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Constitutive Contact Laws in Structural Dynamics

K. Willner1

Abstract: The dynamic behavior of structures with joints is strongly influenced
by the constitutive behavior within the contact areas. In this paper the influence of
an elaborate constitutive contact model based on a rough surface model is investi-
gated. The contact model is able to describe several effects like pressure dependent
contact stiffness in normal and tangential direction as well as microslip effects.
The corresponding constitutive contact laws are implemented in a finite element
code. Numerical simulations are compared to experimental results of a clamped
double-beam experiment.
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1 Introduction

The main source of damping in typical engineering structures is structural damping
which is based on energy dissipation in joints. A joint in this context is any con-
tact area within the structure where relative displacements can take place, usually
a bolted, riveted or otherwise clamped connection between different parts of the
structure. Dissipation of energy is then mainly due to friction during relative dis-
placements in tangential direction, i.e. slip. Even if large relative displacements are
usually not desirable, small local slip will still contribute significantly to the overall
energy dissipation. This behavior is called microslip, characterized by partial slip
of the contact area while a large portion is still sticking thus ensuring structural
integrity. Slipping of the complete contact area is called macroslip and is usually
not allowed for obvious reasons except for cases where joints have specifically in-
troduced and designed to act as friction dampers. While these basic mechanisms
of structural damping are fairly well understood, a generally accepted modelling
technique is not available and quantitative prediction of the damping by numerical
simulations is still not possible or at least difficult.

The present state-of-the-art in joint modelling is documented in some recent review
articles [Feeny, Guran, Hinrichs, and Popp (1998); Gaul and Nitsche (2000, 2001);
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Ibrahim and Pettit (2005); Mackerle (2003)]. But even if attempts to model the
damping behavior of joints date well back in time and a huge number of publica-
tions in this area is available, the problem is still not completely solved and presents
an open and active field of research, as several white papers show [Dohner (2001);
Segalman, Paez, Smallwood, Sumali, and Urbina (2003)].

For joints with dimensions small compared to the jointed structure several phe-
nomenological models are available to describe the global constitutive behavior of
a complete joint. The simple Jenkin model [Jenkin (1922)] can be combined in
parallel or series form [Iwan (1966, 1967); Berger and Krousgrill (2002); Miller
and Quinn (2009); Quinn and Segalman (2005); Segalman (2005, 2006); Song,
McFarland, Bergman, and Vakakis (2005)], or regularized to obtain better numer-
ical and fitting properties [Gaul and Lenz (1997); Mayer and Gaul (2007)]. Other
approaches include the Bouc-Wen model [Bouc (1957); Wen (1989)] discussed in
detail by Ikhouane and Rodellar (2007) or the Dahl model [Dahl (1976); Bliman
(1992)] and the LuGre model [de Wit, Olsson, Aström, and Lischinsky (1995)].
The parameters of these models have to be identified from experiments [Jalali, Ah-
madian, and Mottershead (2007); Lobitz, Gregory, and Smallwood (2001); Ma,
Bergman, and Vakakis (2001)], but the identification is usually difficult due to sig-
nificant scatter and the use of uncertain parameters has been advised [Hanss, Oexl,
and Gaul (2002)].

Models for extended joints usually require a dicretization of the contact surface
using finite elements, since analytical solutions are hard to obtain. A notable ex-
emption is the Menq model [Menq, Bielak, and Griffin (1986)], which gives an
analytical solution for an extended lap joint. However, even for the very simple
geometry used in this model the solution becomes quite involved, indicating that
for real geometries and loading cases an analytical solution becomes impossible.

Since only small displacements are involved and generation of conforming meshes
is usually not a problem, it is not necessary to turn to the arsenal of general contact
formulations within the finite element framework, but the use of thin-layer [Ahma-
dian, Ebrahimi, Mottershead, and Friswell (2002); Ahmadian, Mottershead, James,
Friswell, and Reece (2006)] or zero-thickness elements [Mayer and Gaul (2007)]
is more efficient. Again the constitutive behavior within the contact area has to be
modelled by suitable contact laws, but now on a local scale. In principle all of the
global models mentioned above can be used on the local element scale as well, but
usually only a simple elastic stick-slip law resembling a local Jenkin-element in
conjunction with a linear normal stiffness is employed. Exemptions are the works
by Sellgren and Olofsson (1999) who use a microslip model based on a stochas-
tic surface model; and Lenz and Gaul (1995), and Mayer and Gaul (2007) using a
regularized Masing model fitted to experimental data. An alternative approach is
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presented by Garikipati (2002) who directly includes the micromechanical behav-
ior into the continuum formulation using a variational multiscale approach. While
this is a very elegant formulation, it is hard to include within a conventional finite
element framework where the more traditional approach using constitutive laws
allows for an easy and modular implementation.

