec-
trosensitive traffic lights they can extend the traffic cycle when many vehicles are
passing on the road or reduce the cycle if there are few vehicles passing. Through
simulation they presented efficiency improvement results. This work performs a
local adaptation for a single traffic light instead of a global optimization.

In Rouphail, Park, and Sacks (2000) an “ad hoc” architecture is used to optimize
a 9 intersection traffic network. It uses Genetic Algorithms as an optimization
technique running on a single machine. The CORSIM7 model is used within the
evaluation function of the GA. In this work scalability is not addressed. Authors
recognize that it is a customized non scalable system. Our system has the scalability
feature thanks to the intrinsic scalability of the Beowulf Cluster and the parallel
execution of the evaluation function within the GA.

In Hong, Kim, Kwangson, and Park (1999) the concept of the optimal green time
algorithm is proposed, which reduces average vehicle waiting time while improving
average vehicle speed using fuzzy rules and neural networks. Through computer
simulation, this method has been proven to be much more efficient than using fixed
time cycle signals. The fuzzy neural network will consistently improve average
waiting time, vehicle speed, and fuel consumption. This work only considers a
very small amount of traffic signals — two near intersections — in the cycle opti-
mization. We do agree with them about the non-suitability of fixed cycles.

An interesting combination of Genetic Algorithms and Traffic Simulation is pub-
lished in Taniguchi and Shimamoto (2004). In this work a routing and scheduling
system for freight carrier vehicles is presented. They use Genetic Algorithms as
optimization technique. The objective of the GA is the minimization of the costs of
travel. A dynamic vehicle routing algorithm is proposed and tested with a test road
network. The implemented traffic simulation model is macroscopic.

Another very interesting work is presented in Varia and Dhingra (2004). A dynamic
system-optimal (DSO) traffic assignment model is formulated for a congested ur-
ban network with a number of signalized intersections. They also combine traffic
simulation with Genetic Algorithms. The aim of this work is to assign any traveler
a route. A GA is used to minimize the users total travel time. A macroscopic model
is used for the estimation of traffic delays. The DSO problem is solved with fixed
signal timings, and with the optimization of signal timings.

In Vogel, Goerick, and von Seelen (2000) every intersection is optimized consid-
ering only local information. Moreover, it can be adapted to short and long term

7 CORSIM: Corridor Traffic Simulation Model (Halati, Lieu, and Walker (1997)).
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traffic fluctuations. In our case we perform a global optimization instead of multiple
local optimizations. We think that our approach may be a more efficient exploita-
tion of the traffic infrastructure.

A very interesting work is published in Wiering, Vreeken, van Veenen, and Koop-
man (2004). In this work, traffic is regarded as formed by a set of intersections to
be optimized in a stand alone manner. They proposed to use reinforcement learning
algorithms to optimize what they consider a multi-agent decision problem. We do
not agree with them. Although a local optimization can obviously reduce average
waiting times of cars – as it seems to happen with simulated tests at this work –
we think that a global optimization taking into account every intersection in a zone
should be more profitable.

Another very interesting work (Yoshimura (2006)) is published in the journal Com-
puter Modeling in Engineering and Sciences. In that work a multi-agent traffic sim-
ulator is proposed. They argue considering elements like car (driver), traffic signal,
and pedestrian. Therefore, the system is very complex. Finally MATES is applied
to simulate city traffic in Kashiwa city in Japan, employing various real world data
as input.

Own Contribution In this subsection we have included our contribution to the
art. In Sánchez, Galán, and Rubio (2004) we presented our methodology for the
optimization of Traffic Light Cycles in a Traffic Network. The very good results
of a parallel speed-up study convinced us that it was advisable to use a “Beowulf
Cluster” as parallel computing system.

In OPTDES IV8 we shared a scalability study on that architecture. We ran tests
using four networks from 80 up to 1176 cells. In that work we found out that our
system had a very good performance for all cases.

