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Dynamic Analysis by Meshless Local Petrov-Galerkin
Formulations Considering a Time-Marching Scheme

Based on Implicit Green’s Functions

D. Soares Jr.1, J. Sladek2 and V. Sladek2

Abstract: In recent years the idea of using mesh-free or mesh-less methods for
numerical solution of partial differential equations has received much attention, due
to their potential advantage in eliminating the costly effort of mesh generation and
re-meshing. A variety of meshless methods has been proposed so far. Many of them
are derived from a weak-form formulation on global domain or a set of local subdo-
mains. In the global formulation background cells are required for the integration
of the weak form. In methods based on local weak-form formulation no cells are
required and therefore they are often referred to as truly meshless methods. If for
the geometry of subdomains a simple form is chosen, numerical integrations can be
easily carried out over them. The meshless local Petrov-Galerkin (MLPG) method
is a fundamental base for the derivation of many meshless formulations, since trial
and test functions are chosen from different functional spaces. In the present paper,
the MLPG is applied to solve linear and nonlinear dynamic 2-D problems. Both
the Heaviside step function and the Gaussian weight function are used as the test
functions in the local weak form to investigate which one is more convenient. The
moving least square (MLS) method is used for approximation of physical quanti-
ties in the local integral equations. After spatial discretization, a system of ordinary
differential equations of second order for unknown nodal quantities is obtained. A
time-marching scheme which is based on implicit Green’s functions is applied to
solve this system of equations in the time domain. In this procedure, the time-
domain Green’s matrices of the elastodynamic problem are considered in order to
generate a recursive relationship to evaluate displacements and velocities at each
time-step. Taking into account the Newmark method, the Green’s matrices of the
problem are numerically and implicitly evaluated, establishing the Green-Newmark
method. At the end of the work, numerical examples are presented, verifying the
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accuracy and potentialities of the new methodology.
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1 Introduction

In recent years, meshless methods have become very popular computational tools
for many engineering problems. This is due to their high adaptivity and low costs
to prepare input and output data for numerical analyses. The moving least-squares
(MLS) approximation is generally considered as one of many schemes to interpo-
late discrete data with a reasonable accuracy [Belytschko et al. (1996); Atluri and
Shen (2002); Atluri (2004)]. The order of continuity of the MLS approximation
is given by the minimum between the orders of continuity of the basis functions
and that of the weight function. This allows the order of continuity to be tuned
to a desired value. In conventional discretization methods, such as the Finite El-
ement Method (FEM) or the Boundary Element Method (BEM), the interpolation
functions usually result in a discontinuity of secondary fields (gradients of primary
fields) on the interfaces of elements. Therefore, modeling based on C1-continuity,
such as in meshless methods, is expected to be more accurate than conventional
discretization techniques.

The meshless method can be obtained from a weak-form formulation on either the
global domain or a set of local subdomains. In the global formulation, background
cells are required for the integration of the weak-form [Belytschko et al. (1994)].
In methods based on local weak-form formulation [Zhu et al. (1998), Atluri and
Zhu (1998)], no background cells are required and therefore they are often referred
to as truly meshless methods. The meshless local Petrov-Galerkin (MLPG) method
is a fundamental base for the derivation of many meshless formulations since the
trial and test functions can be chosen from different functional spaces. Recent suc-
cesses of MLPG methods have been reported in the development of the MLPG
finite-volume mixed method [Atluri et al. (2004)], which was later extended to
finite deformation analysis of static and dynamic problems [Han et al. (2005)];
in simplified treatment of essential boundary conditions by a novel modified MLS
procedure [Gao et al. (2006)]; and in the development of the mixed scheme to in-
terpolate the elastic displacements and stresses independently [Atluri et al. (2006)].

The possibility of selecting arbitrary test functions in the weak formulation allows
the derivation of many computational methods based on the MLPG in elastody-
namics [Sellountos and Polyzos (2003); Sellountos et al. (2005, 2009); Vavourakis
et al. (2006)]. In an early stage of the MLPG, the fundamental solution has been
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used as the test function. It led to accurate numerical results and it was utilized
in former papers for isotropic homogeneous and continuously nonhomogeneous
bodies under static [Atluri et al. (2000), Sladek et al. (2000)] and dynamic loads
[Sladek et al. (2003a,b)]. In these formulations, Green’s functions which vanish on
the local boundary of a circular subdomain were successfully utilized. However,
in anisotropic elasticity, the fundamental solution is too complex or unavailable in
a closed form. Starting from a complex fundamental solution, it is very difficult
to derive the Green’s function that vanishes on the local boundary of a subdomain.
Hence, the local integral equations involving such fundamental solutions as the test
functions are computationally inconvenient, since both the displacements and trac-
tions are unknown on the boundary of the interior sub-domain and the number of
integrals is doubled. Therefore, it is convenient to use the Gaussian weight func-
tion or the Heaviside step function as the test functions on circular subdomains,
leading to a general approach with high applicability to a wide class of problems.
Batra and Ching (2002) applied the MLPG with Gaussian weight functions to elas-
todynamic problems. The MLPG method with a Heaviside step function as the test
functions [Atluri and Shen (2002), Atluri et al. (2003)] has been applied to solve
two-dimensional homogeneous and continuously non-homogeneous elastic prob-
lems [Sladek et al., (2004; 2009), (2008a)], thermoelastic problems [Sladek et al.,
(2006)], and for 3-D problems in homogeneous and isotropic solids under a static
or a dynamic load [Han and Atluri (2004a,b), Sladek et al. (2009)]. The present au-
thors have recently analyzed 3-D axisymmetric dynamic problems in continuously
non-homogeneous elastic solids [Sladek et al. (2005), (2008b)]. Recently, Long et
al. (2008) applied the MLPG to elasto-plastic problems under a stationary load and
Soares et al. (2009b) analyzed dynamic elasto-plastic models by the MLPG.

