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A New Time Domain Boundary Integral Equation and
Efficient Time Domain Boundary Element Scheme of

Elastodynamics

Z. H. Yao1

Abstract: The traditional time domain boundary integral equation (TDBIE) of
elastodynamics is formulated based on the time dependent fundamental solution
and the reciprocal theorem of elastodynamics. The time dependent fundamental
solution of the elastodynamics is the response of the infinite elastic medium under
a unit concentrate impulsive force subjected at a point and at an instant, including
not only the pressure wave and shear wave, but also the Laplace wave with speed
between that of P and S waves. In this paper, a new TDBIE is derived directly
from the initial boundary value problem of the partial differential equation of elas-
todynamics, and using the integral equation in weighted residual format. In the
new TDBIE the D’Alembert solution of the elastodynamics, namely the spherical
convergent pressure wave and shear wave are applied as the kernel functions re-
spectively. In this way, the system of TDBIE obtained is much simpler than the
traditional one.
In the traditional time domain boundary element method (TDBEM) of elastody-
namics, the boundary solutions can be obtained in time step by step. At the first
steps, the matrix of the algebraic equation system is quite sparse, because the ele-
ments which the wave front has not reached need not be computed. But the wave
front reaches more and more elements as the computation continues step by step.
To further enhance the efficiency, the impulsive waves of spherical convergent pres-
sure and shear waves are applied as the kernel functions. It is not difficult in the
new TDBIE of elastodynamics, which can be realized simply by the superposi-
tion of two successive and opposite spherical convergent wave components. To
guarantee the equivalence of the TDBIE with the corresponding partial differen-
tial equation of elastodynamics, the width of the impulse should be greater than
the maximum length of the lines in the elastic domain connecting the convergent
boundary point with all other boundary points. The width of the impulse can be
optimized in future work.
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1 Introduction

Because the elastodynamic problems exist widely in different engineering fields,
the elastodynamics is an important research field of the boundary element methods
in solid mechanics. In the literature on the boundary integral equation method for
elastodynamics, the first paper (Cruse and Rizzo, 1968; Cruse, 1968) combined the
boundary integral equation with the Laplace transform and the elliptical equations
in the transformed domain are solved. Manolis and Beskos made some improve-
ment on it (Manolis and Beskos, 1988). Time domain approach of the boundary
element formulation was firstly presented in 1978 for antiplanar problems (Cole,
Kosloff and Minster, 1978), Niwa, Kobayashi and Kitahara presented its general
formulation (Niwa, Kobayashi and Kitahara, 1980). Some further improvements
can be found in literature (Mansur, 1983; Karabalis and Beskos, 1984; Antes, 1985
and so on).

The problems governed by the equations of elastodynamics include not only the
elastic wave problems, but also the vibration problems of elastic solids. For the
later, Nardini and Brebbia derived the mass matrix and stiffness matrix based on
the elastostatic formulation (Nardini and Brebbia, 1982), which has been developed
as dual reciprocal approach to transform the domain integral of inertial forces into
the boundary integrals. Some authors have applied it to the dynamic analysis of
anisotropic elastic solids (Kogl and Gaul, 2000). The boundary element methods
for elastodynamics have been widely applied in engineering design and analysis,
which attracted much attention of the researchers and engineers. The correspond-
ing methods applied in the fields of soil-structure interaction and dynamic fracture
mechanics have been developed in recent decades. In recent years, some authors
have presented the investigation on elastodynamics using local boundary integral
equation method, local Petrov-Galerkin method (Sladek et al, 2004; Sladek et al,
2009), or BEM/FEM coupling method (Soares and Mansur, 2005). In the mono-
graphs of boundary element methods (such as Aliabadi, 2002), there is at least a
separated chapter for the topics of elastodynamics.

The traditional TDBIE of elastodynamics is briefly introduced in this paper, which
is based on the reciprocal theorem of elastodynamics and using the time dependent
fundamental solution of the elastodynamics equations. This fundamental solution
is the response of the infinite elastic medium under a unit concentrated impulsive
force subjected at a point and at an instant, which includes not only the pressure
wave and shear wave, but also the Laplace wave with speed between that of P and
S waves. And then a new TDBIE is derived directly from the initial boundary
value problem of the partial differential equation of elastodynamics, and using the
integral equation in weighted residual format. In the new TDBIE the D’Alembert
solution of the elastodynamics, namely the spherical convergent pressure wave and
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shear wave are applied as the kernel functions respectively. In this way, the system
of TDBIE obtained is much simpler than the traditional one.

The traditional TDBEM of elastodynamics is directly applied to the new TDBIE,
the boundary solutions can be obtained in time step by step. At the first several
steps, the matrix of the algebraic equation system is quite sparse, because the ele-
ments which the wave front has not reached need not be computed. But the wave
front reaches more and more elements as the computation continues step by step.
To further enhance the efficiency, the impulsive waves of spherical convergent pres-
sure and shear waves are applied as the kernel functions. It is not difficult in the
new TDBIE of elastodynamics, which can be realized simply by the superposition
of two successive and opposite spherical convergent wave components. To guar-
antee the equivalence of the TDBIE with the corresponding initial and boundary
value problem of the partial differential equation of elastodynamics, the width of
the impulse should be greater than the maximum length of the lines in the elastic
domain connecting the convergent boundary point with all other boundary points.

2 Traditional TDBIE of elastodynamics

The formulation of the traditional TDBIE is based on the reciprocal theorem of
elastodynamics, and using the time dependent fundamental solution.

