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Wavelet Based Adaptive RBF Method for Nearly Singular
Poisson-Type Problems on Irregular Domains
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Abstract: We present a wavelet based adaptive scheme and investigate the effi-
ciency of this scheme for solving nearly singular potential PDEs over irregularly
shaped domains. For a problem defined over Ω∈ℜd , the boundary of an irregularly
shaped domain, Γ, is defined as a boundary curve that is a product of a Heaviside
function along the normal direction and a piecewise continuous tangential curve.
The link between the original wavelet based adaptive method presented in Libre,
Emdadi, Kansa, Shekarchi, and Rahimian (2008, 2009) or LEKSR method and the
generalized one is given through the use of simple Heaviside masking procedure.
In addition level dependent thresholding were introduced to improve the efficiency
and convergence rate of the solution. We will show how the generalized wavelet
based adaptive method can be applied for detecting nearly singularities in Poisson
type PDEs over irregular domains. The numerical examples have illustrated that the
proposed method is powerful to analyze the Poisson type PDEs with rapid changes
in gradients and nearly singularities.

Keywords: Adaptive node refinement, meshless, RBF collocation, Wavelet de-
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tiquadrics

1 Introduction

Radial basis functions were introduced by Franke (1982) to mathematical com-
munity; these are effective tools in the numerical solution of linear and nonlinear
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PDEs. For example, Ahrem, Becker, Wendland (2006) examined coupled fluid-
structure interaction. Chantasiriwan (2006) used RBFs to solve the lid cavity flow
problem. Mai-Duy, Mai-Cao, and Tran-Cong (2007) solved the transient viscous
flow problem. Sellountos and Sequiera (2007) solved the two-dimensional Navier-
Stokes problem. Wen and Hon (2008) solved the Reissner-Mindlin plate prob-
lem. Kosec and Sarler (2008) solved the Darcy problem. Shank, Shu, and Lu
(2008) solved 3D incompressible viscous flows with a curved boundary. Ling
and Takeuchi (2008) solved the inverse Cauchy problem. Mai-Cao and Tran-
Cong (2008) captured moving interfaces problem. Shim, Ho, Wang and Tortorelli
(2008) solved the moving boundary electro-magnetic problems optimization prob-
lem. Haq, Islam, and Ali (2008) solved the modified equal width wave (MEW)
equation. Kosec and Sarler (2009) solved the phase change problem with local
pressure corrections. Vertnik and Sarler (2009) obtained a solution of incompress-
ible turbulent flow. Ho-Minh, Mai-Duy, and Tran-Cong (2009) solved the stream
function-vorticity-temperature distribution of natural convection in 2D enclosed
domains. These references are just a few of the many applications in which RBFs
have been successfully applied.

RBFs are well known for their accuracy and spectral convergence if the solution
is sufficiently smooth and regular. However, singularities and localized features
often emerge in many physical and mathematical problems. Nonlinear hyperbolic
PDEs can develop true mathematical discontinuities, and the proper procedure re-
quires enriching the solution space to contain both continuous and discontinuous
functions; in multidimensional problems, the discontinuous solutions are products
of the Heaviside function in the normal propagation direction and piece-wise con-
tinuous functions in the tangential directions, see Kansa, Aldredge, Ling (2009).
Bernal, Gutierrez, and Kindelan (2009) and Bernal and Kindelan (2009) enriched
the solution space of RBFs with the first few terms of the Motz boundary singu-
larity to achieve rapid convergence in nearly singular elliptic PDEs. Despite the
benefits of enrichment techniques, this method is based on knowledge of the so-
lution which is not the case in many engineering problems. The general approach
in dealing with nearly singular problems is the adaptive refinement in which more
nodes are automatically added on those parts of the domain with high gradient and
simultaneously a sufficient number of nodes are kept in the smooth regions.

A number of papers have been published in the last several years describing the
adaptive strategy in RBF solution of PDEs. Schaback and Wendland (2000) and
Hon, Schaback and Zhou (2003) developed an adaptive scheme based on the greedy
algorithm and achieved a linear convergence rate in interpolation and collocation
problems. Hon (1999) proposed an adaptive multiquadric scheme using posterior
indicator based on the weak formulation of the governing equation to detect sharp
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transition regions and add more nodes where deemed necessary. Sarra (2005)
developed an adaptive RBF distribution based on simple equidistribution of an
arc length algorithm and successfully applied it to the solution of nearly singular
and time dependent Burger’s and Advection equation in 1D. A dynamic adaptive
scheme was proposed by Wu (2004, 2005) for time-dependent PDEs. Bozzini,
Lenarduzzi, and Schaback (2002) have formulated an adaptive RBFs interpolation
based on combining B-spline techniques with a scaled MQ. An adaptive algorithm
with local TPS-RBFs interpolation was developed by Behrens and Iske (2002) and
Behrens, Iske, and Kaser (2003) who successfully applied it, in a semi-Lagrangian
context, to linear evolutionary PDEs. The method uses a local interpolation to
evaluate an error indicator and to detect the regions where the approximate solu-
tion requires more accuracy. Driscoll and Heryudono (2007) presented an adaptive
RBF scheme for time independent problems; their indicator is based on the resid-
ual sub-sampling technique. Very recently, Libre, Emdadi, Kansa, Shekarchi, and
Rahimian (2009) introduced a wavelet based adaptive scheme based on MRWA in
RBF methods. Certain aspects of the wavelet based adaptive scheme for the so-
lution of linear PDEs on regular domains have been discussed, and it was demon-
strated that the adaptive wavelet scheme can be fairly used for the detection of a
boundary or an internal near singularity in the solution of PDE problems, see Libre,
Emdadi, Kansa, Shekarchi, and Rahimian (2008).