In the following, constitutive contact laws in normal and tangential direction shall
be employed which are identified from an elasto-plastic deformation model of the
rough contact surfaces. The elasto-plastic contact is based on a halfspace model
[Willner (2004, 2008b,a)] which has been also experimentally verified [Görke and
Willner (2008b,a)]. The idea is to obtain suitable contact laws from a-priori in-
formation, like roughness and material data of the contacting surfaces. Employing
these contact laws in a finite element simulation of the dynamic behavior of a joint
should then give an accurate picture of the structural damping. As an example of an
extended joint a simple double-beam experiment is chosen, which will be described
next.

2 Experimental set-up

To exemplify the statements made in the introduction with regard to the damping of
joints, a simple double-beam experiment is conducted. The double-beam consists
of two equal beams made of stainless steel jointed by three bolts and clamped on
one end as shown in Fig. 1. This type of experiment is quite popular [Pian and
Hallowell (1951); Earles and Beards (1970); Ferri and Bindemann (1992); Song,
Hartwigsen, McFarland, Vakakis, and Bergman (2004)], since it is the most simple
model of a joint with an extended contact surface. The reason for choosing two
equal beams is twofold. While for a fully clamped situation the interface between
two equal beams would be the neutral axis, it also carries the maximum shear stress.
So, due to the relatively low contact pressures used in the experiment the friction
limit will be reached over a reasonable part of the contact area and there will be
a considerable amount of slip. The other reason is just ease of identification of
the parameters of the single beams which has to be done just once in a symmetric
case. This is especially true for the Rayleigh damping parameters which are used
to characterize other damping effects. These are considered to be structural and
not material parameters and had to be determined twice if two different beams are
used.

Principal dimensions of the set-up are given in Fig. 2. The bolt forces are adjusted
using torque-control (MB = 2Nm) to FB ≈ 1600N each. The beam is excited by
the impact of a modal hammer at the free tip (Point A in Fig. 2) and is then allowed
to perform free vibrations, while a laser vibrometer measures the decay behavior
of the tip displacement. While in principle also static load-displacement experi-
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ments could be used to obtain information on the interface behavior, the available
experimental equipment did not allow a sufficiently accurate measurement of the
static deflections for a given load, therefore no attempt has been made to use this
information.

Fig. 3 shows a plot of the tip displacement vs. time for the double-beam set-up
in comparison to an equivalent monolithic beam in the same set-up. Clearly, the
double-beam shows much higher damping due to frictional energy dissipation in
the interface between the two beams. The aim of the following investigations is to
predict this frictional damping behavior using a-priori information.

Figure 1: Double-beam experiment
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Figure 2: Double-beam dimensions

3 Contact model

The frictional damping in joints depends strongly on the roughness and material
properties of the contacting surfaces. Thus, in a first step some aspects of a suitable
surface description are discussed. Then a quite general simulation approach for the
elasto-plastic contact behavior of rough surfaces is presented, which is based on



Contact Laws in Structural Dynamics 307

Figure 3: Comparison of decay behavior

a halfspace model. Typical results for roughness and material data corresponding
to the surfaces of the double-beam experiment are presented. Finally, appropri-
ate constitutive contact formulations are discussed, which can be used in a finite
element simulation.

3.1 Fractal surface description

Most engineering surfaces show a characteristic scaling behavior over a wide range
of length scales, which is known as self-affine or fractal. The concept of fractals
was introduced by Mandelbrot (1983) and subsequently used to describe technical
surfaces, see Ling (1987). Actually, the first contact model using a deterministic
fractal description of rough surfaces was the one by Archard (1957), but it was
presented well before the invention of the term fractal. Recent contributions prefer
stochastic fractals mostly based on spectral representations, like the works by Ju
and Farris (1996); Stanley and Kato (1997); Jackson and Kogut (2006), but other
forms are also know like the Cantor-set model of Warren and Krajcinovic (1996).
The popular Weierstrass function model is a special case of a spectral represen-
tation, see Majumdar and Tien (1990); Komvopoulos and Ye (2001); Ciavarella,
Demelio, Barber, and Jang (2000).