2.1 The time dependent fundamental solution of elastodynamics

The time dependent fundamental solution of elastodynamics satisfies the governing
equation

ρ
(
c2

1− c2
2
)

us
k j,i j +ρc2

2us
ki, j j−ρ üs

ki =−δki∆(P, Q)∆(τ , t) (1)

where the physical meaning of us
k j (P, τ; Q, t)is the displacement component in

x j direction of a field point Q of the infinite elastic medium at instant t resulted
by the unit concentrate force in the direction of xk subjected at the source point
P and instant τ; c1, c2 are the wave speed of the pressure wave and shear wave
respectively, ρ the mass density of the elastic medium, δki the Kronecker δ , and
∆(τ, t), ∆(P, Q) the Dirac Delta function,

c1 =
√

λ +2G/ρ, c2 =
√

G/ρ,

∆(τ, t) = 0 ∀τ 6= t,
∫

∞

−∞

∆(τ, t)dτ =
∫

∞

−∞

∆(τ, t)dt = 1,

∆(P, Q) = 0 ∀P 6= Q,
∫

V
∆(P, Q)dV (Q) = 1.
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The displacement fundamental solution can be written as

us
ki (P, τ; Q, t) =

1
4πρr

{
t ′

r2 (3r,k r,i−δki)
[

H
(

t ′− r
c1

)
−H

(
t ′− r

c2

)]
+r,k r,i

[
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1
∆

(
t ′,

r
c1

)
− 1

c2
2

∆
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)]
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∆

(
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(2)

where t ′ = t− τ , H is the Heaviside function,

H
(
t ′, a

)
=

{
1 ∀t ′ > a
0 ∀t ′ < a

H
(
t ′−a

)
=
∫ t ′

−∞

∆(t, a)dt

The corresponding traction fundamental solution is

ts
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In Eq. (2) Q denotes an arbitrary field point of an elastic solid, as the source point
P of the fundamental solution, namely the subjected point of the concentrated im-
pulsive force, approaches the boundary, it will be denoted by p in lower case.

This time dependent fundamental solution includes not only pressure wave and
shear wave in the infinite elastic medium, but also the Laplace wave, which has a
speed between that of pressure and shear waves.
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2.2 The traditional TDBIE of elastodynamics

The Betti reciprocal theorem in elasticity has been generalized to the elastodynamic
case by Graf (Graff, 1975). For the two independent dynamic state of the same elas-
tic solid in same time space domain, (u(1)

i , t(1)
i , f (1)

i , ü0(1)
i ) and

(
u(2)

i , t(2)
i , f (2)

i , ü0(2)
i

)
,

the reciprocal theorem can be written as

∫
S

t(1)
i (q, t)∗u(2)

i (q, t)dS (q)+
∫

V
f (1)
i (Q, t)∗u(2)

i (Q, t)dV (Q)

−
∫

V
ρ ü(1)

i (Q, t)∗u(2)
i (Q, t)dV (Q) =

∫
S

t(2)
i (q, t)∗u(1)

i (q, t)dS (q)

+
∫

V
f (2)
i (Q, t)∗u(1)

i (Q, t)dV (Q)−
∫

V
ρ ü(2)

i (Q, t)∗u(1)
i (Q, t)dV (Q) (4)

where * denotes the convolution integral.

If the dynamic state to be solved is taken as the state (1), and the state corresponding
to the fundamental solution is taken as state (2), then

u(2)
i (q, t) = us

ki (p, τ; q, t)≡ us
ki (p, q; t− τ)

u(2)
i (Q, t) = us

ki (p, τ; Q, t)≡ us
ki (p, Q; t− τ)

t(2)
i (q, t) = ts

ki (p, τ; q, t)≡ ts
ki (p, q; t− τ)

f (2)
i (Q, t) = δki∆(p, Q)∆(τ, t)

u̇(2)
i (Q, t) = u̇s

ki (p, τ; Q, t)≡ u̇s
ki (p, Q; t− τ)

ü(2)
i (Q, t) = üs

ki (p, τ; Q, t)≡ üs
ki (p, Q; t− τ)

The convolution integral in Eq. (4) should be expressed as

t(1)
i (q, t)∗u(2)

i (q, t)≡
∫ t

t0
us

ki (p, q; t− τ) ti (q, τ)dτ , ......
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Therefore, the Eq. (4) can be rewritten as

Cki (p)ui (p, t)+
∫

S

∫ t

t0
ts
ki (p, q; t− τ)ui (q, τ)dτdS (q)

−
∫

V

∫ t

t0
ρ üs

ki (p, Q; t− τ)ui (Q, τ)dτdV (Q)

=
∫

V

∫ t

t0
us

ki (p, Q; t− τ) fi (Q, τ)dτdV (Q)+
∫

S

∫ t

t0
us

ki (p, q; t− τ) ti (q, τ)dτdS (q)

−
∫

V

∫ t

t0
ρus

ki (p, Q; t− τ) üi (Q, τ)dτdV (Q) (5)

Integrating the last integrals in both sides by parts, the time domain displacement
boundary integral equation can be finally obtained,

Cki (p)ui (p, t)+
∫

S

∫ t

t0
ts
ki (p, q; t− τ)ui (q, τ)dτdS (q)

+ ρ

∫
V

u̇s
ki (p, Q; t− t0)ui (Q, t0)dV (Q)

=
∫

V

∫ t

t0
us

ki (p, Q; t− τ) fi (Q, τ)dτdV (Q)+
∫

S

∫ t

t0
us

ki (p, q; t− τ) ti (q, τ)dτdS (q)

+ ρ

∫
V

us
ki (p, Q; t− t0) u̇i (Q, t0)dV (Q) (6)

This boundary integral equation can be solved by TDBEM.