The weak form on local subdomains, considering the Gaussian weight function or
the Heaviside step function as the test function, is employed here to derive the local
integral equations. The integral equations have a very simple nonsingular form.
Moreover, both the contour and domain integrations can be easily carried out on
circular sub-domains.

Regarding time dependent analysis, Laplace transform formulations or time-domain
formulations are usually employed. Laplace transform formulations are less accu-
rate for large instants due to the instability of the Laplace inversion. Time-domain
formulations, on the other hand, are usually based in a time-marching procedure,
which is very appropriate to carry out nonlinear analysis. In the present work, a
time-marching scheme, based on implicit Green’s functions, is discussed. This
time-domain approach, as is described along the text, is easy to implement, accu-
rate, unconditionally stable and it avoids the iterative procedures which are usually
related to the dynamic analysis of elasto-plastic models.



118 Copyright © 2009 Tech Science Press CMES, vol.50, no.2, pp.115-140, 2009

Dynamic analysis by implicit Green’s functions was firstly presented by Soares
(2002, 2004), taking into account linear and nonlinear models discretized by the
finite element method. Later on, the methodology was extended, taking into ac-
count not only time-domain numerical procedures to evaluate the Green’s matri-
ces (Soares and Mansur, 2005a), but also Laplace and frequency-domain numer-
ical procedures (Soares and Mansur, 2005b; Loureiro and Mansur, 2009a). The
technique was also applied associated to other numerical procedures, such as the
boundary element method (Soares, 2007) and the finite difference method (Mansur
et al., 2007); and to analyse coupled problems, such as fluid-structure, soil-structure
and electromagnetic interaction problems, taking into account FEM-BEM coupling
procedures (Soares and Mansur, 2005c; Soares et al., 2007; Soares, 2009), and
pore-dynamics problems, taking into account finite element procedures (Soares,
2008). Recently, the methodology has been applied to analyse heat conduction
models (Mansur et al., 2009; Loureiro et al., 2009; Loureiro and Mansur, 2009b),
extrapolating the context of wave propagation problems initially focused.

2 Governing equations

The basic equations related to the dynamic modelling in focus are given by:

σi j, j−ρ üi +ρ bi = 0 (1)

dεi j = 1
2(dui, j +du j,i) (2)

dσi j = D∗i jkl dεkl = Di jkl dεkl−dσ
∗
i j (3)

where equation (1) is the equilibrium equation and equations (2) and (3) stand for
incremental relations. The cauchy stress, using the usual indicial notation for carte-
sian axes, is represented by σi j, and ui and bi stand for displacement and body force
distribution components, respectively. Inferior commas and overdots indicate par-
tial space and time derivatives, respectively, and ρ stands for the mass density. The
incremental strain components dεi j are defined in the usual way from the displace-
ments, as described by equation (2). Equation (3) is the constitutive law, written
incrementally. D∗i jkl is a tangential tensor defined by suitable state variables and the
direction of the increment. In the particular case of linear elastic analysis, equation
(3) can be rewritten as σi j = Di jkl εkl , and the constitutive tensor Di jkl is given by:

Di jkl = 2µν/(1−2ν)δi jδkl + µ (δikδ jl +δilδ jk) (4)

where µ and ν stand for the shear modulus and the Poisson ratio of the model,
respectively, andδi j represents the Kronecker delta (δi j = 0 if i 6= j and δi j = 1 if
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i = j). In the present work, linear elastic analyses are firstly focused, being non-
linear elastoplastic analyses discussed in section 5, by the introduction of pseudo-
forces (in this case, the pseudo-forces are computed based on the non-linear stresses
σ∗i j).

In addition to equations (1)-(3), boundary and initial conditions have to be pre-
scribed in order to completely define the problem. they are given as follows:

(i) Boundary Conditions (t ≥ 0, x ∈ Γ Where Γ = Γu∪Γτ ):

ui = ūi for x ∈ Γu (5a)

τi = σi j ·n j = τ̄i for x ∈ Γτ (5b)

(ii) Initial Conditions (t = 0, x ∈ Ω):

ui = ū0
i (6a)

u̇i = ˙̄u0
i (6b)

where the prescribed values are indicated by over bars and τi stands for traction
components along the boundary whose unit outward normal vector is represented
by ni. The boundary of the model is denoted by Γ and the domain by Ω.