The scaling behavior of a roughness profile can be described by the so-called struc-
ture function given for a discrete profile zk = z(xk) by

S(xk) =
1

N− k

N−k

∑
i=1

(zi+k− zi)2 k = 1, . . . ,N−1 . (1)

As an example a spark-eroded aluminum surface was measured using a conven-
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tional stylus profilometer and on a much smaller scale using an atomic force mi-
croscope (AFM), see Figs. 4 and 5, respectively.

Figure 4: Stylus profilometer measurement of spark eroded aluminum surface

Calculating the structure function along various profiles shows a typical mixed
fractal-regular behavior, see Fig. 6. For small values of x, i.e. small correlation
lengths, the structure function is a straight line in a log-log plot, which is character-
istic for a fractal, with the slope corresponding to the fractal dimension. For large
values of x, i.e. large correlation lengths, however, the surface shows a regular or
stationary behavior, indicated by a constant value of the structure function. A closer
inspection shows that this value is actually 2σ2

z , where σz is the standard deviation
of the height distribution. Thus, a typical engineering surface shows fractal behav-
ior for small length scales, but becomes stationary at larger length scales, see Wang
and Komvopoulos (1994); Willner (2008b).

Measured structure functions of this type can be approximated quite well by an
analytical function proposed by Berry and Blackwell (1981),

S(x) = 2σz

{
1− exp

[
−
(

x
xT

)4−2D
]}

(2)

where D is the fractal dimension and xT is the transition length scale between fractal
and regular behavior, see Fig. 7.



Contact Laws in Structural Dynamics 309

Figure 5: AFM measurement of spark eroded aluminum surface
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Figure 6: Structure function of spark eroded aluminum surface

The three parameters σz, D and xT are sufficient to characterize at least an isotropic
Gaussian surface and can be used to generate virtual surfaces with specified charac-
teristics for parameter studies, see Willner (2004, 2008b). Extensions to anisotropic
and non-Gaussian surfaces are possible.
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Figure 7: Berry-Blackwell approximation of structure function

3.2 Halfspace model

The constitutive contact behavior of rough surfaces, either measured or numeri-
cally generated, can be simulated efficiently using halfspace modeling based on
the Boussinesq and Cerruti solutions. Different techniques are known, see for ex-
ample Webster and Sayles (1986); Ogilvy (1992); Ren and Lee (1993); Lee and
Ren (1996); Varadi and Neder (1996), Polonsky and Keer (2000a), Jacq, Nelias,
Lormand, and Girodin (2002), Karpenko and Akay (2002), Li and Berger (2003);
Wang and Keer (2005); Nelias, Antaluca, Boucly, and Cretu (2007); and the survey
articles of Sayles (1996); Polonsky and Keer (2000b); and Allwood (2005). Here
a model based on the work of Kalker and van Randen (1972) will be used. This
model was again discussed by Kalker (1977) for the frictionless normal contact and
later extended to frictional contact by Kalker (1979), Vollebregt (1995) and Will-
ner (2008a). Plasticity was introduced by Tian and Bhushan (1996), Willner (2004)
and Sainsot, Jacq, and Nelias (2002).

3.2.1 Normal contact

We consider first the frictionless normal contact of a rough elastic surface with a
smooth rigid wall, as shown in Fig. 8. The roughness is given by height coordinates
z(x,y), where the height coordinates are taken relative to the mean plane of the
surface, such that

mean(z) = 0 . (3)

Further we define as gap distance g the separation of the mean plane of the rough
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Figure 8: Normal contact

surface and the rigid wall, where g0 is the initial separation when the surface just
touches the wall, which is equal to

g0 = max(z) . (4)

The approach d of the surface is then defined by

d = g0−g (5)

and the local geometrical interference at a given approach is

ūz(x,y) = z(x,y)− (g0−d) , (6)

Since a positive interference means an overlap of the undeformed surface with the
wall, it indicates the potential contact area, while a negative interference means
separation.