3 Derivation of a new TDBIE of elastodynamics

To derive a new TDBIE, it is directly started from the governing partial differen-
tial equation of elastodynamics, and using the weighted residual integration form.
This method is a basic method for the derivation of the boundary integral equa-
tion from the corresponding partial differential equations, which has been applied
in author’s early work on BIE-BEM started 30 years ago (Du and Yao, 1982, in
Chinese). In literature, similar approach can be found in many papers (Grannell
and Atluri, 1978; Atluri, 1984, and so on); and some papers developed this ap-
proach further to formulate more efficient boundary integral equations, for exam-
ple: which has been applied to derive a novel displacement gradient BEM for
elastic stress analysis with high accuracy (Okada, Rajiyah and Atluri, 1988), the
non-hyper-singular integral-representations for velocity (displacement) gradients
in elastic/plastic solids (Okada, Rajiyah and Atluri, 1989). It was shown that, by
using certain linearly independent combination of the first and higher-order deriva-
tives of the fundamental solutions as the test function (and their various physical
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properties), it is possible to derive more desirable and only weakly-singular forms
of integral equations (and hence BIE) for the first and higher-order derivatives of the
primary-variables (such as displacements) in the problem of elasticity and elasto-
plasticity (Chien, Rajiyah and Atluri, 1990A; Okada, Rajiyah and Atluri, 1990B;
Han and Atluri, 2003; Atluri, 2005; Han and Atluri, 2007).

3.1 The weighted residual integration form of the elastodynamics

The governing equation of the elastodynamics is wellknown,

ρ
(
c2

1− c2
2
)

u j,i j (Q, t)+ρc2
2ui, j j (Q, t)+ fi (Q, t)−ρ üi (Q, t) = 0 (7a)

which is a vectorial field equation; therefore the divergence and the curl of this
equation should also be zero, namely{[

ρ
(
c2

1− c2
2
)

u j,i j (Q, t)+ρc2
2ui, j j (Q, t)+ fi (Q, t)−ρ üi (Q, t)

]
,i = 0

ekmi
[
ρ
(
c2

1− c2
2
)

u j,i j (Q, t)+ρc2
2ui, j j (Q, t)+ fi (Q, t)−ρ üi (Q, t)

]
,m = 0

(7)

This equation system (7) is nearly identical with the original governing equation
(7a). The possible difference is only the solution of the following equation

ρ
(
c2

1− c2
2
)

u j,i j (Q, t)+ρc2
2ui, j j (Q, t)+ fi (Q, t)−ρ üi (Q, t) = const

which is corresponding to a virtual static deformation state resulted by uniformly
distributed constant body forces. As the initial displacement condition is pre-
scribed, the above mentioned possible difference will be eliminated automatically.

The weighted residual integral equations corresponding to Eq. (7) can be written
as

∫
V
∫ t1

t0

[
ρ
(
c2

1− c2
2
)

u j,i j (Q, t)+ρc2
2ui, j j (Q, t)+ fi (Q, t)−ρ üi (Q, t)

]
,i

w(1) (Q, t)dtdV = 0∫
V
∫ t1

t0 ekmi
[
ρ
(
c2

1− c2
2
)

u j,i j (Q, t)+ρc2
2ui, j j (Q, t)+ fi (Q, t)−ρ üi (Q, t)

]
,m

w(2)
k (Q, t)dtdV = 0

(8)

As w(1) (Q, t) , w(2)
k (Q, t) are arbitrary weighted functions, these equations are also

identical with Eq. (7).
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These integral equations can be transformed using the generalized Gauss identities.
For example, the first equation of Eq. (8) can be finally converted to∫

V

∫ t1

t0
−
[
ρ
(
c2

1−2c2
2
)

w(1), j ji (Q, t)+ρc2
2

(
w(1), ji j (Q, t)+w(1),i j j (Q, t)

)
−ρẅ(1),i (Q, t)

]
ui (Q, t)dtdV

+
∫

S

∫ t1

t0

[
ρ
(
c2

1−2c2
2
)

u j, ji (q, t)+ρc2
2 (u j,i j (q, t)+ui, j j (q, t))+ fi (q, t)

−ρ üi (q, t)]niw(1) (q, t)dtdS

−
∫

S

∫ t1

t0

[
ρ
(
c2

1−2c2
2
)

uk,k (q, t)δi j +ρc2
2 (u j,i (q, t)+ui, j (q, t))

]
w(1),i (q, t)n jdtdS

+
∫

S

∫ t1

t0

[
ρ
(
c2

1−2c2
2
)

w(1),kk (q, t)δi j +ρc2
2

(
w(1), ji (q, t)+w(1),i j (q, t)

)]
ui (q, t)n jdtdS

−
∫

V

∫ t1

t0
fi (Q, t)w(1),i (Q, t)dtdV +

∫
V

[
ρ u̇i (Q, t)w(1),i (Q, t)

]t=t1

t=t0
dV

−
∫

V

[
ρui (Q, t) ẇ(1),i (Q, t)

]t=t1

t=t0
dV = 0 (9)

In the first integral term, the integrand related to the weighted function is

ρ
(
c2

1−2c2
2
)

w(1), j ji (Q, t)+ρc2
2

(
w(1), ji j (Q, t)+w(1),i j j (Q, t)

)
−ρẅ(1),i (Q, t)

= ρc2
1

(
w(1),i

)
, j j (P, τ; Q, t)−ρẅ(1),i (P, τ; Q, t) (10)

It can be seen that w(1) is just the scalar potential function of the elastic pressure
wave, and w(1),i is the displacement component of the pressure wave. In order to
eliminate the time end terms related to instant t = t1 in the last two integration terms
of Eq. (9), it should take the spherical convergent pressure wave as the weighted
function, which is convergent at the source point p at the instant τ .