3 Spatial discretization

In the present text, first the spatial discretization by meshless techniques is de-
scribed and, once the time-domain matricial equation is obtained, its temporal dis-
cretization is discussed (section 4). In general, a meshless method uses a local
interpolation to represent the trial function with the values (or the fictitious val-
ues) of the unknown variable at some randomly located nodes. The moving least
squares (MLS) approximation may be considered as one of such schemes, and it
is employed here. Once the trial function is established, it can be applied to a
generalized local weak form of the equations described in section 2, and the mass
and stiffness matrix of the method can be deduced. In subsection 3.1, the mov-
ing least square approximation is described, whereas in subsection 3.2 the spatially
discretized matricial equation is presented. Two MLPG formulations are discussed
here, namely the MLPG formulation with Gaussian weight functions as text func-
tions, and the MLPG formulation with Heaviside step functions as text functions.

3.1 Moving least squares approximation

Consider a sub-domain Ωx, the neighbourhood of a point x and denoted as the
domain of definition of the MLS approximation for the trial function at x, which is
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located in the problem domain Ω. To approximate the distribution of function ui in
Ωx, over a number of randomly located nodes, the MLS approximantion uh

i of ui,
can be defined by [Atluri and Shen (2002)]:

uh
i (x, t) = ΦΦΦ

T (x) ûi(t) =
N

∑
a=1

φ
a(x)ûa

i (t) (7)

where ûi is the fictitious nodal value of ui ( N is the number of points in the sub-
domain Ωx) and the shape matrix ΦΦΦT (x) is defined by:

ΦΦΦ
T (x) = pT (x)A−1(x)B(x) (8)

where

A(x) =
N

∑
a=1

wa(x)p(xa)pT (xa) (9a)

B(x) = [w1(x)p(x1), w2(x)p(x2), ....,wN(x)p(xN)] (9b)

and pT (x) = [p1(x), p2(x), . . . , pm(x)] is a complete monomial basis of order m.
wa(x) is the weight function associated with node a. The gaussian weight function
is adopted here, and it is given by:

wa(x) =
exp[−(da/ca)2k]− exp[−(ra/ca)2k]

1− exp[−(ra/ca)2k]
(1−H[da− ra]) (10)

where da = ||x−xa|| is the distance between the sampling point x and node xa, ca

is a constant controlling the shape of the weight function and ra is the radius of the
circular support of the weight function. The Heaviside unit step function is defined
as H(z) = 1 for z > 0 and H(z) = 0 for z ≤ 0. The size of the weight function
support should be large enough to have a sufficient number of nodes covered in the
domain of definition to ensure the regularity of matrix A.

3.2 Local weak-form discretization

Instead of writing the global weak-form for the governing equations described in
section 2, the MLPG method constructs a weak-form over local fictitious subdo-
mains, such as Ωs, which is a small region taken for each node inside the global
domain (see Fig.1). The local sub-domains overlap each other, and cover the whole
global domain Ω. The geometrical shape and size of the local sub-domains can be
arbitrary. In the present paper, the local sub-domains are taken to be of circular
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Figure 1: Local boundaries and the MLS approximation of trial functions around
node xa.

shape. The local weak-form of the governing equations described in section 2 can
be written as:

∫
∂Ωs

σi jn ju∗ik dΓ−
∫
Ωs

σi ju∗ik, j dΩ+
∫
Ωs

(−ρ üi +ρ bi)u∗ik dΩ+λ

∫
Γsu

(ui− ūi)u∗ikdΓ = 0

(11)

where u∗ik is a test function and λ is a penalty parameter, which is introduced here
in order to impose essential prescribed boundary conditions in an integral form.
∂Ωs is the boundary of the local sub-domain, which consists of three parts ∂Ωs =
Ls ∪Γsτ ∪Γsu, in general. Here, Ls is the local boundary that is totally inside the
global domain, Γsτ is the part of the local boundary which coincides with the global
traction boundary, i.e., Γsτ = ∂Ωs ∩Γτ , and, similarly, Γsu is the part of the local
boundary that coincides with the global displacement boundary, i.e., Γsu = ∂Ωs∩Γu

(see Fig.1).

Equation (11) can be simplified according to the chosen test function u∗ik. By spec-
ifying the local sub-domain as the circle Ωc centred at node xc and by choosing a
test function which provides null spatial derivatives in each sub-domain, such as
the Heaviside step function u∗ik = δik(1−H(dc− rc)), the local weak-form (11) can



122 Copyright © 2009 Tech Science Press CMES, vol.50, no.2, pp.115-140, 2009

then be converted into the following local boundary-domain integral equation:

N

∑
a=1

∫
Ωc

ρφ
adΩ

 ¨̂ua−

λ

∫
Γc

u

φ
adΓ+

∫
Lc+Γc

u

NDBadΓ

 ûa

=

=
∫
Γc

τ

τ̄ττ dΓ +
∫
Ωc

ρbdΩ−λ

∫
Γc

u

ūdΓ (12a)

where, for the development of the above equation, definition (7) is employed and
Voigt notation (i.e., σσσ = [σ11,σ22,σ12]T , τ = [τ1,τ2]T , u = [u1,u2]T etc.) is consid-
ered.