Now, we have to find a contact pressure distribution such that the local geometrical
interference of the deformed surface is zero or negative everywhere, where a zero
interference indicates contact, while a negative interference indicates separation.
The halfspace contact model used here is based on a variational approach using the
minimization of the total complementary potential energy V ∗ given by

V ∗ =
∫
Ω

U∗(σi j) dΩ−
∫
Γ

tiūi dΓ , (7)

where U∗(σi j) is the internal complementary energy density within the elastic do-
main Ω, and ti and ūi are surface tractions and prescribed displacements on the
contact surface Γ, respectively.
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Introducing a suitable surface discretization of the potential contact area into M
equal patches as shown by Kalker (1990); Tian and Bhushan (1996); and Willner
(2004) gives

V ∗ =
1
2

pTC(zz)p−pTūz , (8)

where C(zz) is the normal flexibility matrix and p contains the pressures on the
contact patches of the surface discretization. Minimization of this functional leads
finally to

C(zz)p = ūz , (9)

which is solved by a Gauss-Seidel iteration for the unknown pressures p. During
the iteration the additional restrictions

pl ≥ 0 , l = 1, . . . ,M (10)

have to be observed, since no tension is allowed at the interface. Convergence of
the iteration procedure is assured [Kalker (1990)] and the contact elements with
positive pressure finally form the real area of contact.

This purely elastic algorithm can be extended to incorporate plastic contact [Tian
and Bhushan (1996); Willner (2008b)] by adjusting the height data iteratively to
ensure that the local pressure remains below a certain maximum local pressure,
usually termed as hardness H,

pl ≤ H , l = 1, . . . ,M . (11)

While this adjustment is not volume conserving, it gives good results which are
confirmed by experimental results, see Görke and Willner (2008a,b). The rationale
is that the plastically displaced material is moved into the valleys of the roughness
and therefore does not influence the contact. This assumption is valid as long as
the fraction of real contact area is small, say α < 0.1.

Since only the contact behavior of the rough contact surface is of interest, the bulk
deformation has to be subtracted. This can be achieved by an iterative correction
discussed by Ren and Lee (1994).

The contact between two rough surfaces can be simulated by just adding the rough-
ness data

z(x,y) = z1(x,y)+ z2(x,y) , (12)

since only the gap distance is necessary, and using an equivalent Hertzian modulus
given by
1

E∗
=

1
E∗1

+
1

E∗1
. (13)
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3.2.2 Frictional contact

The procedure presented above for the pure normal contact can be extended to the
fully coupled contact problem with friction.

Replacing the normal pressure p and normal displacement uz by the full surface
traction vector~t including the in-plane tractions qx and qy

~t = qx~ex +qy~ey + p~ez (14)

and the corresponding full surface displacement vector

~u = ux~ex +uy~ey +uz~ez , (15)

respectively, we obtain the expression for the complementary energy as

V ∗ =
1
2

∫
Γ

~t ·~u dΓ−
∫
Γ

~t ·~̄u dΓ , (16)

where ~̄u is now the prescribed relative displacement between the elastic surface and
the rigid wall including tangential components.

Introducing the same surface discretization as before, the fully coupled displacement-
traction relationship can be written as

uxk =
M

∑
l=1

(
Cxx

kl qxl +Cxy
kl qyl +Cxz

kl pl
)

(17)

uyk =
M

∑
l=1

(
Cyx

kl qxl +Cyy
kl qyl +Cyz

kl pl
)

(18)

uzk =
M

∑
l=1

(
Czx

kl qxl +Czy
kl tyl +Czz

kl pl
)

(19)

or in matrix form asux

uy

uz

=

C(xx) C(xy) C(xz)

C(yx) C(yy) C(yz)

C(zx) C(zy) C(zz)

qx

qy

p

 (20)

u = Ct (21)

The elements of the flexibility matrix can be obtained from the complete Boussi-
nesq solution for normal loading and the Cerruti solution for tangential loading,
respectively [Dydo and Busby (1995); Li and Berger (2001); Willner (2008a)].
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Using this approximation in the total complementary energy we obtain the dis-
cretized form as

V ∗ =
1
2

tTCt− tTū . (22)