Even though all these adaptive strategies are mainly based on utilizing an indicator
to detect the localized regions and adaptively allocate more nodes to those parts of
the domain, they differ on practical aspects such as the types of the indicator used
or the node refinement criteria. Many adaptive strategies utilize a posterior error
indicator to detect the regions that require refinement, see Lee, Im, Jung, Kim and
Kim (2007) and Iske and Kaser (2005). One of the biggest issues in adaptive mesh
refinement based on a posterior error indicator is that these adaptive schemes often
dramatically penalize the simulation speed. So, there is still a need for an efficient,
fast and fully adaptive method for solving nearly singular problems. That is where
Multi Resolution Wavelet Analysis (MRWA) plays a role. Recently, the wavelet
analysis has been developed as a potential adaptive approach for the construction
of the optimum adaptive node distribution in nearly singular problems, see Cruz,
Mendez, and Magallhaes (2001), Mehra and Kevlahan (2008), De Marchi, Franze,
Baravelli, and Speciale (2006), Vasilyev and Kevlahan (2005). The mathematical
foundation of the algorithm is the MRWA that provides a firm mathematical foun-
dation by projecting the solution of PDE onto a nested sequence of approximation
spaces and examines the solution at different levels of resolution.

In recent years some attempts have been made to relate the RBFs with wavelets.
The introduction of wavelets to RBFs analysis dates back to Micchelli, Rabut,
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and Utreras (1991), Buhmann (1995) and Chui, Stockler, and Ward (1996) who
have shown RBFs are wavelets that do not have orthogonality properties, i.e. they
are prewavelets. Fasshauer and Schumaker (1998) summarized some wavelets us-
ing spherical RBFs. Buhmann and Micchelli (1992) and Chui, Ward, Jetter, and
Stoeckler (1996) have shown that RBFs are prewavelets with dilatational, rota-
tional and translational properties and are very good for detecting near singular-
ities. For MQ-RBF, the term ||x-x j|| behaves as the wavelet translator, and the
shape parameter c j behaves as the dilator (scale) parameter. The non-orthogonality
of RBF pre-wavelets are discussed by Micchelli, Rabut, and Utreras (1991). Chen
(2001) presented the orthonormal RBF wavelet series and transforms by using the
nonsingular general solution and singular fundamental solution of the differential
operator. The methodology presented by Chen (2001) can be generalized to RBF
wavelets by means of orthogonal convolution kernel function of various integral
operators. However, to the best of our knowledge, the application of a wavelet
based adaptive scheme in RBF analysis is still absent from the literature. Very re-
cently, Libre, Emdadi, Kansa, Shekarchi, and Rahimian (2009) introduced an adap-
tive scheme based on MRWA decomposition for interpolation problems. Certain
aspects of an adaptive wavelet scheme in MQ-RBF approximations have been dis-
cussed, and it was demonstrated that the adaptive prewavelet scheme can be fairly
used for the detection of a boundary or an internal near singularity in interpolation
problems.

Although the former reported works on wavelet based adaptive scheme studied
certain aspects of the method in the scattered data approximation and PDE solu-
tion, the application of the proposed methods limits to the problems defined on
regular domain. However, many practical PDEs are usually defined over irregu-
lar domains, see Shank, Shu and Lu (2008), Ho-Minh, Mai-Duy and Tran-Cong
(2009), Haq, Islam and Ali (2008) and Vertnik and Sarler (2009). The reason that
the wavelet based method may appear difficult on irregular domains is the dyadic
nature of the wavelet decomposition which needs a hierarchy of meshes that sat-
isfies subdivision-connectivity: This hierarchy has to be the result of a subdivi-
sion process starting from a base mesh. Examples include quadtree uniform 2D
meshes or octree uniform 3D meshes. The main objective of the present work is to
generalize the wavelet based adaptive scheme presented in Libre, Emdadi, Kansa,
Shekarchi, and Rahimian (2008, 2009) to deal with problems defined over irregular
domains. The ability to deal with irregular domain, without losing the generality of
the method, is achieved through the use of Heaviside masking technique. The main
question which is going to be answered here is how we can utilize the adaptive
wavelet scheme for the solution of nearly singular PDEs over irregular domain and
how efficient is the method? Moreover, the parameters which affect the accuracy
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and convergence rate of the solution are investigated numerically. Level dependent
thresholding were also introduced to improve the efficiency and convergence rate
of the solution.

2 The radial basis function interpolation and partial differential equation
scheme

The low rate convergence of standard numerical methods has motivated the use of
higher order convergent methods. RBFs have been praised for their accuracy, spec-
tral convergence rate, simplicity and ease of implementation in higher dimensions.

Given a set of points, x, y j ∈ Ω ⊆ℜd , where d is the dimension of the space, one
forms the radial distance, r = ||x-y j ||, for all pairs of points. Given an arbitrarily
set of data points, X = {x j }∈Ω, and Y = {y j }∈Ω, an approximate solution, s(x),
is expanded as a linear combination of univariant RBFs,

u(x)≈ s(x) = Σ jφ(x−y j)α j (1)

where the expansion coefficients, {α j}, are found by satisfying s(xi) = u(xi) for
all xi ∈ Ω. Although there is an infinite class of possible RBFs, presently the
best performing RBF known is the generalized multiquadric (MQ) basis function
invented by R.L. Hardy (1971, 1990):

φ(x− x j) = [1+(x−x j)2/c2
j ]

β
β ≥−1/2, (2)

and where c2
j is the MQ shape parameter associated with the point, x j. The MQ

basis function has been theoretically proven to converge exponentially by Madych
and Nelson (1992). If h is the fill distance, then the interpolant, s(x), converges as

|| f (x)− s(x)|| ∼ η
µ where 0 < η < 1, and µ = h/ < c j > . (3)

To increase the convergence rate, one can allow the average value of the shape
parameter, <c j>→ ∞, or allow the fill distance, h→0.