On the other hand, by choosing a test function with vanishing value on the lo-
cal boundary that is totally inside the global domain, such as the Gaussian weight
function u∗ik = δikwc, one can rewrite equation (11) into the local integral equation:

N

∑
a=1

∫
Ωc

wc
ρφ

adΩ

 ¨̂ua−

λ

∫
Γc

u

wc
φ

adΓ+
∫
Γc

u

wcNDBadΓ−
∫
Ωc

WcDBadΩ

 ûa


=
∫
Γc

τ

wc
τ̄ττ dΓ +

∫
Ωc

wc
ρbdΩ−λ

∫
Γc

u

wcūdΓ (12b)

where, for both equations (12a) and (12b), matrices N, Wa, Ba and D are given by:

N =
[

n1 0 n2
0 n2 n1

]
(13a)

Wa =
[

wa
,1 0 wa

,2
0 wa

,2 wa
,1

]
(13b)

Ba =

φ a
,1 0
0 φ a

,2
φ a

,2 φ a
,1

 (13c)

D =

D1111 D1122 D1112
D1122 D2222 D2212
D1112 D2212 D1212

=
2µ

1−2ν

1−ν ν 0
ν 1−ν 0
0 0 (1−2ν)/2

 (13d)

By collecting all nodal unknown fictitious displacements ûa(t) into vector Û(t),
the system of the discretized equations (12a) or (12b) can be rewritten into matrix
form, as follows:

M ¨̂U(t)+KÛ(t) = F(t) (14)
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where M is the mass matrix, evaluated taking into account the first integral term
in the l.h.s. of equations (12), K is the stiffness matrix, computed regarding the
remaining terms on the l.h.s. of equations (12), and F is the external load vector,
evaluated considering the terms on the r.h.s. of equations (12).

Once the ordinary differential matrix equation (14) is established, its solution in
the time-domain is discussed in the next section, taking into account the Green-
Newmark time-marching procedure.

4 Temporal discretization

By solving the time-domain second-order ordinary differential equation (14) an-
alytically, the following expressions for the displacement and velocity fictitious
vectors may be obtained:

Û(t) = Λ̇ΛΛ(t)MÛ0 +ΛΛΛ(t)M ˙̂U
0
+ΛΛΛ(t)•F(t) (15a)

˙̂U(t) = Λ̈ΛΛ(t)MÛ0 +Λ̇ΛΛ(t)M ˙̂U
0
+Λ̇ΛΛ(t)•F(t) (15b)

where ΛΛΛ(t) represents the Green’s function matrix of the model and the symbol •
stands for time convolution.

The jth column of ΛΛΛ(t) can be obtained through the solution of equation (14) for
an impulsive load applied at node j or by taking into account the physical identity:
“impulse = momentum variation”. In this last case, the Green’s function matrix
ΛΛΛ(t) can be directly evaluated by considering equation (14) associated to an initial
condition problem, where ΛΛΛ(0) = 0 and Λ̇ΛΛ(0) = M−1.

In the present work, the fictitious displacements and velocities of the model are
evaluated employing equations (15) and the Green’s matrices are calculated nu-
merically and implicitly, taking into account the above-mentioned initial condi-
tion problem and usual time-domain integration procedures (namely, the Newmark
method – Newmark, 1959).

Equations (15), at time ∆t, read:

Û(∆t) = Λ̇ΛΛ(∆t)MÛ0 +ΛΛΛ(∆t)M ˙̂U
0
+

∆t∫
0

ΛΛΛ(∆t− τ)F(τ)dτ (16a)

˙̂U(∆t) = Λ̈ΛΛ(∆t)MÛ0 +Λ̇ΛΛ(∆t)M ˙̂U
0
+

∆t∫
0

Λ̇ΛΛ(∆t− τ)F(τ)dτ (16b)
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Assuming that ∆t is small enough, the following approximation can replace the
integrals indicated in equations (16):

∆t∫
0

g(∆t− τ) f (τ)dτ = g(0) f (∆t)∆t (17)

where g(t) and f (t) are two generic time functions. Equation (17) may seem over
simplified, however, it is the result one reaches if a discrete frequency-domain ap-
proach is considered [Soares and Mansur, 2003]. Moreover, as it has been shown
[Soares and Mansur, 2005a], approximation (17) applied to equations (16) is equiv-
alent to a two-point Newton-Cotes quadrature rule, for most usual engineering
problems. In the present work, equation (17) is adopted since it provides accurate
results for most applications and it is efficient and extremely easy to implement
(although many other expressions are possible).