Minimization of this functional leads to

Ct = ū , (23)

which is again solved by a Gauss-Seidel iteration for the unknown tractions t. Dur-
ing the iteration the normal restriction

pl ≥ 0 , l = 1, . . . ,M (24)

has to be observed, since again no tension is allowed at the interface. In tangential
direction the restriction√

q2
xl +q2

yl ≤ qmax l (25)

has to be observed, where the local limit shear stress qmax l can be given for example
by

• a local Coulomb condition

qmax l = µ pl (26)

• or a local Tresca condition

qmax l = τmax . (27)

where µ is a local friction coefficient and τmax would be a pressure independent
shear limit. Again, convergence of the iteration procedure is assured [Vollebregt
(1995)].

As shown by Willner (2008a), it is usually not necessary to take into account the
full coupling between normal and tangential loading. By employing the classical
assumptions of Mindlin (1949), the tangential problem can be completely decou-
pled from the normal problem, such that the contact area is given by the normal
load alone. Then, the tangential problem can be solved for a given pressure with a
fixed contact area, thus simplifying the computations significantly.
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3.3 Typical results

A representative section of the contact surface of one of the beams of the double-
beam experiment was measured using an white-light interferometer, with the results
shown in Fig. 9. The surface is clearly orthotropic due to the manufacturing pro-
cess. However, in the double-beam set-up the joint surface will be nearly isotropic
since the orthotropy directions are oriented under a right angle, see Fig. 10. By
fitting the structure function (2) to the measured structure function, the roughness
data for the joint surface can be identified as σz = 1.22 · 10−3 mm, xT = 0.02mm,
and D = 2.1. However, for the following calculations the measured height data
were used directly as input for the halfspace simulation.

Figure 9: Measured surface of double-beam experiment

Figs. 11 and 12 show calculated elasto-plastic loading and unloading curves α(g)
and p(g), respectively, up to different nominal contact pressures p. Figs. 13 and 14
show the calculated tangential behavior for the loading and unloading case, respec-
tively, for a maximum loading up to p = 1N/mm2.

These results were obtained by the decoupled Mindlin approach using material
parameters given in Tab. 1 and a local Tresca condition for slip.
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Figure 10: Joint surface of double-beam experiment

Table 1: Material parameters for contact simulation

E ν H τmax

1.67 ·105 N/mm2 0.3 1000N/mm2 150N/mm2

3.4 Constitutive contact laws

The results of the halfspace simulation of a specific contact pairing could be used
directly in a finite element simulation of a structural joint, using for example tab-
ulated values and interpolation. However, it is desirable to derive closed form
approximations of a more general type. Specifically, we look for an expression
describing the normal contact by a pressure-gap relation p(g) which relates the
nominal pressure p to the gap distance g, such that the negative derivative of this
relation with respect to the gap distance is the normal contact stiffness,

Cn =−dp
dg

. (28)

Of similar interest is an expression which gives the fraction of real area of contact
as a function of the gap distance α(g) or alternatively as a function of nominal
pressure α(p). Likewise, for the tangential contact we are looking for an expression
relating the nominal shear traction t(u,g) to the relative tangential displacement u
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Figure 11: Elasto-plastic pressure-area relation (solid) and constant approximation
(dashed) upon unloading (Eq. 37)

Figure 12: Elasto-plastic gap-pressure relation (solid) and linear approximation
(dashed) upon unloading (Eq. 39)

and a given gap distance g, such that the derivative of this relation with respect to
the relative displacement is the tangential stiffness,

Ct =
∂ t
∂u

. (29)
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Figure 13: Traction-slip-pressure relation t(u, p) for the initial loading case up to
p = 1N/mm2

Figure 14: Traction-slip-pressure relation t(u, p) for the unloading case from
p = 1N/mm2

3.4.1 Normal contact

Willner (2008b) showed that for the purely elastic case the pressure-gap relations
for isotropic fractal-regular surfaces can be approximated quite well by an expo-
nential contact law of the BGT-type [Bush, Gibson, and Thomas (1975)]

p(γ) =
E∗

2π

√
m2

2
1
γ

exp
(
−γ2

2

)
, (30)
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where γ is the normalized gap distance given by

γ =
g
σz

. (31)

The parameter m2 can be explicitly determined from the given structure func-
tion Eq. 2 for the non-fractal limit D = 2,

m2 = 2
(

σz

xT

)2

. (32)

As numerical experiments show, the resulting approximation

p(γ) =
E∗

2π

σz

xT

1
γ

exp
(
−γ2

2

)
(33)

is also reasonable for the fractal case 2 < D < 3, i.e. the fractal dimension has only
a minor influence on the pressure-gap law.