Because the MQ-RBF, φ , is a C∞ basis function, one can either integrate it or dif-
ferentiate it analytically. Assume the function, u(x), is continuously differentiable,
then the first few spatial partial derivatives of u(x) are:

(∂u/∂x) = Σ j(∂φ j/∂x)α j;(∂u/∂y) = Σ j(∂φ j/∂y)α j; (4)

(∂ 2u/∂x2) = Σ j(∂ 2
φ j/∂x2)α j;(∂ 2u/∂y2) = Σ j(∂ 2

φ j/∂y2)α j;(∂ 2u/∂x∂y)

= Σ j(∂ 2
φ j/∂x∂y)α j. (5)
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The asymmetric collocation method for solving partial differential equations, see
Kansa (1990a, 1990b), divides a set of N points into two subsets: (1) There is a
PDE operator, L, operates on the NI points that discretize the interior, Ω/∂Ω, (2)
There is one or more Dirichlet, Neumann, or Robin boundary operators, B, that
operate upon the NB points and discretize the boundary, ∂Ω, and (3) NI + NB = N.

Lu(xi) = Σ jLφ(xi−y j)α j = f (xi), ∀ j = 1,2, . . . ,N &∀i = 1,2, . . . ,NI. (6)

Bu(xi)= Σ jB φ(xi−y j)α j = g(xi), ∀ j = 1,2, . . . ,N &∀i = NI +1,NI +2, . . . ,NI +NB.

(7)

By solving the system of N linear equations in N unknown expansion coefficients,
{α j}, one can reconstruct the solution u(x) anywhere on the domain, Ω. However,
for bad choices of data centers and constant large shape parameters, the system
of linear equations can become badly-conditioned. There are several methods to
circumvent this issue.

3 Addressing the Ill-conditioning Problem

Some authors have used a very fine uniform discretization over their computational
domain then complained about the ill-conditioning problems. The more compu-
tationally efficient manner of solving both interpolation and PDE problem is the
adaptive node distribution in which node spacing is decreased only in those re-
gions where large gradients occur. In this way the number of nodes which is
needed to converge to the target accuracy is significantly decreased. However, ill-
conditioning may also occur in the adaptive solution especially in the problems
in which there is extreme differences between node spacing. There are various
methods that can mitigate the ill-conditioning problem; these are: (1) Domain De-
composition, (2) Variable shape parameter distribution, (3) The Greedy Algorithm,
(4) Extended Precision Arithmetic, and (5) Improved Truncated Singular Value De-
composition.

The simplest method is domain decomposition used by R.L. Hardy (1977), Kansa
(1990b), Kansa and Hon (2000), and many others. The domain, Ω, is decomposed
into several overlapping or non-overlapping subdomains, Ωk, Ω = ∪kΩk , in which
each Ωk contains Nk points, such that Nk�N, where N is the total number of points
in Ω. Domain decomposition decreases the overall CPU time because the number
of operations is O(N3

k), and consequently the condition number significantly de-
creases. Since the ill-conditioning increases with increasing numbers of points,
domain decomposition has a definite advantage.
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Recently, Sarra and Sturgill (2009) confirmed the observations of Kansa (1990a,
1990b) that a non-constant shape parameter distribution had superior performance
because the rows of the matrices are more distinct, hence less poorly conditioned.
They showed that the new random variable shape parameter strategy produced the
most accurate results if the centers were uniformly spaced. If the random vari-
able shape parameter is modified to incorporate information about the minimum
distance of a center to its nearest neighbor the random shape strategy again pro-
duced the most accurate results, even with very irregularly spaced centers. On two
Poisson problems, the constant shape was again the least accurate.

The Greedy Algorithm, see Hon, Schaback, and Zhou (2003), Ling and Schaback
(2008), and Lee, Ling, and Schaback (2009), has been demonstrated to be very
efficient and avoids the ill-conditioning arising from bad sets of data and evaluation
centers. Let Y be a set of N potential data centers, Y= {yk}, k=1,. . . ,N, and let
X= {x j}, j=1,. . . ,M , be the set of potential evaluation centers, where N»M. The
basic idea of this technique is to make a sequential selection of points based on
the largest entry-wise residuals. Suppose, after k iterations, the greedy algorithm
selects a set of kcollocation points {x(k)} ⊆ XM and a set of kRBF centers {y(k)}⊆
YN , respectively. These define two sub problems:

A(k)λλλ
(k) = b(k), (8)

AT
(k)ννν

(k) =−λλλ
(k), (9)

where A(k)= A(X(k),Y(k) ) is a k×k square matrix, b(k) = b(X(k)). Two residual
errors are computed:

r(k) = |A(XM,Y(k))∗λλλ
(k)−b(k)|, (10)

and a dual residual,

q(k) = |λλλ (k) +AT
ννν

(k)|. (11)

The (k+1)st collocation point, {x(k+1)}, is chosen from XM such that r(k) has the
largest value; the RBF center, {y(k+1)},is selected from YN such that q(k)has the
largest value. The procedure continues until either the residuals are less than a
tolerance or severe ill-conditioning is detected. The total number of operations
is O(k2(k2 +M+N)) and total storage is O(k(M+N)). Kansa, Aldredge, and Ling
(2009) used the greedy algorithm with nc different shape parameters. The starting
value was c0 =3. By assigning various possible values {c2