Because the response of the concentrated impulsive force subjected at a point P
of an infinite elastic medium includes not only the spherical convergent pressure
wave, the spherical convergent pressure wave convergent to the point P in an infinite
elastic medium cannot result in a concentrated impulsive force subjected at that
point. Therefore, Eq. (9) cannot be deduced to an integral equation similar to
the Somigliana identity in elastostatic case. Perhaps this is the reason to explain,
why the more complex traditional fundamental solution of elastodynamics has been
widely applied.
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3.2 Derivation of a TDBIE related to spherical convergent pressure wave

To derive the boundary integral equation directly, let the spherical convergent pres-
sure wave is convergent to a boundary point p at the instant τ , and w(1),i is rewritten
as us

1i. For convenience, the direction of x1 of the Cartesian coordinate system is
taken the outward normal direction at boundary point p. To extract the singular
point from the integral domain, a small spherical surface with the center at point p
and a radius of δ is applied (Fig. 1). In this way, Eq. (9) should be rewritten as

 

Figure 1: A small spherical surface to extract the singular point p
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lim
δ→0

∫
Sδ

∫
τ− δ

c1

t0

[
ρ
(
c2

1−2c2
2
)

us
1k,k δi j +ρc2

2
(
us

1 j,i +us
1i, j
)](

p, τ; qδ , t
)

n j (q)ui

(
qδ , t

)
dtdS

− lim
δ→0

∫
S−S′+Sδ

∫
τ− δ

c1

t0
us

1i (p, τ; q, t)
[
ρ
(
c2

1−2c2
2
)

uk,k δi j +ρc2
2 (u j,i +ui, j)

]
(q, t)

n j (q)dtdS

+ lim
δ→0

∫
S−S′

∫
τ− δ

c1

t0

[
ρ
(
c2

1−2c2
2
)

us
1k,k δi j +ρc2

2
(
us

1 j,i +us
1i, j
)]

(p, τ; q, t)n j (q)

ui (q, t)dtdS

− lim
δ→0

∫
V−V δ

∫
τ− δ

c1

t0
us

1i (p, τ; Q, t) fi (Q, t)dtdV

− lim
δ→0

∫
V−V δ

us
1i (p, τ; Q, t0)ρ u̇i (Q, t0)dV

+ lim
δ→0

∫
V−V δ

ρ u̇s
1i (p, τ; Q, t0)ui (Q, t0)dV = 0 (11)

It should be noted here that in this equation instant t1 is taken as τ−δ
/

c1 to avoid
the singularity, the first integral is removed because the kernel function of spherical
pressure wave satisfies the homogeneous wave equation of pressure wave, and the
second integral is removed because the dynamic response to be solved satisfies the
equations of motion. In this formulation, the equation of motion has been once
more differentiated in Eq. (7); therefore the requirement of its differentiability is
one order higher than conventional case, both for the domain points and boundary
points.

The limit of the integrals in Eq. (11) except the first one is quite simple; therefore
Eq. (11) can be rewritten as

lim
δ→0

∫
Sδ

∫
τ− δ

c1

t0
ts
1i

(
p, τ; qδ , t

)
ui

(
qδ , t

)
dtdS

−
∫

S

∫
τ

t0
us

1i (p, τ; q, t) ti (q, t)dtdS + -
∫

S

∫
τ

t0
ts
1i (p, τ; q, t)ui (q, t)dtdS

−
∫

V

∫
τ

t0
us

1i (p, τ; Q, t) fi (Q, t)dtdV −
∫

V
us

1i (p, τ; Q, t0)ρ u̇i (Q, t0)dV

+
∫

V
ρ u̇s

1i (p, τ; Q, t0)ui (Q, t0)dV = 0 (12)
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where the third integral term is a Cauchy principal value integral term.

In the spherical coordinate system shown in Fig. 1, where the point p is taken as
the origin, the scalar potential of the spherical convergent wave can be expressed
as

w(1) =
a
r

H(r− c1 (τ− t)) =
a
r

H
(
r− c1t ′

)
(13)

which satisfies the wave equation

ρc2
1w(1), j j (p, τ; Q, t)−ρẅ(1) (p, τ; Q, t) = 0 (14)

The corresponding non-zero components of displacement, strain and stress can be
expressed in the spherical coordinate system as follows:

ur =
a
r

(
∆
(
r, c1t ′

)
− H(r− c1t ′)

r

)
(15)

εrr =
a
r

(
∆
′ (r, c1t ′

)
− 2

r
∆
(
r, c1t ′

)
+

2
r2 H

(
r− c1t ′

))
εθθ = εφφ =

a
r

(
1
r

∆
(
r, c1t ′

)
− 1

r2 H
(
r− c1t ′

)) (16)

σrr =
a
r

[
ρc2

1∆
′ (r, c1t ′

)
−4ρc2

2

(
1
r

∆
(
r, c1t ′

)
− 1

r2 H
(
r− c1t ′

))]
σθθ = σφφ =

a
r

[
ρ
(
c2

1−2c2
2
)

∆
′ (r, c1t ′

)
+2ρc2

2

(
1
r

∆
(
r, c1t ′

)
− 1

r2 H
(
r− c1t ′

))]
(17)

where

∆
(
r, c1t ′

)
=

∂

∂ r
H
(
r− c1t ′

)
∆
′ (r, c1t ′

)
=

∂

∂ r
∆
(
r, c1t ′

) (18)

In the Cartesian coordinate system, the displacement can be written as

us
1i =

ar,i
r

(
∆
(
r, c1t ′

)
− H(r− c1t ′)

r

)
(19)
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and the corresponding traction is

ts
1i =

ani

r

[
ρ
(
c2

1−2c2
2
)

∆
′ (r, c1t ′

)
+2ρc2

2

(
1
r

∆
(
r, c1t ′

)
− 1

r2 H
(
r− c1t ′

))]
+n jr, j r,i

a
r

[
2ρc2

2∆
′ (r, c1t ′

)
−6ρc2

2

(
1
r

∆
(
r, c1t ′

)
− 1

r2 H
(
r− c1t ′

))]
(20)

On the small spherical surface Sδ , there is only uniformly distributed normal trac-
tion applied. For a boundary point p on the smooth part of boundary, the resultant
of the traction should be in the normal direction,

lim
δ→0

∫
Sδ

∫
τ− δ

c1

t0
ts
1i

(
p, τ; qδ , t

)
ui

(
qδ , t

)
dtdS

= lim
δ→0

∫
Sδ

∫
τ− δ

c1

t0
−ar,i

δ

[
ρc2

1∆
′ (δ , c1 (τ− t))

−4ρc2
2

(
1
δ

∆(δ , c1 (τ− t))− 1
δ 2 H(δ − c1 (τ− t))