The area-pressure relation is given in the BGT-model by

α(p) =
p

E∗

√
π

m2
(34)

which becomes in view of Eq. 32

α(p) =

√
2
π

p
E∗

xT

σz
. (35)

Numerical results are in excellent agreement with this relation for the case D = 2.
However, the numerical area-pressure relations do not converge for the case 2 < D < 3,
i.e. a fractal surface. Here, the real area of contact becomes a fractal itself with a
fractal dimension D < 2, such that the contact area dissolves into an increasing
large number of vanishing contact spots, where the local contact pressure rises to
extreme values. This numerically obtained result [Willner (2004)] is also analyti-
cally confirmed [Borri-Brunetto, Carpinteri, and Chiaia (1998)].

The high local pressures for the fractal case indicate that an elastic solution is in
general impossible but a plastic solution has to be used. Then, the area-pressure
law upon initial loading can be fitted very well by

α(p) =
p
H

, (36)

indicating that elastic effects can be neglected, at least at the low nominal contact
pressures occurring in structural joints. However, as Fig. 11 shows, this relationship
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is not valid for the unloading and reloading case, which will be elastic anyway.
But, since the contact area drops only slightly at the beginning of the unloading, a
constant approximation

α(p) = α(pmax) =
pmax

H
= const. (37)

depending on the maximum local pressure seems justified, if the local contact pres-
sure does not vary significantly during operation. This approximation is shown by
the dashed lines in Fig. 11.

Since a typical fractal surface will deform purely plastically upon initial loading,
the pressure-gap law p(γ) is given up to moderate loads p < H/10 by the bearing
area curve (Abbott curve),

p(γ) = H
∞∫

γ

Φ(γ)dγ , (38)

where Φ(γ) is the distribution of heights. However, upon unloading and reload-
ing the deformation will be purely elastically. As Fig. 15 shows, the unloading
stiffness, which can be obtained by numerically differentiating the corresponding
unloading branch of the gap-pressure relation p(g), will be nearly constant in the
upper pressure range. Thus, a linear pressure-gap behavior,

p(g) = pmax−C(pmax)(g−gmin) , (39)

seems to be a reasonable approximation for the unloading case, which is shown by
the dashed lines in Fig. 12. This relation depends on the plastic predeformation
given by the pair (gmin, pmax), which play the role of state variables describing
the irreversible evolution of the contact. As Fig. 16 shows, the normal stiffness
Cn(pmax) can be fitted quite well by a function

Cn(pmax) = β1

( pmax

H

)β2
, (40)

where for the specific surface data used here β1 ≈ 3.8 ·106 N/mm3 and β2 ≈ 0.7.

3.4.2 Tangential contact

Fig. 13 shows that upon initial loading the maximum tangential traction tmax in-
creases linearly with the pressure p in agreement with Coulomb’s law. The reason
is the underlying adhesion assumption of the halfspace model, where the maximum
tangential traction at full slip is simply given by

tmax(p) = α(p)τmax . (41)
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Figure 15: Normal stiffness at unloading as a function of normal pressure

Figure 16: Maximum normal stiffness at unloading as a function of maximum
preload

Using the area-pressure law Eq. 36 this can be rewritten as

tmax(p) = µ p , (42)

with the friction coefficient given by

µ =
τmax

H
. (43)

However, upon unloading the maximum tangential traction is constant over the
upper pressure range, see Fig. 14, due to the fact that the contact area is here nearly
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constant and given by Eq. 37. The maximum tangential traction depends then just
on the maximum preload by

tmax(p) = tmax(pmax) =
pmax

H
τmax = const. (44)

Normalizing the tangential tractions by the maximum traction tmax and the rela-
tive tangential displacement u by a characteristic slip distance usl , the traction-slip
relations for all pressures fall closely together as can be seen from Fig. 17. This
tangential behavior can be adequately described by a regularized friction law with
a linear behavior for elastic sticking, where the tangential stiffness for stick is pres-
sure dependent and given by

Ct(p) =
tmax(p)

usl
. (45)

The characteristic slip distance usl can be identified from the halfspace simulations.
For the unloading case it is only weakly dependent on the maximum preloading
pmax. Thus, it can be approximated quite well by a constant value usl ≈ 10−5 mm
in the pressure range p < 5N/mm2 of the double-beam experiment.