In Sánchez, Galán, and Rubio (2005b) we compared two versions of our micro-
scopic traffic simulator: a stochastic versus a deterministic traffic simulator. There
were three differences between the stochastic and the deterministic version: The
cells updating order; the new vehicle creation time and the acceleration probability.
From that work we realized that the stochastic simulator is a suitable – convergent
– statistical process to compare with; and we demonstrated that the deterministic
simulator outputs are highly linearly correlated with the stochastic ones. Therefore,
our deterministic simulator can arrange the population ranking in order of fitness
at least as well as the stochastic simulator, but with a remarkably lower computing
time.

In the research presented for CIMCA2005 (Sánchez, Galán, and Rubio (2005a)) we

8 Optimization and Design in Industry IV, Tokyo, Japan, (September, 26-30th, 2004)
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described the difference between two sorts of encoding, yielding different crossover
and mutation strategies. The main achievement in that work was to demonstrate –
by means of a wide set of tests – that, at least for our particular case, a bit level
crossover combined with a variable mutation probability means a great saving of
computing time. Besides, we noticed how that choice lets the algorithm cover the
solution space faster due to a bigger gene variability between generations. This
combination seems to avoid premature convergence.

In ECT2006 we delivered a research (Sánchez, Galán, and Rubio (2006)) that in-
cluded two goals. First, we introduced a new methodology – such a visual one
– helping those practitioners occupied tuning a GA by giving them much deeper
knowledge of how the GA is doing than they had before. Furthermore, we tried
this new methodology with a wide set of tests. We used it for tuning the genetic al-
gorithm within our traffic optimization architecture applied to a particular network.

We presented another research in Eurocast 2007 (Sánchez, Galán, and Rubio (2007)).
In that communication we shared a study considering three candidate criteria as
a first step toward extending our fitness function towards a multicriteria one. The
criteria where related to the total number of vehicles that left the network, the occu-
pancy of the network and greenhouse gases emissions. We performed a correlation
study and, although conclusions where not definitive, we obtained some interesting
conclusions about the relationship among those parameters.

Finally, soon we will publish an optimization research (Sanchez-Medina, Galan-
Moreno, and Rubio-Royo (2008)) for another traffic network situated in Santa Cruz
de Tenerife, Spain. Although the scale of that network is not as large as the one
treated for the current paper, results are promising.

2 Methodology

2.1 Optimization Model

The architecture of our system comprises three items, namely a Genetic Algorithm
(GA) as Non-Deterministic Optimization Technique, a Cellular Automata (CA)
based Traffic Simulator inside the evaluation routine of the GA, and a Beowulf
Cluster as MIMD multicomputer. Through this section we will give a wide de-
scription for the GA and the CA based Traffic Simulator used in our methodology.
Finally, a brief description of the Beowulf Cluster sill also be provided.

2.1.1 Genetic Algorithm

Genetic Algorithms (GA) have become a widely used technique in many different
science fields as versatile non deterministic optimization technique. For instance
they are used in Rao, Rao, and Dattaguru (2004) for accelerating the computational
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Figure 1: Chromosome Encoding

process required for automatic partitioning of unstructured meshes for parallel fi-
nite element computations.

In Sinha and Ch (2008) it is published another application of GA. A multi objective
binary coded elitist non-dominated sorting genetics algorithm (NSGA-II) is used to
obtain optimal solution regarding the modeling and optimization of Fluid catalytic
cracking units – a key element in modern refineries.

Other interesting example is in de Lacerda and da Silva (2006) to identify polariza-
tion curves of buried slender structures for a described two-dimensional boundary
element formulation.

In Jimenez-Octavio, Lopez-Garcia, Pilo, and Carnicero (2008) genetic algorithms
are applied to mechanical, electrical and electromechanical optimization problems
concerning the design and optimization of power transmission lines.