0, c2
1, . . . , c2

nc−1}, and con-
structing an over-specified problem with an initial matrix of M rows corresponding
to the evaluation points and N data centers to form nc×N columns, the greedy al-
gorithm selects K rows and K columns that has a distribution of c values.
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Huang, Lee, and Cheng (2007) showed that by using extended precision arithmetic,
one can allow the MQ shape parameter to be quite large, but use a coarse discretiza-
tion to achieve target accuracy. Ill-conditioning with typical double precision arith-
metic has only 16 digits of accuracy. The CPU time / data center increases by
switching from double to quadruple precision by about 40-fold, total CPU time
with extended precision was actually 14 times less than using double precision
for the target accuracy because a coarse discretization and a large shape param-
eter were used. In a different approach, Libre, Emdadi, Kansa, Rahimian, and
Shekarchi (2008) and Emdadi, Kansa, Libre, Rahimian, and Shekarchi (2008) used
the improved truncated singular value decomposition scheme (ITSVD) to solve the
highly ill-conditioned coefficient matrix and demonstrated that elasticity problems
subjected to Neumann boundary conditions can be very accurately calculated us-
ing large multiquadric shape parameters. Due to the generality and simplicity of
ITSVD method, in the numerical examples investigated in section 6, the ITSVD
methods were used for the solution ill-conditioned system of equation whenever
the condition number of system of equations becomes greater than 1010.

4 Wavelets and radial basis functions

In recent years some attempts have been made to relate the RBFs with wavelets.
The introduction of wavelets to RBFs analysis dates back to Micchelli, Rabut, and
Utreras (1991), Buhmann (1995) and Chui, Stoeckler, and Ward (1996) who have
shown RBFs are wavelets that do not have orthogonality properties. Fasshauer and
Schumaker (1998) summarized some wavelets using spherical RBFs. Buhmann
and Micchelli (1992) and Chui, Ward, Jetter, and Stoeckler (1996) have shown
that RBFs are prewavelets with dilatational, rotational and translational properties
and are very good for detecting near singularities. For MQ-RBF, the term ||x-x j||
behaves as the wavelet translator, and the shape parameter c j behaves as the dila-
tor (scale) parameter. Chen (2001) presented the orthonormal RBF wavelet series
and transforms by using the nonsingular general solution and singular fundamental
solution of the differential operator.

Libre, Emdadi, Kansa, Shekarchi, Rahimian (2008, 2009) were the first who used
multiresolution wavelet analysis (MRWA) for the adaptive node distribution in RBF
collocation method. Libre, Emdadi, Kansa, Shekarchi, Rahimian (2008, 2009) or
LEKSR method developed a very fast and simple MRWA scheme using multi-
quadric radial basis functions (MQ-RBFs). Instead of starting with the finest layer
of resolution and working up to the coarsest layer, the LEKSR method starts with
the coarsest level of resolution, and using MRWA, adds successively finer local-
ized regions of resolution. The LEKSR method was used to capture nearly singular
or very rapidly varying localized features of not only functions by interpolation,
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but also solutions of elliptic partial differential equations PDEs. Not only was
the nearly singular feature properly resolved in the interior regions, but also on
the boundary of the computational domain. The key ingredient of MRWA is the
existence of the fast Discrete Wavelet Transform (DWT), see Mallat (1989), that
provides a simple means of transforming data from one level of resolution, j, to
the next coarser level of resolution, j−1. The wavelet based adaptation procedure
which yields in compressed node distribution is almost the same as the well-known
wavelet image compression method, for example, see Jun (2007).

The advantage of the adaptive wavelet scheme in comparison to the conventional
schemes is that the wavelet coefficients can be used to detect those regions with lo-
calized features and are simply computed by the fast DWT. In contrast, the other au-
tomatic adaptive schemes previously reviewed are usually based upon the posterior
error indicator in which the computation of the posterior indicator often dramati-
cally penalizes simulation speed. The advantage of the adaptive wavelet scheme
in comparison to the conventional adaptive schemes is that the wavelet coefficients
which be used as an indicator to detect those regions with localized features are sim-
ply computed by the fast DWT. Each scaling function coefficient, a jk, and wavelet
coefficient, d jk, is associated to a certain node in a certain resolution level. The
basic idea of the adaptive wavelet scheme is the fact that the wavelet coefficients
involved in the low resolution level describe the smooth feature of the function
while the wavelet coefficients at the highest level are associated with the highly
localized feature. Since the previous two papers of the LEKSR method have pre-
sented the methodology in great detail, the present paper will emphasize what is
new.

The reason that the fast DWT method may appear difficult in n-dimensions is the
dyadic nature of the wavelet decomposition. Bonneau (1998) argued that wavelet
theory is based on the knowledge of a sequence of functional spaces in which the
data is successively approximated. Unfortunately, this sequence must be nested.
This explains why wavelet theory is not be applied to the multiresolution analysis
of defined on irregular meshes, since such meshes cannot be reached by a sub-
division process starting on a coarser mesh. As a result, Bonneau (1998) used a
hierarchical Delaunay triangular decomposition and added or deleted selected ver-
tices and edges, then updated the links between levels.