Figure 17: Normalized traction-slip relation for the unloading case from
p = 1N/mm2

4 Double-beam experiment

The constitutive contact laws derived above are now employed in a finite element
simulation of the double-beam experiment presented in the introduction. The user-
subroutine UINTER within the Finite-Element code ABAQUS has been used to
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implement the nonlinear pressure-gap law given by Eq. 38 in the loading case and
the linear pressure-gap law Eq. 39 with a pressure dependent normal stiffness given
by Eq. 40, where the local maximum pressure pmax and minimum gap gmin are
used as state variables. For the tangential contact a pressure dependent tangential
stiffness given by Eq. 45 and a maximum local traction given by Eq. 44 has been
implemented.

4.1 Finite element model

Figure 18 shows the finite element mesh and the initial displacement of the set-up.

Figure 18: Finite element model of double-beam experiment. Initial configuration
and static displacement (Scale factor 100)

Figure 19: Normal pressure distribution

Due to the symmetry of the system with respect to the x,z-plane only half of the
system is modeled, where the parts of the double-beam set-up are discretized us-
ing 1449 linear HEX8-elements each. The bolts are modeled by beam elements
connected to the upper and lower beam by multi-point constraints, respectively.
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The material data of the single beams have been identified from a standard modal
analysis of a clamped single beam

E = 1.67 ·105 N/mm2

ν = 0.3

ρ = 7.8 ·10−6 kg/mm3

and Rayleigh damping with parameters

α = 0.3 β = 2 ·10−6

is used to account for the material damping.

In the first load step the three bolts are prestrained in a single increment to a force
of FB = 800N each, which is equivalent to the torque controlled tensioning of the
experimental set-up. The average contact pressure is then

p̄ =
3FB

A0
=

2400N
4300mm2 = 0.55N/mm2 , (46)

with local pressures varying between p≈ 0N/mm2 between the bolts and p≈ 2.7N/mm2

in the vicinity of the bolts, see Fig. 19. This pressure distribution does not change
significantly during the following steps, which justifies the assumption of a nearly
invariant pressure distribution close to the local pmax made for the constitutive con-
tact laws above. In the second load step the system is statically deformed in 10
equal increments by a tip load of FT = 15N to the measured initial tip displace-
ment of u≈ 0.35mm. In the third load step this tip load is removed and the system
is allowed to perform free vibrations. Time-integration is done using the undamped
Newmark algorithm with standard parameters α = 0.25 and β = 0.5. A fixed time-
step of ∆t = 2 · 10−4 s is chosen and the system is integrated over 104 steps until
t = 2s.

4.2 Comparison of results

Comparisons between measured and simulated data for the tip displacement are
shown in Figs. 20, 21, and 22, respectively. Actually the simulated data show
a little higher damping than the measurement, but the agreement is very good,
especially since the constitutive contact behavior has been obtained independently
by the halfspace simulation.

4.3 Influence of parameters

In the following some parametric studies are presented to study the influence of
the normal and tangential contact stiffness on the damping behavior. To simplify
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Figure 20: Decay behavior of tip displacement

Figure 21: Zoom of short time behavior of tip displacement

the discussion, here a linear elastic pressure-gap relation with a constant normal
contact stiffness is assumed instead of the nonlinear elasto-plastic relation of the
original simulation.

Figure 23 shows that a varying normal stiffness at a constant slip distance does not
influence the short time behavior of the dissipation, but a higher normal stiffness
leads to a reduced energy dissipation in the long-time behavior, see 24. In the short
time range the relative displacements are dominated by the initial configuration
such that the contact interface will be mostly slipping. Here, the energy dissipation
is given by the average pressure which is independent of the contact stiffness and
just determined by the bolt forces. The contact stiffness does however influence
the local pressure distribution, with a high stiffness leading to higher pressures
localized in the vicinity of the bolts while a low stiffness leads to a more even
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Figure 22: Zoom of long time behavior of tip displacement

distribution of the pressure, see Fig. 25 and 26. Therefore, in the long-time behavior
a high stiffness will lead to a lower energy dissipation since the high-pressure areas
will prevent slipping and the remaining slipping areas have only very low pressures
and thus only low friction resulting in a lower dissipation.