)]
ui

(
qδ , t

)
dtdS (21)

where qδ denotes the boundary point on the small hemisphere surface Sδ , and

lim
δ→0

∫
Sδ

∫
τ− δ

c1

t0
−ar,i

δ
ρc2

1∆
′ (δ , c1 (τ− t))ui

(
qδ , t

)
dtdS

= lim
δ→0

∫
Sδ

∫
τ− δ

c1

t0
−ar,i

δ
ρc2

1
1
c1

∆̇(δ , c1 (τ− t))ui

(
qδ , t

)
dtdS

= lim
δ→0

∫
Sδ

∫
τ− δ

c1

t0

ar,i
δ

ρc2
1

1
c1

∆(δ , c1 (τ− t)) u̇i

(
qδ , t

)
dtdS

= lim
δ→0

∫
Sδ

ar,i
δ

ρc2
1

1
c2

1
u̇i

(
qδ , τ− δ

c1

)
dS = lim

δ→0

[
−πδ

2 ani

δ
ρ u̇i

(
qδ , τ− δ

c1

)]
= 0

(22)

In the derivation, it should be noted that

∆̇(r, c1 (τ− t)) =
∂

∂ t
∆(r, c1 (τ− t))

∆̇(r, c1 (τ− t)) = ∆̇(r− c1 (τ− t)) = ∆̇(y) =
∂

∂ t
∆(y) =

∂

∂y
∆(y)

∂y
∂ t

= c1
∂

∂y
∆(y)

= c1∆
′ (r, c1 (τ− t))
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∫
τ− δ

c1

t0
∆̇(r, c1 (τ− t))ui (q, t)dt

=
∫

τ− δ

c1

t0

[
∂

∂ t
(∆(r, c1 (τ− t))ui (q, t))−∆(r, c1 (τ− t)) u̇i (q, t)

]
dt

=−
∫

τ− δ

c1

t0
∆(r, c1 (τ− t)) u̇i (q, t)dt

=−
∫ c1τ−δ

t0
∆(r, c1 (τ− t)) u̇i (q, t)

1
c1

d(c1t) =− 1
c1

u̇i

(
q, τ− δ

c1

)
(23)

For the second term in Eq. (21),

lim
δ→0

∫
Sδ

∫
τ− δ

c1

t0

ar,i
δ

4ρc2
2

1
δ

∆(δ , c1 (τ− t))ui

(
qδ , t

)
dtdS

= lim
δ→0

∫
Sδ

ar,i
δ

4ρ
c2

2
c1

1
δ

ui

(
qδ , τ− δ

c1

)
dS = lim

δ→0

[
−πδ

2 ani

δ
4ρ

c2
2

c1

1
δ

ui

(
qδ , τ− δ

c1

)]
=−4πaρ

c2
2

c1
niui (p, τ) =−4πaρ

c2
2

c1
u1 (p, τ) (24)

and for the last term

lim
δ→0

∫
Sδ

∫
τ− δ

c1

t0
−ar,i

δ
4ρc2

2
1

δ 2 H(δ − c1 (τ− t))ui

(
qδ , t

)
dtdS = 0 (25)

It should be noted that here the time integration is equal to zero before δ → 0,
because only at one instant the integrand takes a non-zero and finite value.

Finally it is obtained

lim
δ→0

∫
Sδ

∫
τ− δ

c1

t0
ts
1i

(
p, τ; qδ , t

)
ui

(
qδ , t

)
dtdS =−4πaρ

c2
2

c1
u1 (p, τ) (26)

If we take the constant a = c1
4πρc2

2
, Eq. (12) can be rewritten as

u1 (p, τ) =−
∫

S

∫
τ

t0
us

1i (p, τ; q, t) ti (q, t)n j (q)dtdS

+
∫

S

∫
τ

t0
ts
1i (p, τ; q, t)n j (q)ui (q, t)dtdS

−
∫

V

∫
τ

t0
us

1i (p, τ; Q, t) fi (Q, t)dtdV −
∫

V
us

1i (p, τ; Q, t0)ρ u̇i (Q, t0)dV

+
∫

V
ρ u̇s

1i (p, τ; Q, t0)ui (Q, t0)dV (27)
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This is the first one of the new TDBIE, where the spherical convergent pressure
wave is applied as the kernel function,

us
1i =

c1r,i
4πρc2

2r

(
∆
(
r, c1t ′

)
− H(r− c1t ′)

r

)
(28)

ts
1i =

c1ni

4πr

[(
c2

1

c2
2
−2
)

∆
′ (r, c1t ′

)
+2
(

1
r

∆
(
r, c1t ′

)
− 1

r2 H
(
r− c1t ′

))]
+

c1n jr, j r,i
2πr

[
∆
′ (r, c1t ′

)
−3
(

1
r

∆
(
r, c1t ′

)
− 1

r2 H
(
r− c1t ′

))]
(29)

For the simpler cases with zero initial conditions and without body force, Eq. (27)
can be simplified as

u1 (p, τ) =−
∫

S

∫
τ

t0
us

1i (p, τ; q, t) ti (q, t)dtdS

+ -
∫

S

∫
τ

t0
ts
1i (p, τ; q, t)ui (q, t)dtdS (30)

3.3 TDBIE related to spherical convergent shear waves

The TDBIE related to the spherical convergent shear waves can be derived from
the second equation of Eq. (8).