The mathematical foundation of the adaptive wavelet algorithm is multi-resolution
wavelet analysis, (MRWA). The MRWA projects a complicated function into a
nested sequence of approximation subspaces {V j+1}j∈Z, V j ⊂V j+1 and estab-
lishes a set of scaling function coefficients a jk and a set of wavelet coefficients
d jk, structured over different levels of resolution. Each of these subspaces {V j+1}
j∈Z, can be decomposed into an approximation space {V j} j∈Z and its orthogo-
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nal complement detail space {W j} j∈Z. The space L2(R) can be expanded as an
approximation space plus a sum of detail spaces, i.e. L2(R) =V j0+Σ j= j0W j. The
solution of PDEs can be expanded into the sum of its coarsest approximation u j0
and series of additional detail functions, g j.

u = u j0 +Σ j= j0g j = u j0 +Σ j= j0d j;kψ j;k (12)

where ψ j;k are the bases of the detail space {W j} j∈Z. In the MRWA, one can ana-
lyze the highly localized regions of a function at high levels of resolution and at the
same time uses a low level of resolution for analyzing the function in flat regions.
The key ingredient of MRWA is the existence of the fast Discrete Wavelet Trans-
form (DWT) , see Mallat (1989), that provides a simple means of transforming data
from one level of resolution, j, to the next coarser level of resolution, j-1.

a j−1;k = Σνh2k−νa j;ν (13)

d j−1;k = Σνg2k−νa j;ν (14)

where g2k−v and h2k−v are quadrature mirror filters.

Each scaling function coefficient a jk and wavelet coefficient d jk is associated to a
certain node in a certain resolution level. The basic idea of the adaptive wavelet
scheme is the fact that the wavelet coefficients involved in the low resolution level
describe the smooth feature of the function while the wavelet coefficients at the
highest level are associated with the highly localized feature. The high values of
wavelet coefficients indicate an important fluctuation between the current level and
the next coarser level of resolution. It is then evident how this concept can be
applied in adaptive node distribution for the function with a highly localized phe-
nomenon. Specific wavelet coefficients that associate a certain node in the domain
can be appropriately identified or rejected, so that superfluous details are removed
from the smooth regions. After applying the adaptation procedure, the distribution
contains only the essentials nodes and this set tends to be the nearly optimal node
distribution.

5 Wavelet decomposition on irregular domains

We assume that the reader is familiar with basic concepts of LEKSR method. What
is new and novel in the present paper is the ability to solve PDE problems on ir-
regular domains using wavelet based adaptive node distribution. As stated before,
the structure of wavelet based adaptation procedure which is used to produce the
adaptive node distribution is almost the same as the well-known wavelet image
compression method. In the wavelet based image compression method, the image
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datasets, including the luminosity of RGB color in each pixel, is first stored in a two
dimensional rectangular matrix and then each individual element of matrix (each
pixel of image) is decomposed into a hierarchical set of scaling function coefficient,
a jk, and wavelet coefficient, d jk. The 2D-DWT which is used to decompose the two
dimensional rectangular matrix of image dataset decomposes each individual row
of the matrix in vertical direction and then decompose each column in the horizon-
tal direction. The reason that the wavelet based method may appear difficult on
irregular domains is the dyadic nature of the wavelet decomposition which needs
a hierarchy of meshes that satisfies subdivision-connectivity: This hierarchy has to
be the result of a subdivision process starting from a base mesh. Examples include
quadtree uniform 2D meshes or octree uniform 3D meshes. The ability to deal
with irregular domain, without losing the generality of the LEKSR method, can
be achieved simply through the use of Heaviside masking technique, as introduced
here.

Suppose a nested sequence of dyadic dataset is given on irregular domain Ω ∈ℜd ,
see Figure 1-a. The boundary of an irregularly shaped domain, Γ, is defined as a
boundary curve that is a product of a Heaviside function, H(ξ ), along the normal
direction and a piecewise continuous tangential curve. The curve, Γ, is

Γ(x∂Ω) = H(ξ )D(ω), (15)

where

x∂Ω = nξ + tω, (16)

and n is the unit normal vector, t is the unit tangential vector, and ω is the coordinate
in ℜd−1 along ∂Ω, and ξ is the coordinate in the normal direction along ∂Ω.

In the first step, a rectangular dyadic node distribution which surrounds the irreg-
ular domain Ω ∈ ℜd is introduced to make the rectangular matrix of datasets that
is required in DWT procedure, see Figure 1-b. The elements of matrix which are
located outside the boundary curve Γ are filled with zero. This will be done by mul-
tiplying the rectangular matrix with the Heaviside function, H(ξ ), that corresponds
to boundary curve, Γ. The DWT is then performed on the resulting rectangular ma-
trix of dataset. In this way, each individual element of matrix is decomposed into a
hierarchical set of scaling function coefficient, a jk, and wavelet coefficient, d jk. The
wavelet coefficient, d jk is used as an indicator in node refinement. To determine the
important node that should be included in the analysis, the wavelet coefficient, d jk,
which is associated to a certain node k in a certain resolution level j is compared
with wavelet threshold parameter, ε . Nodes in the next finer level, whose wavelet
coefficients are higher than the wavelet threshold parameter, d jk≥ ε , are inserted in
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the node distribution while the nodes whose wavelet coefficients are less than the
wavelet threshold parameter, d jk<ε , are removed from the node distribution. The
node refinement is schematically shown in Figure 1-c. Then, the Heaviside mask-
ing technique is again performed on the wavelet coefficient, d jk to eliminate the
nodes outside the boundary curve Γ, see Figure 1-D. The rest of the wavelet based
adaptive procedure is remained unchanged and is similar to the original LEKSR
method described in detail in the last published papers, see Libre, Emdadi, Kansa,
Shekarchi, Rahimian (2008, 2009).