Taking into account equations (16), with the approximations indicated by equation
(17), recursive expressions can be obtained by considering equations (15) at time
t +∆t and by supposing that the analysis begins at time t. The recurrence relations
that arise are given by:

Ût+∆t = Λ̇ΛΛ(∆t)MÛt +ΛΛΛ(∆t)M ˙̂U
t
+ΛΛΛ(0)Ft+∆t

∆t (18a)

˙̂U
t+∆t

= Λ̈ΛΛ(∆t)MÛt +Λ̇ΛΛ(∆t)M ˙̂U
t
+Λ̇ΛΛ(0)Ft+∆t

∆t (18b)

where, as mentioned before, the Green’s matrices ΛΛΛ(∆t), Λ̇ΛΛ(∆t) and Λ̈ΛΛ(∆t) are eval-
uated by solving the following initial condition problem, at time instant ∆t:

MΛ̈ΛΛ(t)+KΛΛΛ(t) = 0 (19a)

where

ΛΛΛ(0) = 0 (19b)

Λ̇ΛΛ(0) = M−1. (19c)

In the present work, the Newmark method is employed to solve the initial condition
problem (19); nevertheless, many other methodologies are possible. The expres-
sions for ΛΛΛ∆t , Λ̇ΛΛ

∆t
and Λ̈ΛΛ

∆t
given by the Newmark method read:

ΛΛΛ
∆t = (1/(α∆t))(K+(1/(α∆t2))M)−1 (20a)

Λ̇ΛΛ
∆t = (γ/(α∆t))ΛΛΛ∆t − (1− γ/α)M−1 (20b)
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Λ̈ΛΛ
∆t = (1/(α∆t2))ΛΛΛ∆t − (1/(α∆t))M−1 (20c)

where α and γ are the Newmark’s parameters.

Substituting equations (20) into the recurrence relations (18), taking into account
equations 19(b) and 19(c), one finally obtains:

Ût+∆t = ΠΠΠ(c1Ût + c2
˙̂U

t
)+ c3Ût (21a)

˙̂U
t+∆t

= ΠΠΠ(c4Ût + c1
˙̂U

t
)− c2Ût + c3

˙̂U
t
+Rt+∆t (21b)

where

ΠΠΠ = (K+(1/(α∆t2))M)−1 M (22a)

Rt+∆t = M−1 Ft+∆t
∆t (22b)

and

c1 = γ/(α2
∆t2) (23a)

c2 = 1/(α∆t) (23b)

c3 = 1− γ/α (23c)

c4 = 1/(α2
∆t3) (23d)

Equations (21) are the final recurrence relations for the Green-Newmark algorithm.
As it has been described [Soares and Mansur, 2005a; Soares 2007], the Green-
Newmark method provides stable and accurate results in the sense that the crucial
modes are accurately integrated and the spurious modes are filtered out. In the next
subsection, the stability and numerical dispersion of the proposed time-marching
technique is further discussed.

4.1 Stability analysis

Taking into account a one degree-of-freedom problem, equation (14) can be rewrit-
ten as

¨̂U(t)+w2Û(t) = F(t) (24)

where w is the natural frequency of the model. A recursive relationship can be
established, regarding the Green-Newmark method applied to equation (24), as
follows:[

Û t+∆t

˙̂U t+∆t

]
=
[

A11 A12
A21 A22

] [
Û t

˙̂U t

]
+
[

L1
L2

]
= A

[
Û t

˙̂U t

]
+L (25)
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where A is the amplification matrix and L is the load operator vector. The entries
of matrix A are given by:

A11 = A22 = 1− (∆t2w2
γ)/(∆t2w2

α +1) (26a)

A12 =−A21/w2 = ∆t/(∆t2w2
α +1) (26b)

which, as one can observe, provides the same values as the standard Newmark
method if the trapezoidal rule (i.e., α = 1/4 and γ = 1/2) is adopted. If differ-
ent choices for parameters α and γ are considered, the Green-Newmark and the
standard Newmark methods become different procedures. In the present work, one
group of possible choices for parameters α and γ is focused, namely: γ = 1/2
and α > γ/2. This group is selected since, in the Newmark method, unconditional
stable algorithms are conditioned by 2α ≥ γ ≥ 1/2 and second order accuracy is
achieved if and only if γ = 1/2.
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Figure 2: Spectral radius for the Houbolt, Newmark and Green-Newmark methods
(γ = 1/2 and α ≥ γ/2).

In order to take a closer look at the numerical properties of the Green-Newmark
method, the spectral radius of the amplification matrix A is analyzed. In Fig.2,
the relations ρ(A)x∆t/T are depicted, where ρ(A) is the spectral radius of matrix
A and T is the natural period of the problem (one should observe that, for the
standard Newmark method, ρ(A) = 1.0 once γ = 1/2 and α ≥ γ/2 are selected).
For unconditional stable algorithms, the relation ρ(A)≤ 1.0 must hold.
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As one can observe, numerical damping is introduced by the Green-Newmark
method. This numerical damping is usually less expressive than that introduced by
the Houbolt method [Houbolt, 1950] (it depends on the time discretization adopted)
and always (for the focused choice of parameters α and γ) more expressive than
that regarding the standard Newmark method. This property is beneficial to MLPG
formulations since it allows the elimination of spurious modes contributions, pro-
viding a more robust time-marching technique. As it is illustrated in the first ex-
ample discussed in section 6, dynamic analyses by MLPG formulations are very
sensitive to the influence of spurious modes, and unstable results may often arise if
proper time-marching procedures are not considered [Soares et al. (2009a)].