The vectorial potential of the spherical convergent shear waves can be expressed as

w(2)
2 =

b
r

H
(
r− c2t ′

)
, w(2)

3 =−b
r

H
(
r− c2t ′

)
(31)

The corresponding displacements can be written as

us
2 j =−e ji3

br,i
r

(
∆
(
r, c2t ′

)
− H(r− c2t ′)

r

)
us

3 j = e ji2
br,i
r

(
∆
(
r, c2t ′

)
− H(r− c2t ′)

r

) (32)

For simplicity, it is denoted that

Ψ
(
r, c2t ′

) ∆= ∆
′ (r, c2t ′

)
− 2∆(r− c2t ′)

r
+

2H(r− c2t ′)
r2 (33)
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in the following formulae for the corresponding strain and stress components:

ε
s(2)
11 =−br,2 r,1

r
Ψ
(
r, c2t ′

)
, ε

s(2)
22 =

br,1 r,2
r

Ψ
(
r, c2t ′

)
ε

s(2)
12 = ε

s(2)
21 =−b(r,2 r,2−r,1 r,1)

2r
Ψ
(
r, c2t ′

)
ε

s(2)
13 = ε

s(2)
31 =−br,2 r,3

2r
Ψ
(
r, c2t ′

)
, ε

s(2)
23 = ε

s(2)
32 =

br,1 r,3
2r

Ψ
(
r, c2t ′

) (34)

ε
s(3)
11 =−br,3 r,1

r
Ψ
(
r, c2t ′

)
ε

s(3)
33 =

br,1 r,3
r

Ψ
(
r, c2t ′

)
ε

s(3)
13 = ε

s(3)
31 =−b(r,3 r,3−r,1 r,1)

2r
Ψ
(
r, c2t ′

)
ε

s(3)
12 = ε

s(3)
21 =−br,3 r,2

2r
Ψ
(
r, c2t ′

)
ε

s(3)
23 = ε

s(3)
32 =

br,1 r,2
2r

Ψ
(
r, c2t ′

) (35)

σ
s(2)
i j = 2ρc2

2ε
s(2)
i j , σ

s(3)
i j = 2ρc2

2ε
s(3)
i j (36)

The corresponding traction components can be expressed as

ts
21 = niσ

s(2)
i1 =−ρc2

2
b
r

(2n1r,2 r,1 +n2 (r,2 r,2−r,1 r,1)+n3r,2 r,3)Ψ
(
r, c2t ′

)
ts
22 = niσ

s(2)
i2 =−ρc2

2
b
r

(n1 (r,2 r,2−r,1 r,1)−2n2r,1 r,2−n3r,1 r,3)Ψ
(
r, c2t ′

)
ts
23 = niσ

s(2)
i3 =−ρc2

2
b
r

(n1r,2 r,3−n2r,1 r,3)Ψ
(
r, c2t ′

) (37)

ts
31 = niσ

s(3)
i1 = ρc2

2
b
r

(−2n1r,3 r,1−n2r,3 r,2−n3 (r,3 r,3−r,1 r,1))Ψ
(
r, c2t ′

)
ts
32 = niσ

s(3)
i2 = ρc2

2
b
r

(−n1r,3 r,2 +n3r,1 r,2)Ψ
(
r, c2t ′

)
ts
33 = niσ

s(3)
i3 = ρc2

2
b
r

(n1 (r,1 r,1−r,3 r,3)+n2r,1 r,2 +2n3r,1 r,3)Ψ
(
r, c2t ′

) (38)

The equations derived from the second equation of Eq. (8) are similar to Eq. (12),
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namely

lim
δ→0

∫
Sδ

∫
τ− δ

c2

t0
ts
ki

(
p, τ; qδ , t

)
ui

(
qδ , t

)
dtdS

−
∫

S

∫
τ

t0
us

ki (p, τ; q, t) ti (q, t)dtdS + -
∫

S

∫
τ

t0
ts
ki (p, τ; q, t)ui (q, t)dtdS

−
∫

V

∫
τ

t0
us

ki (p, τ; Q, t) fi (Q, t)dtdV −
∫

V
us

ki (p, τ; Q, t0)ρ u̇i (Q, t0)dV

+
∫

V
ρ u̇s

ki (p, τ; Q, t0)ui (Q, t0)dV = 0

k = 2, 3 (39)

On the semispherical surface Sδ , in the spherical coordinate system, it can be noted
that

r,1 =−cosθ , n1 = cosθ

r,2 = sinθ cosφ , n2 =−sinθ cosφ

r,3 = sinθ sinφ , n3 =−sinθ sinφ

(40)

Therefore only ts
22 and ts

33 have nonzero resultant forces. The first integral in Eq.
(39) for the case of k = 2 can be expressed in the spherical coordinate system as

lim
δ→0

∫
π

0

∫ 2π

0

∫
τ− δ

c2

t0
−ρc2

2
b
r

(n1 (r,2 r,2−r,1 r,1)−2n2r,1 r,2−n3r,1 r,3)Ψ
(
r, c2t ′

)
u2

(
qδ , t

)
dtδ 2 sinθdφdθ

= lim
δ→0

∫
π

0

∫ 2π

0
−ρc2

2
b
δ

(n1 (r,2 r,2−r,1 r,1)−2n2r,1 r,2−n3r,1 r,3)∫
τ− δ

c2

t0

(
∆
′ (r, c2t ′

)
− 2∆(r, c2t ′)

δ
+

2H(r, c2t ′)
δ 2

)
u2

(
qδ , t

)
dtδ 2 sinθdφdθ

=
∫

π

0

∫ 2π

0
−ρc2

2b(n1 (r,2 r,2−r,1 r,1)−2n2r,1 r,2−n3r,1 r,3)[
lim
δ→0

∫
τ− δ

c2

t0

(
∆
′ (r, c2t ′

)
δ −2∆

(
r, c2t ′

)
+

2H(r, c2t ′)
δ

)
u2

(
qδ , t

)
dt

]
sinθdφdθ
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where

lim
δ→0

∫
τ− δ

c2

t0

(
∆
′ (

δ , c2t ′
)

