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Analysis of 2D Thin Walled Structures in BEM with
High-Order Geometry Elements Using Exact Integration

Yaoming Zhang1, Yan Gu1 and Jeng-Tzong Chen2

Abstract: There exist nearly singular integrals for thin walled structures in the
boundary element method (BEM). In this paper, an efficient analytical method is
developed to deal with the nearly singular integrals in the boundary integral equa-
tions (BIEs) for 2-D thin walled structures. The developed method is possible for
problems defined in high-order geometry elements when the nearly singular inte-
grals need to be calculated. For the analysis of nearly singular integrals with high-
order geometry elements, much fewer boundary elements can be used to achieve
higher accuracy. More importantly, computational models of thin walled structures
or thin shapes in structures demand a higher level of the geometry approximation
to the original domains, and the usage of high-order geometry in computational
models can meet this requirement. Three numerical examples are presented to test
the developed method and very promising results are obtained when the thickness-
to-length ratio is in the orders of 1E-01 to 1E-06, which is sufficient for modeling
most thin structures in industrial applications.

Keywords: BEM, elasticity problem, curved boundary, nearly singular integrals,
thin walled structures, exact integrations.

1 Introduction

Thin-body structures are frequently used for the design in various industrial appli-
cations, including solid mechanics, acoustics and electromagnetism [Chen and Liu
(2001); Albuquerque and Aliabadi (2008);Guz et al. (2007); Karlis et al. (2008)].
Numerical analysis of the behavior of these structures represents a great challenge
to researchers in computational mechanics. Studies show that the conventional
boundary element method (CBEM) using the standard Gaussian quadrature fails to
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yield reliable results for these structures. The major reason for this failure is that
the kernels’ integration presents various orders of near singularities, owing to the
mesh on one side of the thin-body being too close to the mesh on the opposite side.
Moreover, the nearly singular problem may also occur when the interior physical
quantity need to be calculated.

Nearly singular integrals are not singular in the sense of mathematics. However,
from the point of view of numerical integrations, these integrals can not be calcu-
lated accurately by using the conventional numerical quadrature since the integrand
oscillates very fiercely within the integration interval. Other than the nearly singular
integral, many direct and indirect algorithms for singular integral have been devel-
oped and used successfully [Atluri (2004, 2005);Atluri et al. (2003, 2006);Okada et
al. (1990);Han et al. (2003, 2007);Brebbia et al. (1984);Chen (2002, 2000);Davies
et al.(2007);Li, Wu and Yu (2009);Sanz et al. (2007);Sun (1999);Tanaka, Sladek
(1994); Guiggiani (1992);Young et al. (2007);Zhang et al. (2004)]. Therefore, the
key point in achieving the required accuracy and efficiency of the BEM is not the
singular integral but the nearly singular integral. Although that difficulty can be
overcome by using very fine meshes, the process requires too much preprocessing
and CPU time.

Owing to the importance of the nearly singular integrals, many numerical methods
and techniques have been developed in the past decades. These proposed methods
can be divided on the whole into two categories: “indirect algorithms” and “direct
algorithms”. The indirect algorithms [Okada et al. (1989, 1990); Sladek et al.
(1993);Zhang and Sun (2000);Liu et al. (2008);Mukerjee (2000)], which benefit
from the regularization ideas and techniques for the singular integrals, are mainly
to calculate indirectly or avoid calculating the nearly singular integrals by establish-
ing new regularized boundary integral equations (BIEs). The direct algorithms are
calculating the nearly singular integrals directly. They usually include interval sub-
division method [Jun (1985);Tanaka (1991)], special Gaussian quadrature method
[Earlin (1992);Lifeng (2004)], and various nonlinear transformation method [Luo
et al. (1998);Liu et al. (2000,2008) Zhang and Sun (2008)].