Another example of the use of Genetic Algorithms is in Harris, Mustata, Elliott,
Ingham, and Lesnic (2008). In this paper, the steady flow of a single liquid phase
through a rectangular, composite specimen, composed of two anisotropic materials
with a plane contact surface, is analysed. To measure the full hydraulic conductivity
tensor in rocks or soils, it is used an inverse boundary element method within a
genetic algorithm maximisation procedure.
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In this subsection we will describe the genetic algorithm utilized.

Optimization Criterion. Fitness Function. After testing several criteria we
found out that we obtained the better results just by using the absolute number
of vehicles that left the traffic network once the simulation finishes.

During the traffic simulation many new vehicles are created as if they were arriving
at the inputs of the network. Furthermore, during the simulation many vehicles
reach their destination point and leave the network. The number of vehicles that
reach their destination point easily illustrates how the simulation was, and conse-
quently helps us to compare a particular cycle combination with another.

Other optimization criteria tested are the following:

• Mean time at the network – Mean Elapsed Time, MET. During the simu-
lation, the arrival and departure time of every vehicle is stored. With these
values we can easily calculate the number of iterations (or seconds) it takes
any vehicle to leave the network. Once the simulation finishes the average
time at the network is calculated.

• Standard Deviation values of vehicle times at the network.

• A linear combination between the MET and the Standard Deviation of vehi-
cle times at the network.

• A linear combination between the MET and the total number of vehicles that
have left the network during the simulation.

• The traffic network mean occupancy density. To calculate this parameter we
divided the network into small sections and counted the number of vehicles
inside every section.

As we search the optimization criteria for our system we encountered an unex-
pected problem. If we included the minimization of the MET in a multicriteria
evaluation function we provoked a very undesirable effect. The chromosomes that
blocked the network faster were the best marked. That is because only a few ve-
hicles were able to leave the network (in a small amount of iterations) before it
collapsed. Hence, we obtained very “good” values but caused by “false” optimal
cycle combinations. Therefore, we resigned to include that criterion in our fitness
function.
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Chromosome Encoding In figure 1 we present the chosen encoding used in our
methodology. In this figure we represent a chromosome example for a very simple
traffic network. It consists of only two intersections and two traffic lights for each
intersection.

Below the traffic network we have put the stages9 of each traffic light separated in
two different color regions, one for each one of the two intersections. The traffic
light state at each stage may be green (G), orange (O) or red (R).

This stages sequence is preestabilished, and will cycle ad infinitum – or until we
stop the corresponding simulation. The objective of our system is to optimize the
duration of each stage (in seconds) in order to get the very best traffic behavior
from the network under study.

In figure 1 a chromosome encoding example is included. It can be seen that through
several translation steps we obtained a binary Gray Code encoding (Black (2005)).
We have proven out this methodology to be very efficient for our case in Sánchez,
Galán, and Rubio (2005a).

We use Gray Code because it is designed in such a manner that when a bit changes
its value – when mutation occurs – the stage length value only increases or de-
creases one unit. This is a desirable feature because it makes the search space to
conform with the “Hamming Distance Metric”.

Initial Population Before the GA starts we created an initial population. Initially
we set a time range for every preestablished stage. Each individual is created by
choosing a random value within its corresponding range.

For this research we included within the initial population another individual that
was not randomly created. That individual is the currently used cycle times combi-
nation, provided by the Zaragoza Traffic Department.

Random Number Generation For the random number generation we have em-
ployed the MT19937 generator of Makoto Matsumoto and Takuji Nishimura, known
as the "Mersenne Twister" generator. It has passed the DIEHARD statistical tests
(Matsumoto and Nishimura (1998)). The seeds for that algorithm were obtained
from the “/dev/urandom” device provided by the Red Hat 9 operating system.

Selection Strategy We have chosen a Truncation and Elitism combination as se-
lection strategy. It means that at every generation a little group of individuals — the
best two individuals in our case — is cloned to the next generation. The remainder

9 Stage: Every one of the states associated to an intersection, that contains a set of traffic lights.
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of the next generation is created by crossovering the individuals from a best fitness
subset – usually a 66 percent of the whole population.