Figure 23: Influence of Cn. Zoom of short time behavior of tip displacement

Similarly, the tangential stiffness, determined by the characteristic slip distance usl ,
has no influence on the short time behavior, but a smaller slip distance, i.e. higher
tangential stiffness, increases the damping in the long-time behavior, as can be
seen in Figs. 27 and 28, respectively. At the start of the free vibration the relative
displacements are relatively large, such that the contact interface will be mostly
slipping. Hence, the tangential stiffness is not important. However, as the relative
displacements decrease, the stick-state becomes more influential and the slip dis-
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Figure 24: Influence of Cn. Zoom of long time behavior of tip displacement

Figure 25: Normal pressure distribution for Cn = 106 N/mm3

Figure 26: Normal pressure distribution for Cn = 103 N/mm3

tance usl determines the amount of elastic relative displacement without slipping,
i.e. without energy dissipation. Thus, a high value for usl means lower dissipation,
while small values for usl will give higher dissipation.

Now, since both the normal as well as the tangential stiffness can be varied to
change the dissipation behavior, a parameter identification or optimization using the
experimental results becomes difficult. While it is possible to tune the parameters
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Figure 27: Influence of usl . Zoom of short time behavior of tip displacement

Figure 28: Influence of usl . Zoom of long time behavior of tip displacement

to obtain a nearly perfect agreement between simulated and measured result, the
choice is not unique. As Fig. 29 shows using the normal law obtained from the
halfspace simulations (Cn = HS) and a modified slip distance (usl = 3 · 10−5 mm)
gives the same results as the original slip distance from the halfspace simulations
(usl = 10−5 mm) together with a modified linear stiffness (Cn = 104 N/mm3). Other
combinations are also possible.

5 Conclusions

Energy dissipation by friction in joints is the major source of damping in built-up
structures. Microslip effects play an important role where only small regions of the
contact surface are slipping and therefore are dissipating energy, while most of the
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Figure 29: Non-unique parameter identification

contact area is sticking, thus ensuring the integrity of the structure.

A successful numerical simulation of a structural joint requires a sufficiently de-
tailed description of the constitutive interface behavior. Especially an adequate de-
scription of the normal and tangential contact stiffness seems necessary, since these
values dominate the amount of microslip and thus the amount of energy dissipation.

The presented elasto-plastic halfspace model allows to derive suitable constitutive
contact laws which can be implemented into a standard finite-element package.

While closed form constitutive contact laws based on easy measurable parame-
ters can be obtained for the purely elastic contact by employing the BGT-model,
see Eq. 30, the assumption of a purely elastic contact is in general wrong, since
most engineering surfaces will deform plastically upon initial contact. This can be
described in a simple manner using the Abbott-curve or bearing area model, see
Eq. 38, while the elastic unloading and reloading case taking into account the plas-
tic predeformation can be sufficiently described by the linear relationship Eq. 39
with a pressure dependent stiffness given by Eq. 40.

However at least for the bolted structure used here, the numerical examples show
that the normal contact pressure remains nearly constant during operation, such that
this modeling of the unloading behavior seems not necessary.

The constitutive behavior obtained as a-priori data from a halfspace simulation of
the rough surface contact gives good agreement with measured data. Especially in
view of the fact that just a small part of the contact area was measured which was
assumed to be representative, but no statistics over several roughness measurements
have been done so far. Therefore possible scatter of the roughness data is unknown
and will be taken into account only in future work.
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Further effects like asperity damage, wear, and debris accumulation are not in-
cluded in the present model but could be included at least in a phenomenological
way into the constitutive contact laws. However, none of these effects has been
observed in the beam experiments, perhaps due to the short time duration of the
experiments.

An identification or verification of the contact parameters from the experiment is
critical, since the identification for this single experiment is not unique. A possible
way to improve this situation would be fitting the simulated data to several experi-
mental measurements with different normal pressures to get a clearer picture of the
influence of the non-linear normal stiffness. However, this is also intended future
work.
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