Analytical integration is an alternative way to improve the calculation accuracy of
the nearly singular integrals. Various analytical schemes have been developed over
the past years. Yoon et al. (2000) proposed an exact expression of kernel inte-
grals with the linear isoparametric element; Fratantonio and Rencis (2000) derived
exact integrations for the constant, linear and quadratic elements, while the geo-
metrical boundaries were all depicted by using linear shape functions; Zhang and
Sun (2001) established an analytical scheme, which is both available for singular
and nearly singular integrals, to treat the boundary integrals of two-dimensional
potential and elastic problems. Zhang et al. (2004) derived the exact integrations
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for 2-D elastostatic problems, in which the boundary quantities are approximated
by using various order discontinuous interpolation functions and the boundary ge-
ometry is also depicted by using straight line; Niu et al. (2007) and Zhou et al.
(2008) proposed the semi-analytical or analytical integral formulas to calculate the
nearly singular integrals for both potential and elastic problems, and suggested a
strategy to deal with the isoparametric quadratic elements. The strategy replace the
parabolic arcs with two or more straight line segments; By means of the symbolic
computer program Mathematica, Padhi et al. (2001) derived an analytic formula-
tion of the nearly singular integrals in the displacement BIE of 2-D elasticity with
the Taylor’s series approximation to lnr, 1/r and the Jacobian.

For most of the current numerical methods, especially for the exact integration
method, the geometry of the boundary element is often depicted by using linear
shape functions when nearly singular integrals need to be calculated. However,
most engineering processes occur mostly in complex geometrical domains, and
obviously, higher order geometry elements are expected to be more accurate to
solve such practical problems [Atluri (2005)]. Therefore, to improve the calculation
accuracy and efficiency of the nearly singular integrals, efficient approaches are
available for high order geometry elements are necessary and need to be further
investigated.

Recently, a general transformation method suitable for calculating the nearly sin-
gular integrals occurring on high order geometry elements was proposed by authors
of this paper [Zhang, Gu and Chen (2009)]. Although thin-body problems are not
considered on their research, this transformation has potential to effectively treat
this kind of problems.

When the geometry of the boundary element is approximated by using high-order
elements—usually of second order, the Jacobian J(ξ ) is not a constant but a non-
rational function which can be expressed as

√
a+bξ + cξ 2, where a, b and c are

constants, ξ is the dimensionless coordinate; The distance r between the field points
and the source point is a non-rational function of the type

√
p4(ξ ), where p4(ξ )

is the fourth order polynomial. Thus, the forms of the integrands in boundary
integrals become more complex, and for a long time, it was even thought that the
implementation of the exact integration is impossible in this situation.

It is well known that the domain variables can be computed by integral equations
after all the boundary quantities have been obtained, and the accuracy of bound-
ary quantities directly affects the validity of the interior quantities. Therefore, for
dealing with thin- body problems, two aspects are necessary: one is the accurate
computation of the boundary unknown quantities, which is generally carried out by
adopting the regularized boundary integral equations (BIEs) for the calculation of
singular integrals; the other is an efficient algorithm for calculating the nearly sin-
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gular integrals. In addition, for thin- body problems, some boundary elements will
be very close to each other. Thus, the singular and nearly singular integrals need to
be evaluated simultaneously when calculating the boundary unknown variables.

In this paper, a new exact integration method for estimating nearly singular in-
tegrals occurring on curvilinear geometries is presented. The proposed strategy
bases on a kind of inverse interpolation technique and uses a series of interpolation
polynomials to approximate the regular part of the integrand such as the Jacobian,
the shape functions and a finite sum of polynomials divided by rn. Therefore, the
original complicated integrands can be substituted by some simple polynomials,
and then the whole integral can be calculated straightforwardly by using analyti-
cal integral formulations. The exact integrations derived in this paper substantially
simplify the programming and provided a general computational method for eval-
uating the nearly singular integrals. This paper applies the new analytical formulas
to deal with the nearly singular integrals for 2-D elasticity problems of thin bodies,
and very promising results are obtained when the thickness to length ratio is in the
orders from 1.0E-1 to 1.0E-6, which is sufficient for modeling most thin structures
in industrial applications.

Moreover, it will be seen that the exact integration method proposed in this paper
also provide an effective scheme for calculating those complex integrals which have
been thought to be impossible to find an exact representation.