This combination seems to be the most fitted to our problem among a set of selec-
tion strategies tested. However, we do not discard to change it if better results seem
attainable.

Other selection strategies previously tested – and discarded – for this problem are
succinctly explained as follows:

• Elitism: The population is ordered by fitness and a small set with the best
individuals (elite) is cloned to the next generation.

• Truncation: The population is ordered by fitness. Then the population is
divided into two sets, one to survive and the another one is simply discarded.

• Tournament: Small groups of individuals are chosen at random. The best
fitness individual of each one of them is selected.

• Random Tournament: Like the Tournament Selection but the best individual
is not always selected. It will depend on a probability value.

• Roulette Linear Selection: Every individual has a survival probability pro-
portional to its fitness value.

• Elitism plus Random Tournament.

Crossover Operator We have tested some different crossover operators: Uni-
form Crossover, Two Points Crossover at fixed points and Two Points Crossover at
random points. We reached the conclusion that for our case the better one was the
third one.

For a couple of parents, it simply chooses two random points at each one of the two
chromosomes, cut them into three pieces and then interchanges the central chunk
of them.

Mutation Operator The value of a randomly chosen bit in the chromosome is
just flipped.

The mutation probability is not fixed. It starts with a very high mutation probability
that will decrease multiplied by a factor value in the range (0,1) until it reaches
probability values near to the inverse of the population size as approaching the end
of the planned number of generations.
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2.1.2 Traffic Simulator

Traffic Simulation is known to be a very difficult task. There are mainly two differ-
ent traffic simulations paradigms. The first one is the Macroscopic model. Macro-
scopic simulators are based on Fluid Dynamics, since they consider traffic flow as a
continuous fluid. The second paradigm is the one that includes Microscopic simu-
lators. For them, traffic is considered as a collection of discrete particles following
some rules about their interaction. In the last decade there has been a common be-
lief about the better performance of Microscopic simulators to do Traffic Modeling.
One Microscopic model widely used is the Cellular Automata Model.

There has been a large tradition of macroscopic approaches for traffic modeling.
In the 50’s some “first order” continuum theories of highway traffic appeared. In
the 70’s and later on some other “second order” models were developed in or-
der to correct the formers’ deficiencies. References Helbing (1995); Kerner and
Konhäuser (1994); Kühne and Rödiger (1991)); Kühne (1991); Payne (1979) and
Witham (1974) may illustrate some of these models. However, in Daganzo (1995)
“second order” models are questioned due to some serious problems like negative
flows predictions and negative speeds under certain conditions.

Nowadays the microscopic simulators are widely used. One reason for this fact
is that macroscopic simulators can not model the discrete dynamics that arises
from the interaction among individual vehicles (Benjaafar, Dooley, and Setyawan
(1997)). Cellular Automata are usually faster than any other traffic microsimu-
lator (Nagel and Schleicher (1994b)), and, as said in Cremer and Ludwig (1986)
“the computational requirements are rather low with respect to both storage and
computation time making it possible to simulate large traffic networks on personal
computers”

The Cellular Automata as Inspiring Model Cellular Automata Simulators are
based on the Cellular Automata Theory developed by John Von Neumann (von
Neumann (1963)) at the end of the forties at the Logic of Computers Group of the
University of Michigan. Cellular Automata are discrete dynamical systems whose
behavior is specified in terms of local relation. Space is sampled into a grid, with
each cell containing a few bits of data. As time advances, each cell decides its next
state depending on the neighbors state and following a small set of rules.

In the Cellular Automata model not only space is sampled into a set of points, but
also time and speed. Time becomes iterations. A relationship between time and
iterations is set. For instance, 1(sec.) ≡ 1(iteration). Consequently, speed turns
into "cells over iterations".