 

Figure 1: Schematic representation of Heaviside masking technique

6 Numerical investigation

In this section, we show some numerical examples that demonstrate the efficiency
of the generalized wavelet based adaptive algorithm on irregular domains. In each
example, we use a piecewise continuous curve, Γ, (analogous to a level set function
) in order to define the domain and boundaries. We solve the Poisson problem on
the three domains Ω1, Ω2 and Ω3 ⊂ R2that are plotted in Figure 2. A Dirichlet
boundary condition is imposed on all boundaries. In each example, the root-mean-
square (RMS) and infimum (L∞) error norms are computed at each step,

RMS = 1/N(Σ|uex(xi)−u(xi)|2)1/2, (17)

L∞ = max|uex(xi)−u(xi)|, (18)

where uex(xi) is the exact solution at the point xi, u(xi) is the numerical solution
at the point xi and N is the number of collocation nodes. The test function that is
solved is the solution of the Poisson equation,

∇
2u(x) = f (x) over Ω\∂Ω, (19)
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u(x) = g(x) on ∂Ω. (20)

All numerical codes are implemented with Matlab 7.8 and executed on a Core
2 Duo 2.0 GHz (4 MB Cache, 1G RAM) notebook computer running Windows
XP Professional. Double precision arithmetic in which numerical arithmetic have
about 16 decimal digits of accuracy and the machine precision is about eps=2.2×10−16

was used in all computations. Based on the results reported by Emdadi, Kansa, Li-
bre, Rahimian, and Shekarchi (2008), the ITSVD were used for the solution of ill-
conditioned system of equation whenever the condition number of system of equa-
tions becomes greater than 1010. Otherwise, the system of equations was solved
using the traditional Gauss elimination method.

 

Figure 2: The domains, Ω1, Ω2 and Ω3

Test Problem 1. Consider

∇
2u(x) =−µ{40+ µ(−0.8+8x−40x2 +8y−40y2)}

× exp(−µ((x−0.1)2 +(y−0.1)2)) on Ω1, (21)

with an exact solution,

uex(x) = 10exp(−µ(x−0.1)2 +(y−0.1)2). (22)

The first numerical example is defined on an L-shaped domain Ω1; the solution
has a region with steep gradient close to the corner. The gradient is increased by
increasing the parameter µ . In this example, we selected µ=10.

Test Problem 2. Consider

∇
2u(x) = 4µ(µ(x2 + y2)−1)× exp(−µ(x2 + y2))−2sin(x)sin(y) on Ω2, (23)

with an exact solution of

uex(x) = sin(x)sin(y)+ exp(−µ(x2 + y2)). (24)
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The domain Ω2 is defined by the boundary curve, Γ(x∂Ω) = r -1, where r =(x2+y2)1/2

is the radius in polar coordinates. This example is nearly singular around the origin
and the gradient increase by increasing the parameter, µ . We considered the case
where µ=100.

Test Problem 3. The third example is defined on the star-shaped domain Ω3and
has a point wise steep gradient around the origin. The problem is defined as finding
the solution of

∇
2u(x) =−400µ(µ(x2 + y2)−1)× exp(−µ(x2 + y2) on Ω3 (25)

with an exact solution of

uex(x) =−100exp(−µ(x2 + y2)). (26)

Here we considered the case where µ=50.The star-shaped domain Ω3 is defined
by the boundary curve, Γ(x∂Ω)= r -(0.85+0.15sin(5θ )), where rand θ are the polar
coordinates.

The efficiency of proposed adaptation procedure for the solution of Poisson’s type
PDE on irregular domains is investigated in the first series of numerical investiga-
tion. Toward this goal, all three test problems were solved on a base node distribu-
tion consists of 11×11 evenly spaced nodes and then four steps of the adaptation
procedure were performed subsequently. The shape parameter was c=0.3 and the
wavelet threshold parameter was selected as ε =10−1. The wavelet threshold pa-
rameter ε was kept constant in all steps of adaptation. Figure 3, 4 and 5 show the
results of RBF solution, the adapted node distribution and error of solution, respec-
tively. These figures show how the proposed adaptive schemes distribute the nodes
near the steep gradient. Table 1 shows the results of the numerical accuracy tests.

The results of three test problems presented herein clearly show that the simple
Heaviside masking technique that introduced in the previous section makes it pos-
sible to generalize the wavelet based adaptive algorithm to the solution of PDEs
over irregular domain. Even though all three test problems examined herein were
defined on simply connected domain but the methods could be applied to multiply
connected domains without any change in the formulations. The next question that
must be answered is which parameters affect the efficiency of adaptation procedure
and what the optimum value of those parameters is. In the next part, we will in-
vestigate the parameters that affect the efficiency of adaptive solution of PDEs over
irregular domains.

Effect of number of nodes in the initial distribution: The adaptation procedure
is usually initiated from a coarse node distribution and at each step of adaptation
procedure the distribution is refined in the region with steep gradients. The final
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Figure 3: Adaptive solution of the first test problem on an L-shaped domain

accuracy of the solution depends upon the number of nodes in the initial base node
distribution, the value wavelet thresholding parameter, ε , and also on the number
of adaptation steps. The question that is going to be answered here is that does the
number of nodes in the initial base node distribution affect the convergence rate
and so efficiency of the adaptation procedure To this aim, all three test problems
were analyzed starting from different initial base node distribution, namely 7×7,
11×11, 15×15 and 21×21 evenly spaced nodes. The shape parameter was c=0.3
and the wavelet threshold parameter was selected as ε =10−1in all test problems.
The wavelet threshold parameter ε was kept constant in all steps of adaptation.
Three steps of adaptation were successively applied in each initial base node dis-
tribution. The node distribution at each step of adaptation in the first test problem
is shown in Figure 6. The node distribution in the second and third test problems
are not depicted here for brevity; however the same trend is observed in all test
problems. Figure 7 show the effect of number of nodes in the initial base node
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Figure 4: Adaptive solution of the second test problem on a circular domain.

distribution on the convergence rate and the final accuracy of the solution. The re-
sults summarized in Table 2 show that refining the initial node distribution increase
the final accuracy of the solution. So, one could select the initial node distribution
based upon the target accuracy required in the solution. It is also seen that the con-
vergence rate is almost the same and it is not affected by the number of nodes in the
initial distribution. This means the efficiency of the adaptation procedure does not
depend upon the selection of number of nodes in the initial base node distribution.