2 Non-singular boundary integral equations (BIEs)

In this paper, we always assume that Ω is a bounded domain in R2, Ωc is its open
complement, and Γ denotes the boundary. t(x) and n(x) (or t and n) are the unit
tangent and outward normal vectors of Γ to the domain Ω at the point x, respec-
tively. For 2-D elastic problems, the non-singular BIEs with indirect variables are
given in [Zhang et al. (2004)]. Without regard to the rigid body displacement and
the body forces, the non-singular BIEs on Ωc can be expressed as

ui(y) =
∫

Γ

ϕk(x)u∗ik(y,x)dΓ,y ∈ Γ (1)

∇ui(y) =
∫

Γ

[ϕk(x)−ϕk(y)]∇u∗ik(y,x)dΓ−ϕk(y)
{∫

Γ

[t(x)− t(y)]
∂u∗ik(y,x)

∂ t
dΓ

+
∫

Γ

[n(x)−n(y)]
∂u∗ik(y,x)

∂n
dΓ+

k0

G
n(y)

(∫
Γ

[nk(x)−nk(y)]
∂ lnr
∂xi

dΓ

+nk(y)
∫

Γ

[ti(x)− ti(y)]
∂ lnr

∂ t
dΓ+nk(y)

∫
Γ

[ni(x)−ni(y)]
∂ lnr
∂n

dΓ

)}
,y ∈ Γ (2)
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For the domain Ω, the nonsingular BIEs are given as

ui(y) =
∫

Γ

ϕk(x)u∗ik(x,y)dΓ, y ∈ Γ (3)

∇ui(y) = ϕk(y)n(y)
1
G

[δik−
nk(y)ni(y)
2(1− v)

]+
∫

Γ

[ϕk(x)−ϕk(y)]∇u∗ik(y,x)dΓ

−ϕk(y)
{∫

Γ

[t(x)− t(y)]
∂u∗ik(y,x)

∂ t
dΓ +

∫
Γ

[n(x)−n(y)]
∂u∗ik(y,x)

∂n
dΓ

+
k0

G
n(y)

(∫
Γ

[nk(x)−nk(y)]
∂ lnr
∂xi

dΓ +nk(y)
∫

Γ

[ti(x)− ti(y)]
∂ lnr

∂ t
dΓ

+ nk(y)
∫

Γ

[ni(x)−ni(y)]
∂ lnr
∂n

dΓ

)}
,y ∈ Γ (4)

For the internal point y, the integral equations can be written as

ui(y) =
∫

Γ

ϕk(x)u∗ik(y,x)dΓ , y ∈ Ω̂ (5)

∇ui(y) =
∫

Γ

φk(x)∇u∗ik(y,x)dΓ , y ∈ Ω̂ (6)

In Eqs. (1)∼(6), i,k = 1,2; k0 = 1/4π(1− v); G is the shear modulus; φk(x) is
the density function to be determined; u∗ik(y,x) denotes the Kelvin fundamental
solution. In Eqs. (5) and (6) Ω̂ = Ω or Ωc.

The Gaussian quadrature is directly used to calculate the integrals in discretized
equations in the conventional boundary element method. However, if the domain
of a considered problem is thin, some boundaries will be very close to each other.
Thus, the distance r between some boundary nodes and boundary integral elements
probably approaches zero. This causes the integrals in discretized Eqs. (1)∼(4)
nearly singular, and the results of the Gaussian quadrature become invalid. There-
fore, the density functions cannot be calculated accurately, needless to say, to cal-
culate the physical quantities at interior points. Moreover, almost all the interior
points of thin bodies are very close to the integral elements. Thus, there also exist
nearly singular integrals in Eqs. (5) and (6). These nearly singular integrals can be
expressed as{

I1 =
∫

Γe
ψ(x) lnr2dΓ

I2 =
∫

Γe
ψ(x) 1

r2α dΓ
(7)

where α > 0, ψ(x) denotes a well-behaved function.
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3 Nearly singular integrals over curvilinear elements