In Brockfeld, Kühne, Skabardonis, and Wagner (2003) we can find a well described
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list of microscopic models and a comparative study of them. Although conclusions
are not definitive, this work seems to demonstrate that models using less parameters
have a better performance.

We have developed a traffic model based on the SK10 model (Krauss, Wagner, and
Gawron (1997)) and the SchCh11 model (Schadschneider, Chowdhury, Brockfeld,
Klauck, Santen, and Zittartz (1999)). The SchCh model is a combination of a high-
way traffic model (Nagel and Schreckenberg (1992)) and a very simple city traffic
model (Biham, Middleton, and Levine (1992)). The SK model adds the “smooth
braking” for avoiding abrupt speed changes. We decided to base our model in
the SK model due to its better results for all the tests shown in Brockfeld, Kühne,
Skabardonis, and Wagner (2003).

Figure 2: Paths in our Improved Cellular Automata Model

10 Stephan Krauss, the author.
11 Andreas Schadschneider and Debashish Chowdhury, the authors.
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Our Improved Cellular Automata Model Based on the Cellular Automata Model
we have developed a non-linear model for simulating traffic behavior. The basic
structure is the same as the one used in Cellular Automata. However, in our case
we add two new levels of complexity by creating two new abstractions: “Paths”
and “Vehicles”.

“Paths” are overlapping subsets included in the Cellular Automata set. There is one
“Path” for every origin-destination pair. To do this, every “Path” has a collection of
positions and, for each one of them, there exists an array of allowed next positions.
In figure 2 we try to illustrate this idea.

“Vehicles” consists of an array of structures, each one of them having the following
properties:

1. Position: the Cellular Automaton where it is situated. Note that every cell
may be occupied by one and only one vehicle.

2. Speed: the current speed of a vehicle. It means the number of cells it moves
over every iteration.

3. Path: In our model, every vehicle is related to a “path”.

These are the rules applied to every vehicle:

1. A vehicle ought to accelerate up to the maximum speed allowed. If it has no
obstacle in its way (another vehicle, or a red traffic light), it will accelerate at
a pace of 1 point per iteration, every iteration.

2. If a vehicle can reach an occupied position, it will reduce its speed and will
occupy the free position just behind the preceding.

3. If a vehicle has a red traffic light in front of, it will stop.

4. Smooth Braking: Once the vehicle position is updated, then the vehicle speed
is updated too. To do this, the number of free positions from the current
position ahead is taken into account. If there is not enough free space for
the vehicle to move forward on the next iteration going at its current speed
(hypothetically, since in the next iteration the traffic situation may change),
it will reduce its speed in one unit.

5. Multi-lane Traffic: When a vehicle is trying to move on, or update its speed,
it is allowed to consider positions on other parallel lanes. For every origin-
destination couple (path), at every point there exists a list of possible next
positions. The first considered is the one straight forward. If this one is



Traffic Lights Optimization System under Stress 207

not free, there may be more possible positions in parallel lanes that will be
considered. Of course, this list of possible next positions is created taking
the basic driving rules into account.

By means of these rules we can have lots of different path vehicles running in
the same network. This model may be seen as a set of Npaths traditional Cellular
Automata networks working in parallel over the same physical points.

Note that, so far, we are not considering a different behavior for the green and the
orange state. However, our architecture is designed in such a manner that we can
modify this whenever we want to, with a small effort.

Figure 3: Urban Districts in “La Al-
mozara” Figure 4: Bird-eye Picture of “La Al-

mozara”

2.1.3 Beowulf Cluster

The Architecture of our system is based on a five node Beowulf Cluster, due to
its very interesting price/performance relationship and the possibility of employing
Open Software on it. On the other hand, this is a very scalable MIMD computer, a
very desirable feature in order to solve all sort — and scales — of traffic problems.
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Every cluster node consists of a Pentium IV processor at 3.06 GHz with 1 GB
DDR RAM and 80GB HDD. The nodes are connected through a Gigabit Ethernet
Backbone. Every node has the same hardware, except the master node having an
extra Gigabit Ethernet network card for “out world” connection.