Moreover, as one can observe in equation (21a), the computation of displacements
by the Green-Newmark method is explicit, i.e., it only takes into account previous
time-step information (L1 = 0 in equation (25)). As a consequence, some non-linear
analyses can be carried out without iterative algorithms, rendering more efficient
numerical procedures, as it is discussed in the next section.

5 Non-linear analyses

In this section, dynamic elastoplastic analyses are discussed, taking into account
the pseudo-force method. This methodology is considered here once, by the Green-
Newmark method, displacement evaluations only depend on loads acting in previ-
ous time-steps, which allows the computation of the current stress state at once, at
each time-step (i.e., without any iterative procedure).

In the next subsection, the basic equations describing elastoplastic models are
briefly presented. In the sequence, the pseudo-force method is discussed in ac-
cordance with the discretization techniques reported in sections 3 and 4.

5.1 Elastoplastic models

The incremental stress-strain relation, associated to the elastoplastic problem in
focus, can be written as indicated by equation (3), where, within the context of
the associated isotropic work hardening theory, the tangent constitutive tensor is
defined as:

D∗i jkl = Di jkl− (1/ψ)Di jmnamnaopDopkl (27)

where Di jkl is defined by equation (4) and

akl = ∂ σ̄/∂σkl (28a)

ψ = ai jDi jklakl +H (28b)
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H = ∂σ0/∂ ε̄
p (28c)

In equations (28), σ̄ and ε̄ p are the equivalent (or effective) stress and plastic strain,
respectively, σ0 is the uniaxial yield stress and H is the plastic-hardening modulus
(the current slope of the uniaxial plastic stress-strain curve). Recall that in case of
von Mises isotropic strain-hardening material, the tensor of incremental elastoplas-
tic material moduli takes the form D∗i jkl = Di jkl−(3µ/(σ2

0 (1+H/3)))si jskl , where
si j = σi j− (1/3)δi jσkk is the stress deviator; and for the case of a perfectly plastic
material H = 0.

For the initial stress formulation, it is convenient to define a fictitious “elastic”
stress increment as follows:

dσ
e
i j = Di jkldεkl (29)

and to rewrite equation (3) as indicated below:

dσi j = dσ
e
i j−dσ

∗
i j (30)

where the “initial” stress increments are computed by:

dσ
∗
i j = (1/ψ)Di jmnamnakldσ

e
kl (31)

which are employed to evaluate the non-linear pseudo-forces, as is described in the
next subsection.

5.2 The pseudo-force method

Taking into account the discussion presented in subsection 5.1 and considering
dσi j = dσ e

i j−dσ∗i j, equations (12) can be rewritten as follows, taking into account
an initial stress formulation:

N

∑
a=1

∫
Ωc

ρφ
adΩ

 ¨̂ua−

λ

∫
Γc

u

φ
adΓ+

∫
Lc+Γc

u

NDBadΓ

 ûa


=
∫
Γc

τ

τ̄ττ dΓ+
∫
Ωc

ρ bdΩ−λ

∫
Γc

u

ūdΓ−
∫

Lc+Γc
u

Nσ
∗dΓ (32a)
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which, after proper numerical treatment, provides:

M ¨̂U(t)+KÛ(t) = F(t)+P(Û(t)) (33)

where M, K and F are exactly those described in equation (14), taking into account
linear analysis, and P stands for the pseudo-forces related to the nonlinear analysis
in focus. The entries of vector P are evaluated taking into account the last terms
on the r.h.s. of equations (32), which are function of the “plastic” stresses and, as a
consequence, of the current-time displacements.

Once equation (33) is established, its solution in the time-domain can be carried
out as described in section 4, the only difference remaining in the calculus of the
effective force (22b), which should also account for the non-linear pseudo-forces
P.

In resume, the proposed time-marching procedure to analyse dynamic elastoplastic
models can be characterized by the following three consecutive steps: (i) com-
putation of displacements Ût+∆t (see equation (21a)); (ii) computation of effective
forces, taking into account pseudo-forces (i.e., Rt+∆t = M−1 (Ft+∆t +P(Ût+∆t))∆t);

(iii) computation of velocities ˙̂U
t+∆t

(see equation (21b)). Since the computation
of the displacements does not depend on the pseudo-forces acting at the same time-
step, no iterative procedures are necessary, enabling a very efficient methodology.

6 Numerical aspects and applications

In this section three numerical examples are considered, illustrating the potential-
ities of the proposed techniques. In the first example (linear analysis), a clamped
rod is analyzed considering different time-marching procedures, highlighting the
stability of the Green-Newmark method. In the second example, the dynamic be-
havior of a cantilever beam is studied and the obtained results are compared to those
provided by the Finite Element Method (FEM). Finally, in the third example, a soil
strip is considered and the obtained results are compared to those obtained by the
FEM and by a Newmark/Newton-Raphson approach [Soares et al. (2009b)].