The quintessence of the BEM is to discretize the boundary into a finite number
of segments, not necessarily equal, which are called boundary elements. Two ap-
proximations are made over each of these elements. One is about the geometry of
the boundary, while the other has to do with the variation of the unknown bound-
ary quantity over the element. The linear element is not an ideal one as it can not
approximate with sufficient accuracy for the geometry of curvilinear boundaries.
For this reason, it is recommended to use higher order elements, namely, elements
that approximate geometry and boundary quantities by higher order interpolation
polynomials—usually of second order. In this paper, the geometry segment is mod-
eled by a continuous parabolic element, which has three knots, two of which are
placed at the extreme ends and the third somewhere in-between, usually at the mid-
point. Therefore the boundary geometry is approximated by a continuous piece-
wise parabolic curve. On the other hand, the distribution of the boundary quantity
on each of these elements is depicted by a discontinuous quadratic element, three
nodes of which are located away from the endpoints.

Assume x1 = (x1
1,x

1
2)and x2 = (x2

1,x
2
2) are the two extreme points of the segmentΓ j,

and x3 = (x3
1,x

3
2) is in-between one. Then the element Γ j can be expressed as

follows

xk(ξ ) = N1(ξ )x1
k +N2(ξ )x2

k +N3(ξ )x3
k ,k = 1,2

where N1(ξ ) = ξ (ξ −1)/2, N2(ξ ) = ξ (ξ +1)/2, N3(ξ ) = (1−ξ )(1+ξ ), −1≤
ξ ≤ 1.

 
 

t2 ( 1)ξ =x

1( 1)ξ = −x  

Mx

Γ

Ω

n

y
d

r
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( )ξx

3 ( 0)ξ =x

Figure 1: The minimum distance d from the field point y to the boundary element
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As shown in Fig. 1, the minimum distance d from the field point y = (y1,y2) to
the boundary element Γ j is defined as the length of yxp, which is perpendicular to
the tangential line t and through the projection point xp. Letting η ∈ (−1,1) is the
local coordinate of the projection point xp, i.e. xp = (x1(η),x2(η)). Then η is the
real root of the following equation

x′k(η)(xk(η)− yk) = 0 (8)

If the field point y sufficiently approaches the boundary, then Eq. (8) has a unique
real root. In fact, setting

F(η) = x′k(η)(xk(η)− yk)

F ′(η) = x′k(η)x′k(η)+ x′′k(η)(xk(η)− yk) = J2(η)+ x′′k(η)(xk(η)− yk)

where J(η) is the Jacobian of the transformation from parabolic element to the
line interval [−1,1]. Therefore, when the field point y is sufficiently close to the
element, we explicitly haveF ′(η) > 0.

The unique real root of Eq. (8) can be evaluated numerically by using the Newton’s
method or computed exactly by adopting the algebraic root formulas of 3-th alge-
braic equations. In this paper, two ways are all tested, and practical applications
show that both ways can be used to obtain desired results. Furthermore, the New-
ton’s method is more simple and effective, especially if the initial approximation
is properly chosen and if we can do this, only two or three iterations are sufficient
to approximate the real root. For the root formula of 3-th algebraic equations, let’s
consider the following algebraic equation

ax3 +bx2 + cx+d = 0

if there exists only one real root, the analytical solution can be expressed as follows

x =− b
3a

+
2(
√

s2 + t2)
1
3

3 3
√

2a
cos
(

1
3

arccos
s√

s2 + t2

)
where s =−2b3 +9acb−27a2d, t =

√
−4(3ac−b2)3− (−2b3 +9acb−27a2d)2.

Using the procedures described above, we can obtain the value of the real root η .
Thus, we have

xk− yk = xk− xp
k + xp

k − yk

=
1
2
(ξ −η)

[
(x1

k−2x3
k + x2

k)(ξ +η)+(x2
k− x1

k)
]
+ xk(η)− yk

(9)
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By using Eq. (9), the distance square r2 between the field point y and the source
point x(ξ ) can be written as

r2(ξ ) = (xk− yk)(xk− yk) = (ξ −η)2g(ξ )+d2 (10)

where d2 = (xk(η)− yk)(xk(η)− yk),

g(ξ ) =
1
4
(x1

k−2x3
k + x2

k)(x
1
k−2x3

k + x2
k)(ξ +η)2 +

1
2
(x1

k−2x3
k + x2

k)(x
2
k− x1

k)(ξ +η)

+h2 +(x1
k−2x3

k + x2
k)(xk(η)− yk), where h =

1
2

√
(x2

k− x1
k)(x

2
k− x1

k).