δ −2∆
(
δ , c2t ′

)
+

2H(δ , c2t ′)
δ

)
u2

(
qδ , t

)
dt

= lim
δ→0

∫
τ− δ

c2

t0

(
1
c2

∆̇
(
δ , c2t ′

)
δ −2∆

(
δ , c2t ′

)
+

2H(δ , c2t ′)
δ

)
u2

(
qδ , t

)
dt

= lim
δ→0

∫
τ− δ

c2

t0

(
1
c2

∆
(
δ , c2t ′

)
u̇2

(
qδ , t

)
δ −2∆

(
δ , c2t ′

)
u2

(
qδ , t

)
+

2H(δ , c2t ′)
δ

u2

(
qδ , t

))
dt =− 2

c2
u2 (p, τ) (41)

and then∫
π

0

∫ 2π

0
−ρc2

2b(n1 (r,2 r,2−r,1 r,1)−2n2r,1 r,2−n3r,1 r,3)[
lim
δ→0

∫
τ− δ

c2

t0

(
∆
′ (r, c2t ′

)
δ −2∆

(
r, c2t ′

)
+

2H(r, c2t ′)
δ

)
u2

(
qδ , t

)
dt

]
sinθdφdθ

=
2
c2

u2 (p, τ)
∫

π

0

∫ 2π

0
ρc2

2b(n1 (r,2 r,2−r,1 r,1)−2n2r,1 r,2−n3r,1 r,3)sinθdφdθ

=
2
c2

u2 (p, τ)
∫ π

2

0

∫ 2π

0
ρc2

2b
(
cosθ

(
sin2

θ cos2
φ − cos2

θ
)
−2sin2

θ cos2
φ cosθ

−sin2
θ sin2

φ cosθ
)

sinθdφdθ

=−ρc2
2b

c2
u2 (p, τ)

∫ π

2

0
sin2θdθ

∫ 2π

0
dφ =−2πρc2bu2 (p, τ) (42)

If we take the constant b = 1
2πρc2

, Eq. (39) for the case of k = 2 can be finally
rewritten as

u2 (p, τ) =−
∫

S

∫
τ

t0
us

2i (p, τ; q, t) ti (q, t)dtdS

+ -
∫

S

∫
τ

t0
ts
2i (p, τ; q, t)ui (q, t)dtdS

−
∫

V

∫
τ

t0
us

2i (p, τ; Q, t) fi (Q, t)dtdV −
∫

V
us

2i (p, τ; Q, t0)ρ u̇i (Q, t0)dV

+
∫

V
ρ u̇s

2i (p, τ; Q, t0)ui (Q, t0)dV (43)

The corresponding equation for the case of k = 3 can be derived similarly, and
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finally it can be summarized as

uk (p, τ) =−
∫

S

∫
τ

t0
us

ki (p, τ; q, t) ti (q, t)dtdS

+ -
∫

S

∫
τ

t0
ts
ki (p, τ; q, t)ui (q, t)dtdS

−
∫

V

∫
τ

t0
us

ki (p, τ; Q, t) fi (Q, t)dtdV −
∫

V
us

ki (p, τ; Q, t0)ρ u̇i (Q, t0)dV

+
∫

V
ρ u̇s

ki (p, τ; Q, t0)ui (Q, t0)dV

k = 1, 2, 3 (44)

and for the simpler cases with zero initial conditions and without body force, this
equation can be simplified as

uk (p, τ) =−
∫

S

∫
τ

t0
us

ki (p, τ; q, t) ti (q, t)dtdS

+
∫

S

∫
τ

t0
ts
ki (p, τ; q, t)ui (q, t)dtdS k = 1, 2, 3 (45)

4 An efficient scheme of TDBEM

For the solution of the new derived TDBIE, the traditional TDBEM can be applied.
Considered the characteristics of the new TDBIE, an efficient scheme of TDBEM
is then suggested.

4.1 Traditional TDBEM applied to the new derived equations

The whole boundary is divided into Ne boundary elements, and the time interval
from t0 to t1 is divided into M time steps. For the time discretization, the traction
and displacement can apply different shape functions as follows:

ti (q, t) =
M

∑
m=1

φm (t) tm
i (q)

ui (q, t) =
M

∑
m=1

[
ξ1m (t)um

i (q)+ξ2m (t)um−1
i (q)

] (46)

where

φm (t) = H (t− (m−1)∆t)−H (t−m∆t)

ξ1m (t) =
t− (m−1)∆t

∆t
φm (t) , ξ2m (t) =

m∆t− t
∆t

φm (t)
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That is, the constant approximation is applied for the time interpolation of the trac-
tion, and for the time interpolation of displacement, linear approximation is applied.

Introduced the above interpolation into the new derived TDBIE, Eq. (45) for the
simpler cases with zero initial conditions and without body force, it can be rewritten
as

uµ

j (p) =−
µ

∑
m=1

∫
S

∫ m∆t

(m−1)∆t
us

ji (p, q; µ∆t− t) tm
i (q)dtdS (q)

+
µ

∑
m=1

∫
S

∫ m∆t

(m−1)∆t
ts

ji (p, q; µ∆t− t)
[
ξ1m (t)um

i (q)+ξ2m (t)um−1
i (q)

]
dtdS (q)

(47)

where µ = τ/∆t.

For the interpolation of boundary displacement, traction, the same shape functions
can be applied, if the displacement and traction components of the α node of n
element at instant m∆t are denoted as unmα

i , tnmα
i , and the corresponding geomet-

rical coordinates are denoted as xnα
i , the TDBIE can finally be discretized as the

following system of linear algebraic equations:

uµ

j (p) =−
µ

∑
m=1

Ne

∑
n=1

∑
α

tnmα
i

∫ 1

−1

∫ 1

−1
U µ−m+1

ji NαJndη1dη2

+
µ

∑
m=1

Ne

∑
n=1

∑
α

unmα
i

∫ 1

−1

∫ 1

−1

(
T µ−m+1

ji1 +T µ−m
ji2

)
NαJndη1dη2 (48)

where U µ−m+1
ji , T µ−m+1

ji1 , T µ−m
ji2 denote the time integration of kernel functions,

U µ−m+1
ji (p; q) =

∫ m∆t

(m−1)∆t
us

ji (p, q; µ∆t− t)dt

T µ−m+1
ji1 (p; q) =

∫ m∆t

(m−1)∆t
ts

ji (p, q; µ∆t− t)ξ1m (t)dt

T µ−m+1
ji2 (p; q) =

∫ m∆t

(m−1)∆t
ts

ji (p, q; µ∆t− t)ξ2m (t)dt

(49)

The detailed formulae can be derived easily.