The following nomenclature is adopted here, concerning the meshless formula-
tions in focus: (i) MLPG1 denotes the MLPG formulation employing Heaviside
test functions; (ii) MLPG2 denotes the MLPG formulation that employs the weight
functions as the test functions. Along the following analyses, the radii of the in-
fluence domain and of the local subdomain are set to αxd3

i and αsd1
i , respectively,

where d3
i and d1

i are the distances to the third and first nearest points from node
i, respectively. In all the applications that follow, αx = 4 is selected. Considering
the MLPG1, αs = 0.5 is always adopted and, for the MLPG2, αs = 1.0 is adopted
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for the first and second applications, and αs = 0.75 is adopted in the third applica-

tion. The mass matrix M is diagonalized by a row-sum technique (Mdiag
i =

N
∑

a=1
Mia),

avoiding the solution of an extra system of equations (see equation (22b)).

6.1 Clamped rod

The present example consists of a rectangular rod submitted to a time Heavisite
force, applied at t = 0s and kept constant along time [Soares, 2007; Soares et al.,
2009a]. In Fig.3 a sketch of the model is depicted, describing the geometry and the
boundary conditions of the problem. The physical properties of the rod are given
by: E = 200N/m2 (Young modulus), ρ = 1.0kg/m3 (mass density) and ν = 0
(Poisson rate; it is adopted null in order to simulate a one-dimensional analysis).
The geometry of the rod is defined by: a = 2m and b = 1m. 153 nodes are em-
ployed to spatially discretize the rectangular domain, in a regular equally spaced
9x17 (vertical and horizontal, respectively) distribution. The adopted time-step is
given by: ∆t = 0.003s.

a

b 

 y 

x 

  f (t) 

  A  B

 
 

 
 
 
 
 

 

 
Figure 3: Sketch for the clamped rod: geometry and boundary conditions.

In Fig.4, displacement time-histories at points A (x = a, y = b/2) and B (x = a/2,
y = b/2) are depicted considering the Houbolt, Newmark and Green-Newmark
methods (γ = 1/2 and α = 1/2). As is observed in Fig.4, the Newmark method
provides unstable results, whereas stability is observed in the Houbolt and in the
Green-Newmark analyses (one should keep in mind, however, that in the Green-
Newmark method the introduction of numerical damping can be controlled by
selecting appropriate Newmark parameters – the same, on the other hand, is not
possible taking into account the Houbolt method).

As can be observed, time-domain analysis of dynamic models discretized by MLPG
formulations considering Gaussian weight functions as test functions is more sensi-
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Figure 4: Displacement time-history at points A and B considering the Houbolt,
Newmark and Green-Newmark methods (γ = 1/2 and α = 1/2): (a) MLPG1; (b)
MLPG2.

tive to spurious modes contributions, providing more easily unstable results. MLPG
formulations based on Heaviside test functions, on the other hand, not only are
more efficient (in terms of computational costs), but also more robust consider-
ing time-domain procedures. In both cases, accurate and stable results can be
achieved once time-marching procedures with appropriate high-frequency dissipa-
tion are considered. It must be noticed that the example in focus is a very important
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benchmark since it represents a rather complex numerical computation (in spite of
its geometrical and load simplicity) once there are successive reflections occurring
at the rod extremities and these multiple reflections can emphasize some numerical
aspects, such as instabilities and excessive numerical damping.

6.2 Cantilever beam

This second application consists of a clamped beamlike body [Soares et al., 2009b],
subjected to a suddenly applied uniform load (Heaviside time function). A sketch of
the model is depicted in Fig.5. The geometry and spatial discretization of the body
are the same as in subsection 6.1. The time-step adopted for the analysis is given
by: ∆t = 0.005s. A perfectly plastic material obeying the von Mises yield criterion
is assumed. The physical properties of the model are: ν = 0, E = 100N/m2, ρ =
1.5kg/m3 and σ0 = 0.1N/m2 (uniaxial yield stress).

a
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 y 
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  f (t) 

  A

 
 
 
 
 
 
 

 

 
Figure 5: Sketch for the cantilever beam: geometry and boundary conditions.

In Fig.6, time-history results for the vertical displacements at point A (x = a, y =
b/2) are depicted, considering elastic and elastoplastic analyses. Results provided
by standard FEM solutions, taking into account the Newmark method (trapezoidal
rule) and Newton-Raphson non-linear iterative techniques, are also depicted in
Fig.6, for comparison. The FEM analyses take into account two different meshes,
namely: (i) Mesh 1 – composed by 128 linear square elements and 153 nodes (lo-
cated as in the MLPG discretization); (ii) Mesh 2 – composed by 512 linear square
elements and 561 nodes. As can be observed, the MLPG results are in good agree-
ment with the FEM results for both linear and non-linear analyses, in spite of its
poor spatial discretization.



Dynamic Analysis by Meshless Local Petrov-Galerkin Formulations 133

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

-10

-8

-6

-4

-2

0

2

 Nonlinear

 Linear

 

 

  MLPG1
  MLPG2

   FEM (mesh 1)
   FEM (mesh 2)

Ve
rti

ca
l d

is
pl

ac
em

en
t (

m
m

)

Time (s)

 
 Figure 6: Displacement time-history at point A considering linear and nonlinear

analyses by the MLPG (Geen-Newmark method – γ = 1/2 and α = 1/2; 153
nodes) and by the FEM (Newmark method – γ = 1/2 and α = 1/4; mesh 1 with
153 nodes and mesh 2 with 561 nodes).