Apparently, there is g(ξ ) ≥ 0. Furthermore, under some assumptions we can also
prove that g(ξ ) > 0. As shown in Fig. 1, xM is the midpoint of the line x1x2. For
simplicity, we take x3 to satisfy that xMx3 is perpendicular to x1x2, i.e. (x1

k−2x3
k +

x2
k)(x

2
k− x1

k) = 0. So

g(ξ )≥ h2 +(x1
k−2x3

k + x2
k)(xk(η)− yk)

Therefore, if the minimum distance d is sufficiently small, it follows that g(ξ ) > 0.

4 Exact integrations for nearly singular integrals

With the aid of the Eq. (10), the nearly singular integrals in Eq. (7) can be rewritten
as{

I1 =
∫ 1
−1 |J| f (ξ ) ln

(
(ξ −η)2g(ξ )+d2

)
dξ

I2 =
∫ 1
−1

|J| f (ξ )
((ξ−η)2g(ξ )+d2)α dξ

(11)

where |J| =
√

(dx1
dξ

)2 +(dx2
dξ

)2represents the Jacobian; f ( ·) is a regular function
that consists of shape functions, and ones which arise from taking the derivative of
the integral kernels.

Introduce the following coordinate transformation

t = Φ(ξ ) = (ξ −η)
√

g(ξ ) (12)

We can easily prove that Φ′(ξ ) 6= 0. In fact

Φ
′(ξ ) =

2g(ξ )+(ξ −η)g′(ξ )
2
√

g(ξ )
, r′ =

(ξ −η)[2g(ξ )+(ξ −η)g′(ξ )]
2
√

(ξ −η)2g(ξ )+d2
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Φ′(ξ ) 6= 0 is equivalent to the fact that the equation r′(ξ ) = 0 has only one root ξ =
η within the interval [−1,1]. Actually, if the field point ysufficiently approaches
the boundary element, the assertion must hold.

Substituting (12) into (11), we obtain the following equations{
I1 =

∫ t2
t1
|J| f (ξ )
Φ′(ξ ) ln

(
t2 +d2

)
dt =

∫ t2
t1 F(ξ ) ln

(
t2 +d2

)
dt

I2 =
∫ t2

t1
|J| f (ξ )
Φ′(ξ )

1
(t2+d2)α dt =

∫ t2
t1 F(ξ ) 1

(t2+d2)α dt
(13)

where t1 =−(1+η)
√

g(−1) , t2 = (1−η)
√

g(1), F (ξ ) = |J| f (ξ )/Φ′(ξ ).
Generally, it is impossible to obtain the exact expression of ξ from t = Φ(ξ ). In
other words, F(ξ ) can not be easily expressed with respect to the variable t. In order
to find an approximate expression of F(ξ ), we adopt a kind of inverse interpolation
idea and technique, using a series of interpolation polynomials to approximate the
regular part F(ξ ). In order to make this point clear, we select seven interpolation
nodes, as shown in Fig. 2, since a sextic interpolation polynomial has been found
satisfactory in practice.

 
 

1ξ  
4ξ 5ξ 6ξ 2ξ

1− 0 1

3ξ
7ξ

Figure 2: inverse interpolation nodes

Then the sextic interpolation function for F(ξ ) can be written as

F(ξ )≈
7

∑
i=1

7

∏
j = 1
j 6= i

(t− t j)
(ti− t j)

F(ξi)

where ti = (ξi−η)
√

g(ξi) , i = 1∼ 7.

Using the procedure described above, Eq. (13) can be expressed as a series of
elementary integrals, as shown in (14), which can now be calculated exactly by
using completely analytical integral formulas.

I1 =
∫ t2

t1
t i ln

(
t2 +d2)dt, I2 =

∫ t2

t1

t i

(t2 +d2)α dt, i = 1, · · · ,6 (14)
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5 Numerical examples

To begin with, an example of boundary layer effect is considered to testify the
feasibility of the proposed method, which the physical quantities at interior point
very close to the boundary are calculated. Whereafter, two thin walled structures
with various thickness-to-length ratios are considered.