Every node has installed Red Hat 9 on it — Kernel 2.4.20-28.9, glibc ver. 2.3.2 and
gcc ver. 3.3.2. It was also necessary for parallel programming the installation of
LAM/MPI (LAM 6.5.8, MPI 2).

In our application there are two kinds of processes, namely master and slave pro-
cessed. There is only one master process running on each test. At every generation
it sends the chromosomes (MPI_Send) to slave processes, receives the evaluation
results (MPI_Recv) and creates the next population. Slave processes are inside
an endless loop, waiting to receive a new chromosome (MPI_Recv). Then they
evaluate it and send the evaluation result (MPI_Send).

3 Results

3.1 Performed Tests

In figures 3 and 4 we present the studied zone. “La Almozara” is the seventh district
in Zaragoza - Spain.

Figure 5: Treated Zone in “La Almozara” – Zaragoza, Spain

The scale of this zone is large. In figure 5 one may note this fact. In appendix
Appendix A: we enumerate the streets included and withdrawn from the model.
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We have performed a wide set of tests with this zone. In this research we wanted
to optimize the traffic light cycles with the current traffic situation.

Moreover, we were also interested in seeing how our system worked in congestion
situations. To do so, we have created 10 hypothetical test cases varying the traffic
input to the network. In table 1 we represent the current situation statistics for the
new vehicle creation period for each traffic input cell in the treated network. Each
integer means the number of simulation iterations between two consecutive vehicle
creation instants. These values are proportional to the real traffic input flow at each
input cell.

In table 2 we represent the 10 test cases periods. Note that for situation #0 there is
a new vehicle at each input cell every simulation iteration. This is the worst case of
congestion.

Table 1: Current Situation Traffic
Input Periods

Input Periods
0 403
1 403
2 403
3 403
4 29
5 72
6 201
7 171
8 171
9 171
10 266
11 266
12 266
13 87
14 87
15 87

Table 2: Traffic Input Periods
Tested

Situation Periods
#0 0
#1 1
#2 2
#3 3
#4 5
#5 10
#6 20
#7 30
#8 50
#9 100

All through this research we have used a population of 200 individuals for the GA.
The genetic algorithm convergence raised at different generation numbers depend-
ing on the traffic situation. In table 3 we enumerated the chosen values for that
parameter.

The Selection Operator chosen was a combination between Elitism and Truncation.
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Figure 6: “La Almozara” Discretized – #1 Third

Moreover, we have employed a variable mutation probability. It starts with a hy-
permutation probability (0.999) which is decreased generation by generation, by a
factor of 0.9875.

About the Cellular Automata based Traffic Simulator, we have employed a 4000
iterations simulation. In figures 6, 7 and 8 we represent the zone under study, once
discretized. The whole network includes 2753 cells.
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Figure 7: “La Almozara” Discretized – #2 Third

3.2 Parameters Sampled

So far, we have used a single optimization criterion. In this research it has been
the maximization of the number of vehicles that left the network before the sim-
ulation finished. We are considering to include more criteria in a multiobjective
optimization, but so far, this is the one more profitable we have found.
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Figure 8: “La Almozara” Discretized – #3 Third

During the optimization we have stored not only the fitness values, but other pa-
rameters for every individual. We have obtained the average “State of Conges-
tion”(SOC) and the average “Time of Occupancy” (TOC). SOC was defined in
Bham and Benekohal (2004). TOC was defined in May (1990).

In equations 1 and 2 we represent both parameters.

In equation 1, No
c means the number of cells occupied by a vehicle, and NT

c means
the total number of cells in the treated network.

About equation 2, No
it means the number of simulation iterations that a particular

cell is occupied by any vehicle, and NT
it means the whole number of iterations that

the simulation lasts.