In the matrix form, Eq. (48) can be written as

H̃µµuµ = G̃µ tµ +
µ−1

∑
m=1

(
G̃µmtm− H̃µmum) (50)
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where um stands for the displacement array of instant m∆t, tm stands for the traction
array of the time step m, and the matrices H̃µm, G̃µm are formed by integrating the
product of kernel function and shape function on boundary elements for each time
step.

Considered the boundary conditions, and moved all unknowns to the left side, this
equation can be rewritten as

Ãµµxµ = B̃µµyµ +
µ−1

∑
m=1

(
G̃µmtm− H̃µmum)

µ = 1, 2, ..., M (51)

In the practical computation starting from the time step µ = m = 1, the matrices
Ãµµ , B̃µµ need to be computed only once. Actually all the matrices Ãµµ , B̃µµ ,
H̃µm, G̃µm only depend on the difference of their two superscripts. During the
computation of a new time step, only the matrices with maximum difference of
their two superscripts, namely, H̃µ1 and G̃µ1 are new and need to be computed.

Finally, the equations can be rewritten as

Ãxµ
= fµ

fµ = B̃yµ +
µ−1

∑
m=1

(
G̃µmtm− H̃µmum)

µ = 1, 2, ..., M

(52)

This equation system can be solved time step by step. During the first several steps,
the difference of two superscripts in H̃µm, G̃µm are quite small, and the matrices are
quite sparse. As the time step increases, the non-zero components in the matrices,
and the computing cost per time step increases gradually and continuously.

4.2 An efficient scheme of TDBEM

For some large scale problems, not only the number of boundary nodes but also the
time steps should be quite large. To make the computation more efficient, it should
be improved the kernel functions in the TDBIE. Because the kernel functions ap-
plied are spherical convergent waves, they are D’Alembert solutions, and the wave
form of such solution could be arbitrary. Above mentioned only the simplest one,
we can adopt an efficient one to enhance the efficiency of the computation, the cor-
responding potential function is the solid line shown in Fig. 2, while the dashed
line is the above mentioned simplest one.
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The potential of the spherical convergent impulsive waves can be expressed as
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Figure 2: The potential of spherical convergent impulsive waves

The corresponding displacements are
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(54)

As the spherical convergent impulsive waves are convergent to the point p, the
nonzero displacements are localized in a sphere with a radius r = c1T for pressure
wave, and r = c2T for shear wave.
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In this way, Eq. (52) can be reduced to

Ãxµ
= fµ

fµ = B̃yµ +
µ−1

∑
m=m1

(
G̃µmtm− H̃µmum)

m1 = max
(
1, µ−T

/
∆t
)

µ = 1, 2, ..., M

(55)

 

(a)                                  (b) 

 Figure 3: The definition of the maximum length rmax connecting p and q

It should be mentioned here, to guarantee the equivalence of the TDBIE with the
corresponding initial and boundary value problem of the partial differential equa-
tion of elastodynamics, the width of the impulse c1T, c2T should be greater than
the maximum length rmax of the lines in the elastic domain connecting the con-
vergent boundary point p with all other boundary points q as shown in Fig. 3.
This is come from the completeness condition for the arbitrary weighted function
in weighted residual integration form. Fig. 3(a) is an inner domain problem of an
elastic sphere, rmax is just the diameter of the sphere. Fig. 3(b) is infinite elastic
medium with a cavity. If the cavity has convex surface, such as spherical or ellip-
soidal cavity, rmax is approaches zero, theoretically very short convergent impulsive
wave can be applied in the above mentioned computation.

Before the discretization, the spherical convergent pressure wave and spherical con-
vergent shear wave convergent to any boundary point p at any instant construct a
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complete function system, which can formulate arbitrary elastic waves in the elas-
tic domain without body forces. This completeness guarantees the equivalence of
the TDBIE with the partial differential equations of elastodynamics.

In some cases of the large scale problems, the computation efficiency could be
enhanced dramatically by using the impulsive waves as the kernel functions. The
width of the impulse could be optimized in detail in the future work under the
consideration of both efficiency and accuracy.

5 Concluding Remarks

Based on the general method for the derivation of boundary integral equation, a
system of new TDBIE has been derived directly from the partial differential equa-
tions of elastodynamics. The spherical convergent pressure and shear waves are
taken as the kernel functions in the derived TDBIE respectively. In comparison
with the traditional TDBIE, the new derived TDBIE is not only much simpler, but
also with clear physical meaning.

For the solution of the new TDBIE, the traditional TDBEM can be applied easily,
and the computational efficiency could be enhanced, because the kernel functions
are much simpler than traditional one. The resulted linear algebraic equation sys-
tem can be solved time step by step. During the first several steps, the matrices are
quite sparse. As the time step increases, the non-zero components in the matrices,
and the computing cost per time step increases gradually and continuously.

For some large scale problems, not only the number of boundary nodes but also the
time steps should be quite large. To further enhance the computational efficiency,
as the kernel functions in TDBIE is adopted the spherical convergent impulsive
pressure and shear waves respectively. As the spherical convergent impulsive waves
are convergent to the boundary point p, the nonzero displacements are localized in
a sphere with a prescribed radius. But it should be mentioned that to guarantee
the equivalence of the TDBIE with the corresponding partial differential equation
of elastodynamics, the width of the impulse should be greater than the maximum
length rmax of the lines in the elastic domain connecting the point p with all other
boundary points q. In some cases of the large scale problems, the computation
efficiency could expect to be enhanced dramatically by using the impulsive waves
as the kernel functions. The width of the impulse could be optimized in future
work.
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