 

p  

p  
Figure 3: An infinite plate with a circular hole subjected to the uniform tensile
forces

Example 1 This example is given to test the feasibility of the proposed method.
As shown in Fig. 3, an infinite plate with a circular hole subjected to the uniform
tensile forces p = 10 at infinity is considered. The radius of the circle is r = 2. In
this example, the elastic shear modulus is G = 807692.3N/cm2, and the Poisson’s
ratio is v = 0.3. There are 30 uniform quadratic boundary elements divided along
the circular boundary.

The results of the tangential and radial stresses σθ , σr at interior points on the line
x2 = 0 are listed in Tab. 1 and Fig. 4, respectively. The convergence rate of the
computed σθ at the point (1E-09, 0) is shown in Fig. 5.

It can be seen from Tab. 1 that the results calculated by the CBEM are not in a
good agreement with the analytic solutions as the computed points locate increas-
ingly close to the boundary, i.e., when the distance between the interior point and
the boundary is equal to or less than 0.01. However, the results calculated by the
proposed method are very consistent with the exact solutions even when the dis-
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tance between the interior point and the outer boundary approaches 1E-10. The
percentage errors are also listed in Tab. 1, from which we can see that the accu-
racy of the results calculated by using the present method are satisfactory with the
largest relative error less than 0.02%.

We can observe from Fig. 4 that the results of radial stresses σr yields excellent
accuracy even when the distance between the interior point and the inner surface
reaches 1E-10. In addition, the convergence plot in Fig. 5 shows that the con-
vergence rates of the present method are fast even when the distance between the
computed point and the boundary approaches 1E-09.

Table 1: Tangential stresses σθ at interior points on the line x2 = 0
x1 Exact CBEM Present Relative error (%)
2.1 0.2687568E+02 0.268777E+02 0.2687775E+02 -0.7669777E-02
2.01 0.2965409E+02 0.293976E+02 0.2965912E+02 -0.1696342E-01
2.001 0.2996504E+02 0.305789E+02 0.2997061E+02 -0.1859621E-01

2.0001 0.2999650E+02 0.307377E+02 0.3000213E+02 -0.1876807E-01
2.00001 0.2999965E+02 0.307535E+02 0.3000529E+02 -0.1878534E-01
2.000001 0.2999997E+02 0.307551E+02 0.3000560E+02 -0.1878707E-01
2.0000001 0.3000000E+02 0.307552E+02 0.3000563E+02 -0.1878724E-01

2.00000001 0.3000000E+02 0.307552E+02 0.3000564E+02 -0.1878718E-01
2.000000001 0.3000000E+02 0.307552E+02 0.3000564E+02 -0.1878649E-01
2.0000000001 0.3000000E+02 0.307552E+02 0.3000563E+02 -0.1877948E-01
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Figure 4: Radial stresses σr at interior
points on the line x2 = 0
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Example 2 As shown in Fig. 6, a thin-walled cylinder subjected to a uniform
internal pressure p = 1 is considered. The outer and inner radii of the cylinder are a
and b, respectively, with a = 10. The elastic shear modulus is G = 807692.3N/cm2,
and the Poisson’s ratio is v = 0.3.

There are 48 discontinuous isoparametric quadratic elements divided along the
outer and inner surfaces. In this example, (a− b)/a is defined as the thickness-
to-length ratio [Zhou et al. (2008)]. As a is fixed as 10, the ratio reduces as b
decreases.

For different thickness-to-length ratios, the results of the unknown stresses at the
boundary node A(10, 0) are shown in Fig. 7. The results at interior point B((a +
b)/2, 0) are listed in Tab. 2 and Tab. 3. Both the CBEM and the proposed method
are employed for the purpose of comparison. For(a−b)/a = 1.0E−6, the stresses
at interior points on the line x2 = 0 are listed in Tab. 4; the convergence curves of
computed stresses at the interior point B are shown in Fig. 8.