As one may infer from equations 3 and 4, that the average SOC across all the
simulation iterations and the average TOC across all the cells in the network are
the same. In other words, the mean value of the average occupied cell ratio across
all the simulation iterations and the mean value of the average number of occupied
iterations for a particular cell across all the cells in the traffic network, is the same
value.

Hence, for this research we have used just the average SOC. From here on we will
call this statistical moment as TOC/SOC.
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Table 3: Test Cases GA Generations
T. Situation #Generations Execution Time (s)
Current Input 400 18605
#0 400 30803
#1 300 24439
#2 250 20558
#3 250 19241
#4 250 18657
#5 200 13423
#6 200 11290
#7 200 10710
#8 200 10471
#9 200 9739

SOC =
No

c

NT
c

(1)

TOC =
No

it

NT
it
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NT
it
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c ∗NT

it
(4)

3.3 Restrictions Assumed

As said before, in Appendix A: we enumerate the streets included and withdrawn
from the model. Moreover, in Appendix B: we listed the assumptions accomplished
for the Origin-Destination probability matrix shown in Appendix B:.1.
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3.4 Results

In figure 9 it is represented the maximum and average fitness obtained for each
one of the traffic situations from table 2 once the genetic algorithm ends its work.
Moreover, it is displayed the simulated fitness value obtained when we feed our
simulator with the currently used traffic lights times and the current traffic statistics.
495 vehicles left the network for that case.

In table 3 we include the mean execution time for each case.
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Figure 9: Max. and Average Fitness Obtained for the 11 Situations

In figure 10 we have plotted the improvement of fitness values in percentage, using
a logarithmic scale. It may be observed that the maximum fitness improvement
keeps bigger than a 40 percent except for the last two cases on the right. For the #9
situation the maximum improvement is about a 7%. For the current traffic situation
the improvement is over a 10%.

In figure 11 it is represented the maximum and average value of the TOC/SOC
parameter (defined in 3.2). This parameter reflects the occupancy of the traffic
network. A clear relationship between the fitness value (number of vehicles that
left the network) and the occupancy may be seen in that figure. This is a foreseeable
and desirable effect for a traffic network.

Finally, in figure 12 is shown how the better results are obtained for the first 9
traffic situations. For the situation #9 and the current traffic input modest rates are
achieved, just like for the fitness parameter.
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Figure 10: Max. and Average Fitness Improvement for the 11 Situations
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Figure 11: Max. and Average TOC/SOC Obtained for the 11 Situations

4 Discussion

Figures 9 and 10 are enlightening. In our simulated environment we obtained bet-
ter fitness results using the more demanding traffic inputs. In such figure, traffic
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Figure 12: Max. and Average TOC/SOC Improvement for the 11 Situations

situations are ordered from high to low traffic input. For the first – more loaded –
situations our systems behaves very well, improving the fitness a lot.

For the current traffic situation modest results are obtained. Everything seems to
indicate that this is because that when the traffic input is so low that, no matter the
traffic light cycles combination, the network would have similar outputs. In short,
an empty traffic network is not likely to be improved just by optimizing the traffic
lights times.

From figures 11 and 12, the main information we found out is that it seems to
exist some kind of correlation between the total number of vehicles that left the
network – our optimization criterion – and the occupancy of this. This conforms
to common sense, and, from our point of view, is a good sign indicating a correct
behavior of our traffic simulator. We plan to do more research focused on this
possible correlation among the two fore mentioned parameters.

Once we focus our attention in the 6 more congested test cases in figures 9 and 11
we can give the last reflection about the presented results. Although results are very
good for situations #0 to #5, for traffic situations #0 and #1 we obtained slightly
worse results. For these two extreme cases the system worked a little worse.
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5 Conclusions and Future Work Aims

Throughout this paper we have shared our experience with the optimization of traf-
fic light cycles for a real world zone. Using the supplied maps and data we have
simulated the current traffic behavior and moreover, we have optimized the traffic
lights times in order to achieve better traffic statistics.