6.3 Soil strip

In this third example, a two-dimensional soil strip is analysed [Soares et al., 2009b].
A sketch of the model is depicted in Fig.7. A Heaviside time function is considered
acting on the strip, as described in Fig.7. The geometry of the model is defined
by: a = 5m, b = 5m and c = 0.5m. 121 nodes are employed to spatially discretize
the square domain, in a regular equally spaced 11x11 distribution. The adopted
time-step is given by: ∆t = 0.001s. A perfectly plastic material obeying the Mohr-
Coulomb yield criterion is assumed. The physical properties of the model are:
ν = 0.2, E = 107 N/m2, ρ = 2 ·103 kg/m3, c = 2 ·102 N/m2 (cohesion) and θ = 100

(internal friction angle).

In Fig.8, time-history results for the vertical displacements at point A (x = 0, y = b)
are depicted, considering elastic and elastoplastic analyses. FEM results are also
plotted in Fig.8, for comparison. The FEM analyses take into account two different
meshes, namely: (i) Mesh 1 – composed by 100 linear square elements and 121
nodes (located as in the MLPG discretization); (ii) Mesh 2 – composed by 400
linear square elements and 441 nodes.

As can be observed, the MLPG results are in good agreement with the FEM results
for both linear and non-linear analyses. As is expected, elastoplastic analyses are
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 Figure 7: Sketch for the soil strip: geometry and boundary conditions.

greatly influenced by the number of integration points being considered (i.e., by the
accuracy in the evaluation of the stresses of the model). Therefore, a richer FEM
mesh will provide considerably better results for the non-linear model, as well as
the MLPG2 is expected to provide more accurate results than the MLPG1, once
more integrations points are employed by the former, due to the domain discretiza-
tion term in equation (32b). However, also due to this greater amount of integration
points in the MLPG2 formulation, its computational costs are considerably higher
than those related to the MLPG1, for elastoplastic analysis.

Results obtained by the MLPG considering a Newmark/Newton-Raphson approach
[Soares et al., 2009b] are also depicted in Fig.8, for comparison. These results
highlight the fact that the Geen-Newmark/Pseudo-force algorithm provides good
responses without considering iterative processes, whereas the Newmark/Newton–
Raphson approach is far from the correct solution if iterations are not considered.
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Figure 8: Displacement time-history at point A considering linear and nonlinear
analyses by the MLPG (Geen-Newmark/Pseudo-force method – γ = 1/2 and α =
1/2; Newmark/Newton-Raphson method – γ = 0.70 and α = 0.36; 121 nodes) and
by the FEM (Newmark/Newton-Raphson method – γ = 0.5 and α = 0.25; mesh 1
with 121 nodes and mesh 2 with 441 nodes): (a) MLPG1; (b) MLPG2.

7 Conclusions

Two MLPG formulations were presented here to analyse the dynamic behaviour
of elastic and elastoplastic solids. In the first formulation, Heaviside step func-
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tions were adopted as the test functions, eliminating one domain integral of the
local weak form equation. In the second formulation, Gaussian weight functions
were the considered test functions, allowing eliminating boundary integrals along
internal subdomain contours. For both these formulations, a MLS interpolation
scheme was adopted, rendering a matricial time-domain system of second order
ordinary differential equations. This system was analysed by the implicit Green
approach. The implicit Green approach employs a recurrence relationship, to cal-
culate displacements and velocities, which are based on time-domain Green’s ma-
trices, numerically and implicitly evaluated. In the present work, these Green’s
matrices are obtained taking into account the Newmark method, establishing the
Green-Newmark algorithm. As it has been shown, the procedure is found stable
and accurate, eliminating the spurious oscillatory tendency of the standard New-
mark method, and the excessive numerical damping feature of the Houbolt method.
The present algorithm also has other advantages, such as: initial conditions are eas-
ily considered (in the Houbolt method special initialization procedures must be
employed); displacement evaluation only depends on the load acting in previous
time-steps, allowing iterative procedures to be eliminated in elastoplastic analysis;
it is easy to implement; etc.. As a matter of fact, the time-integration Green method
is a wide research field: several numerical procedures may be applied to evaluate
(explicitly or implicitly) the Green’s matrices of the problem, generating different
new methodologies, each one full of potentialities.

It is important to highlight that the adopted meshless techniques give continuous
variation of the first or higher order derivatives of the primitive function (in coun-
terpart to classical FEM polynomial approximations where secondary fields have
a jump on the interface of elements) and, therefore, more accurate results are ex-
pected in dynamic elastoplastic analyses by these techniques, since proper com-
putation of stresses plays a crucial role on these nonlinear models. The MLPG
formulation considering the Gaussian weight function as the test function com-
putes the stress states of the model in a large well-distributed number of integration
points, allowing a highly accurate evaluation of the internal forces. The MLPG for-
mulation based on Heaviside test functions, on the other hand, provides a compu-
tational less expensive numerical procedure, also providing quite accurate results.
Moreover, this meshless formulation seems to deal better with the spurious modes
related to the dynamic analysis, rendering more stable numerical procedures when
considering time-marching schemes.
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