We can see from Fig. 7 that the calculated results of stresses at the boundary node
A calculated by using the proposed method are very consistent with the exact so-
lutions, with the largest relative error less than 0.5%, even when the thickness-to-
length ratio as small as 1.0E−6.

Tab. 2 and Tab. 3 show that the CBEM can only be available to calculate the
acceptable radial and tangential stresses at the interior point B for the thickness-to-
length ratio down to 1E-01, and the results are out of true with further decrease of
the thickness-to-length ratio. Nevertheless, the results obtained by using the pre-
sented schemes are excellently consistent with the analytical solutions even when
the thickness-to-length ratio equals 1E-06.

Tab. 4 presents the results of radial and tangential stresses at eight different interior
points on the line x2 = 0 with the thickness-to-length ratio equals 1E-06, which
further demonstrate the effectiveness of the present method.

Table 2: Radial stresses σr at the interior point B
(a−b)/a Exact CBEM Present Relative error (%)

2.0E-1 -0.4170096E+00 -0.4168510E+00 -0.4169653E+00 0.1062267E-01
1.0E-1 -0.4605628E+00 -0.4594888E+00 -0.4604442E+00 0.2574519E-01
1.0E-2 -0.4962312E+00 0.3504272E+01 -0.4963201E+00 -0.1790878E-01
1.0E-3 -0.4996248E+00 -0.4890038E+02 -0.4996364E+00 -0.2316737E-02
1.0E-4 -0.4999625E+00 0.4163399E+02 -0.4999636E+00 -0.2268517E-03
1.0E-5 -0.4999962E+00 0.3506209E+02 -0.4999907E+00 0.1117456E-02
1.0E-6 -0.4999996E+00 0.3453840E+02 -0.4993287E+00 0.1341773E+00
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Figure 6: A thin-walled cylinder subjected to uniform internal pressure
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Figure 8: Convergence curves of σθ

and σr at the interior point B with (a−
b)/a = 1.0E−6

Convergence curves of computed stresses at interior points B by using the presented
method are shown in Fig. 8 from which we can observe that the convergence speeds
are still fast even when the thickness-to-length ratio reached 1E-06. In Fig. 8,
only the errors of the present method are given since the errors of the CBEM are
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Table 3: Tangential stresses σθ at the interior point B

(a−b)/a Exact CBEM Present Relative error (%)
2.0E-1 0.3972565E+01 0.3972922E+01 0.3972661E+01 -0.2417346E-02
1.0E-1 0.8986879E+01 0.8990797E+01 0.8988732E+01 -0.2062619E-01
1.0E-2 0.9899874E+02 0.1008786E+03 0.9892158E+02 0.7794239E-01
1.0E-3 0.9989999E+03 0.1327530E+04 0.9982280E+03 0.7726567E-01
1.0E-4 0.9999000E+04 -0.1133652E+04 0.9991276E+04 0.7725178E-01
1.0E-5 0.9999900E+05 -0.9566364E+03 0.9992151E+05 0.7749157E-01
1.0E-6 0.9999990E+06 -0.9423957E+03 0.9985437E+06 0.1455262E+00

Table 4: Radial and tangential stresses at interior points on the line x2 = 0

x1
Radial stressesσr Tangential stresses σθ

Exact Present Exact Present
9.999991 -0.8999999E+00 -0.8975619E+00 0.9999994E+06 0.9985442E+06
9.999992 -0.7999998E+00 -0.7976682E+00 0.9999993E+06 0.9985441E+06
9.999993 -0.6999997E+00 -0.6973147E+00 0.9999992E+06 0.9985440E+06
9.999994 -0.5999996E+00 -0.5979686E+00 0.9999991E+06 0.9985440E+06
9.999996 -0.3999996E+00 -0.4001979E+00 0.9999989E+06 0.9985438E+06
9.999997 -0.2999997E+00 -0.3007079E+00 0.9999988E+06 0.9985437E+06
9.999998 -0.1999998E+00 -0.2007479E+00 0.9999987E+06 0.9985436E+06
9.999999 -0.9999986E-01 -0.1009180E+00 0.9999986E+06 0.9985436E+06

relatively too large.