We want to remark that the scale of the network is really big. This research confirms
previous works conclusions which indicated that our architecture is a very scalable
one due to the intrinsic parallelism of genetic algorithms and the easy extendability
of Beowulf clusters.

Another remarkable goal of this research is a forced congestion study. There is not
much research treating this topic. In this research we have defined 10 hypothet-
ical congestion situations and have run our system using them. The results seem
promising since we obtain very good fitness rates for all cases. The tougher cases
were the more improved. This is a key feature of our system, since congested
networks are the most in need of optimization.

Further research will be done about the correlation between TOC/SOC parameters
and our optimization criterion – total number of vehicles that left.

Finally, we plan to test this methodology using more realistic scenarios – currently
congested networks – and see how it does.
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We also would like to thank Mrs. María Luisa Sein-Echaluce Lacleta, from the Uni-
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Appendix A: Streets In/Out of Our Model

Appendix A:.1 Streets Taken into Account

In this subsection we enumerate the streets under consideration in this work.

• Avenida de Francia

• Avenida de la Almozara

• Avenida de Pablo Gargallo

• Avenida de la Autonomía

• Avenida Puerta de Sancho
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• Calle del Lago

• Calle de Braulio Foz

• Calle de Iriarte de Reinoso (a fragment)

• Calle de Juan Bautista del Mazo (a fragment)

• Calle del Río Alcanadre

• Calle de los Diputados (a fragment)

• Paseo de María Agustín (a fragment)

• Paseo de Echegaray y Caballero (a fragment)

• Calle de Santa Lucía

• Puente de la Almozara (a fragment)

Appendix A:.2 Streets Withdrawn from Our Model

In this subsection the streets withdrawn for simplifying purposes are enumerated.

• Calle de Mónaco

• Calle de Berna

• Calle Jardines de Lisboa

• Calle de Viena

• Calle de Bruselas

• Calle de París

• Calle de Berlín

• Calle de Bohn

• Calle de Amsterdam

• Calle Jardines de Atenas

• Calle de Oslo

• Calle de la Batalla de Almansa
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• Calle de la Batalla de Arapiles

• Calle de la Batalla de Bailén

• Calle Ainzón

• Calle del Padre Consolación

• Calle del Padre Landa

• Calle de las Cortes

• Calle del Río Guadalope

• Calle del Río Aragón

• Calle de la Sierra de Vicor

• Calle del Río Esera

• Calle del Río Guatizalema

• Calle de Monegros

• Calle de Dionisio Casañal

• Calle del Río Guadiana

• Calle de Santiago Dulong

• Calle de Ribagorza

• Calle del Río Cinca

• Calle de Fraga

• Calle de Hijar

• Calle de la Reina Felicia

• Calle del Río Ebro

• Calle del Río Duero

• Calle del Reino

• Calle del Monasterio de Santa Lucía
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Appendix B: Approximations for the Origin-Destination Matrix

On this appendix we present the approximations assumed for the origin-destination
probability matrix calculation.

• Traffic leaving district #7 to district #1 divides up into two equal parts going
by Paseo de Echegaray y Caballero, and Calle de Santa Lucía.

• Traffic leaving district #7 to district #3 divides up into three equal parts go-
ing by Calle de Iriarte de Reinoso, Calle de los Diputados and Avenida de
Francia.

• All vehicles leaving district #7 by Avenida de Francia go to district #3.

Appendix B:.1 Origin-Destination Probability Matrix for this Work

In this appendix we are showing the Origin-Destination Probability Matrix em-
ployed. For generating this matrix we have used Average Daily Traffic12 statistics
between districts for a weekday and the approximations listed in appendix Ap-
pendix B:.

Table 4: Origin-Destination Probability Matrix Employed

Outputs 00 05 07 08 12 34 42 43

3.83 3.83 33.10 10.68 19.51 10.68 10.68 7.68
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