Effect of wavelet threshold parameter: Another factor that affects the accuracy
of the solution in the wavelet based adaptation procedure is the wavelet threshold
parameter ε . To investigate the effect of wavelet threshold parameter, all test prob-
lems were analyzed using four values of ε: ε =5×10−1, ε =10−1, ε =5×10−2 and
ε =10−2. The shape parameter was selected as c=0.3 in all test problems. Fig-
ure 8 shows the adapted node distribution using different values of the wavelet
threshold parameter. It is clearly evident that decreasing the wavelet threshold pa-
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Figure 5: Adaptive solution of the third test problem on a star-shaped domain

rameter inserts more nodes at each step of the adaptation procedure. The effect
of wavelet threshold parameter on the accuracy of the solution after three steps of
the adaptation is summarized in Table 3. Figure 9 shows the effect of the wavelet
threshold parameter on the convergence rate and the final accuracy of the solution.
The results show that decreasing the value of ε , increases the number of nodes in
the adaptive distribution and improves the accuracy of the solution. However, as
shown in Figure 9, the convergence rate is almost the same and is not affected by
the values of wavelet threshold parameter ε . In other words, the accuracy of the
solution mainly depends upon the number of nodes and since the wavelet thresh-
old parameter ε controls the number of inserted nodes in each step, it indirectly
controls the accuracy of the solution. In this way, the values of wavelet threshold
parameter, ε , may be used as a control parameter to adjust the accuracy and number
of nodes in the adaptive solution. One can select an appropriate value based upon
the target accuracy level that should be achieved in the node refinement procedure.
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Table 1: Iterative progress of the adaptive solution on an irregular domain

Level N RMS L∞ κ(A)
1 96 7.54E-04 2.13E-02 4.40E+04

Problem 2 162 3.42E-04 1.14E-02 6.18E+06
1 3 329 5.53E-05 3.52E-03 6.35E+10

4 621 1.86E-05 3.19E-03 9.85E+16
1 94 1.11E-01 4.58E+00 3.86E+04

Problem 2 156 1.16E-02 4.44E-01 2.88E+05
2 3 209 2.81E-03 9.61E-02 1.67E+08

4 293 1.05E-03 4.81E-02 4.77E+13
1 65 2.63E+00 8.83E+01 2.09E+03

Problem 2 252 1.23E-03 7.52E-02 8.49E+06
3 3 400 1.26E-05 2.19E-03 1.83E+10

4 793 7.09E-06 2.19E-03 2.72E+18

Table 2: Effect of number of nodes in the initial distribution on the error norms
after three step of adaptation

Initial N RMS L∞ Convergence
Distribution rate

7×7 369 5.79E-05 5.13E-03 2.32
Problem 11×11 463 2.65E-05 2.50E-03 2.00

1 15×15 538 1.69E-05 1.66E-03 1.60
21×21 665 6.81E-06 1.49E-03 1.16

7×7 226 2.27E-03 1.02E-01 3.15
Problem 11×11 293 1.05E-03 4.81E-02 3.35

2 15×15 386 2.09E-04 1.73E-02 4.45
21×21 604 1.30E-05 2.83E-03 6.08

7×7 470 3.40E-05 6.88E-03 5.46
Problem 11×11 793 7.09E-06 2.19E-03 4.37

3 15×15 1033 8.02E-06 3.04E-03 4.51
21×21 804 6.48E-06 2.13E-03 3.35

Base node refinement and level dependent thresholding: In the previous numer-
ical investigations, the analysis begins from an initial base node distribution and
the node refinement is performed where deemed necessary; the wavelet threshold
parameter was kept constant in all steps of adaptation. Although we utilized a fixed
threshold limit, it will be shown that threshold limit can be level dependent. In
the level dependent thresholding scheme, the threshold parameter depends upon
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Figure 6: The effect of an initial distribution on the adaptive node distribution of
test problem 1

the level of resolution. One can adjust the threshold parameter to control the num-
ber of inserted adaptive nodes at each level as well as the accuracy improvement.
When the wavelet threshold parameters were kept constant, the number of inserted
nodes is reduced after performing few steps of adaptation procedure. Therefore,
the method fails to converge more. The level dependent thresholding in which
the wavelet threshold parameter is decreased by increasing the resolution could be
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Figure 7: Number of nodes in the initial base node distribution and the convergence
rate of the adaptive solution.

utilized to overcome this problem.

Different approach may be used to adjust the wavelet threshold parameter, ε , at
each level of resolution. Here we use

ε j = ε0/(a( j−1)), (27)

in which the ε0 is the initial wavelet threshold parameter in the coarsest level, a is
the reduction factor and j is the level of resolution. Based on our experiments, we
found a = 1.5 is an optimum value in the problems investigated.