Example 3 As shown in Fig. 9, a thin coating with nonuniform thickness on a shaft
is considered. Both the shaft and coating profiles remain circular, but their centers
are misaligned (b) compared to the uniform thickness case (a), producing some
normalized eccentricity δ = xc/rb− ra, where xc is the center offset. The coating
and shaft have outer radii ra and rb respectively, with their centre of curvature lo-
cated at the point o(0,0). In this example, the coated system is loaded by a uniform
pressure p, and the shaft is considered to be rigid when compared to the coating,
so the boundary conditions are ux = uy = 0 for all nodes at the shaft/coating inter-
face. There are totally 16 discontinuous isoparametric quadratic elements divided
along the shaft and coating surfaces, regardless of the thickness of the structure.
The elastic shear modulus is G = 8.0×1010Pa, Poisson’s ratio is v = 0.2.

While no analytical solution exists for δ 6= 0 case, the asymptotic behavior of the
solution as δ → 0 can be checked to verify the formulation. In this example, shaft
radius is held constant at 0.1 and coating outer radius is also constant at 0.11; the
eccentricity has been systematically varied over the entire range 0≤ δ < 1.
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Figure 9: A thin coating with nonuniform thickness on a shaft.
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Figure 10: Tangential stress at boundary node A.

In 1998, Luo et al. [Luo, Liu and Berger (1998)] have handled this coating system,
and the radial stress σr at boundary node A has been obtained by using the BEM.
However, in their work only boundary unknown radial stresses σr are computed.
The boundary unknown tangential stresses σθ and physical quantities at interior
points need further investigation. In this paper, both boundary unknowns and phys-
ical quantities at interior points over different δ are given.

Fig. 10 shows the tangential stress prediction σθ at boundary node A (Note that
the highest normalized eccentricity solved is δ = 0.999999). Fig. 11 shows the
normalized radial stress σr at boundary node A, and the results obtained by using
Ref. [Luo, Liu and Berger (1998)] and the FEM are also given to make comparison.

In addition, for different angular coordinates, the radial and tangential stress pre-
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Table 5: Radial and tangential stress prediction for δ = 0.999999

θ
Stresses at boundary nodes Stresses at interior points

σr σθ σr σθ

0 -0.100000E+01 -0.250495E+00 -0.100000E+01 -0.250475E+00
π/6 -0.100000E+01 -0.250136E+00 -0.100498E+01 -0.254946E+00
π/4 -0.100000E+01 -0.250865E+00 -0.101078E+01 -0.261156E+00
π/3 -0.100000E+01 -0.252741E+00 -0.101807E+01 -0.271124E+00
π/2 -0.100000E+01 -0.261014E+00 -0.103417E+01 -0.301052E+00
2π/3 -0.100000E+01 -0.272464E+00 -0.104775E+01 -0.335890E+00
5π/6 -0.100000E+01 -0.281213E+00 -0.105608E+01 -0.362189E+00

π -0.100000E+01 -0.284356E+00 -0.105881E+01 -0.371727E+00

diction for δ = 0.999999 at the boundary nodes (ra,θ) and at the interior points
((ra + rb)/2,θ) are given in Tab. 5.
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Figure 11: Radial stress prediction at the boundary node A.

6 Conclusions

In this paper, a new exact integration method for curvilinear geometries is pre-
sented and applied to deal with 2-D elastic problems of thin bodies. The con-
ventional Gaussian quadrature can be replaced by the newly developed analytical
integral formulas to deal with the nearly singular integrals. The strategy proposed
in this paper adopted isoparametric quadratic elements to describe the integral ker-
nel functions and the Jacobian. Owing to the employment of the parabolic arc, only
a small number of elements need to be divided along the boundary, and high accu-
racy can be achieved without increasing more computational efforts. For thin-body
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problems with thickness-to-length ratios ranging from 1E-1 to 1E-6, the stresses
both on the boundary nodes and at interior points are all accurately calculated by
using the presented strategy. In conclusion, the thin-body problem has been over-
come successfully by using the proposed strategy, which indicates that the BEM is
especially accurate and efficient for numerical analysis of thin boy problems.
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