Another technique that could be used to achieve further convergence is the base
node refinement. The dyadic structure of node distribution in the wavelet based
adaptive procedure, halves the node spacing at each step of adaptation procedure.
In this way, after applying j steps of the adaptation, the ratio between the mini-
mum and maximum node spacing in finest and coarsest node distribution becomes
hmax/hmin = 2 j.For instance, after applying four steps of adaptation, the ratio be-
comes hmax/hmin = 16.The extreme difference between node spacing intensifies
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Table 3: Effect of wavelet threshold parameter after four step of adaptation proce-
dure

ε N RMS L∞ κ(A)
5×10−1 367 2.80E-05 2.27E-03 8.95E+10

Problem 1×10−1 621 1.86E-05 3.19E-03 9.85E+16
1 5×10−2 945 3.97E-06 1.17E-03 5.76E+18

1×10−2 1623 1.20E-05 8.38E-03 4.63E+19
5×10−1 355 1.10E-04 1.15E-02 4.01E+07

Problem 1×10−1 470 1.42E-05 2.81E-03 1.01E+14
2 5×10−2 653 1.17E-06 1.59E-04 3.43E+15

1×10−2 1088 3.57E-07 1.11E-04 2.38E+18
5×10−1 756 1.97E-06 2.27E-04 6.10E+18

Problem 1×10−1 1035 1.75E-06 2.38E-04 2.52E+19
3 5×10−2 1169 2.30E-06 5.99E-04 2.27E+20

1×10−2 1497 2.28E-06 7.02E-04 1.05E+20

the ill-conditioning phenomenon, unbalances the error distribution and causes nu-
merical instabilities. This phenomenon is more pronounced in numerical methods
which use globally supported approximation techniques. Our numerical investiga-
tions show that the ratio between the minimum and maximum node spacing should
be less than hmax/hmin < 10 to avoid numerical instabilities in RBF collocations.
Toward this goal, the initial base node distribution is refined after each three steps
of adaptation and the evenly spaced node distribution at the level j−3 are inserted
in all node locations even if the wavelet coefficients d j,k are less than the prescribed
threshold limit ε . This technique is named as base node refinement.

Hereafter, the term level dependent scheme refers to both the level dependent thresh-
olding and the base node refinement technique. To show the efficiency of level de-
pendent scheme over the fixed thresholding scheme, both schemes are applied in all
three test problems. The shape parameter was c=0.3 and the initial wavelet thresh-
old parameter was selected as ε0 =10−1in all test problems. The wavelet threshold
parameter at each step of adaptive procedure is calculated from Eq (27).

Nearly the same trend is seen in all test problems. However, only results of the
first test problems are presented here for the sake of brevity. Figure 10-a shows the
adaptive node distribution and error in the solution in the first test problem using
fixed thresholding scheme during six steps of adaptation. Figure 10-b shows those
results of level dependent scheme. Comparing the results depicted in Figure 10-a
with Figure 10-b, it is evident that the level dependent scheme will result in more
accurate solutions. The left plot of Figure 11 compares the convergence rate of
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Figure 8: The effect of the wavelet threshold parameter on the adaptive node dis-
tribution of all test problem, (a) test problem 1, (b) test problem 2, (c) test problem
3

fixed thresholding scheme and level dependent scheme in the first test problems.
The condition numbers of the system of linear system of equations in both fixed
thresholding scheme and level dependent scheme are presented in the right plot of
Figure 11. The results clearly show the advantage of level dependent scheme over
the fixed scheme in the sense of improved convergence rate and reduced condition
number.
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Figure 9: Convergence rate of the adaptive solution using different values of the
wavelet threshold parameter.

The level dependent thresholding scheme may be seen as an active control in the
adaptation procedure that makes it possible to adjust actively the number of in-
serted nodes and accuracy level. Besides, the level dependent thresholding scheme
avoids the undesired growth of an extremely fine node distribution in the adaptation
procedure.

7 Discussion

In this paper, a wavelet based adaptive method is used for the solution of Poisson
type PDEs over irregular domains. The multilevel structure of the wavelet de-
composition provides a natural way to obtain the solution on a near optimal grid.
Since multi-dimensional wavelet decomposition has the dyadic nature, it appears
that wavelet decomposition is not possible over irregularly shaped domains. How-
ever, it is possible to construct a discontinuous boundary curve that is a product of a
Heaviside function along the normal direction and a piecewise continuous tangen-
tial curve. The ability to deal with irregular domain, without losing the generality
of the original method, can be achieved simply through the use of Heaviside mask-
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Figure 10: Node distribution and error in solution in the first test problems; (a)
fixed thresholding scheme; (b) level dependent scheme.

  

 
Figure 11: Convergence rate (left) and condition number (right) in the fixed thresh-
olding scheme and level dependent scheme.
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ing technique. The initial solution is obtained in the coarse approximation space,
and refined by adding details in the detail spaces over several levels till the equation
is resolved to the desired accuracy.

Higher order derivative approximation which is usually needed in the conventional
residual based adaptive dramatically penalize the simulation speed. On the other
side, the proposed wavelet based adaptive scheme does not require any residual
indicator and utilize the fast wavelet transform to compute the wavelet coefficients.

The numerical analysis show that the number of added nodes in each step of LEKSR
adaptation procedure depends upon the wavelet threshold parameter and also upon
the initial base node distribution. However, the convergence rate of the LEKSR
adaptive method does not depend upon the initial base node distribution or the
wavelet threshold parameter. In order to accelerate the convergence of the method,
the level dependent scheme in which the wavelet threshold parameter depends upon
the level of resolution were introduced. Numerical investigations presented in this
paper show that problems over irregular domain with curve or corner boundary
can be efficiently treated by the method. The numerical examples have illustrated
that the proposed method is powerful to analyze the Poisson type PDEs with rapid
changes in gradients and nearly singularities. Although the present paper consid-
ers only the Poisson type PDEs, the strength of this new method is that it can be
extended easily to other linear elliptic, hyperbolic and parabolic PDEs without any
change in the formulation. Work is in progress to extend the LEKSR method for
the adaptive solution of non-linear and time dependent PDEs.
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