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Fast Identification of Poroelastic Parameters from
Indentation Tests

M. Galli and M.L. Oyen1

Abstract: A novel approach is presented for the identification of constitutive pa-
rameters of linear poroelastic materials from indentation tests. Load-controlled
spherical indentation with a ramp-hold creep profile is considered. The identifica-
tion approach is based on the normalization of the time-displacement indentation
response, in analogy to the well-known one-dimensional consolidation problem.
The identification algorithm consists of two nested optimization routines, one in
the time-displacement domain and the other in a normalized domain. The proce-
dure is validated by identifying poroelastic parameters from the displacement-time
outputs of finite element simulations; the new identification scheme proves both
quantitatively reliable and fast. The procedure is also tested on the identification of
the constitutive parameters of gelatin gel and bone from experimental indentation
data and succeeds in providing quantitative results almost in real time.

Keywords: Indentation, Poroelasticity, Identification, Master Curves, Permeabil-
ity.

1 Introduction

Indentation is a common technique for testing the mechanical behavior of almost
any material at length scales ranging from nanometers, for nanoindentation, to mil-
limeters in the case of traditional indentation. Due to the potential for measurement
and mapping of local properties (Cuy et al., 2002), and associated with minimal
specimen preparation requirements, indentation techniques are particularly suit-
able for the testing of biological materials (Ebenstein and Pruitt, 2006). The cost of
the simplicity of the actual test execution is that the extraction of the values of the
constitutive parameters from the test output (typically load-displacement, load-time
or displacement-time curves) is not always straightforward, often requiring inverse
analysis.
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Finite element (FE) modeling is a powerful and versatile means which allows for
extraction of much information from indentation results, for example the elasto-
plastic stress-strain curve of a metal (Bucaille et al., 2003), the matrix flow-stress
in a composite (Bucaille et al, 2004), and the poroelastic, viscoelastic or porovis-
coelastic parameters of a hydrogel (Galli et al., 2009; Liu et al., 2008; Olberding
and Suh, 2006). Nevertheless inverse FE modeling is computationally too expen-
sive to be employed when large amounts of data need be analyzed, as it is typically
the case of grid indentation mapping (Constantinides et al., 2008) where up to thou-
sands of indentation tests are carried out. Property mapping of biological tissues
by indentation is particularly attractive not only to investigate the material struc-
ture and properties but also for diagnostic purposes – spherical indentation can be
seen as nothing but a sophisticated version of palpation as used by physicians for
diagnosis. In massive property mapping experiments, identification methods faster
than FE must be employed. Possible approaches include the use of methods based
on a database of solutions: grids of dimensional solutions (Gupta et al., 2008), neu-
ral networks (Huber and Tsakamakis, 1998; Huber et al., 2001; Liu et al., 2009)
and master curves (Hsueh and Miranda, 2003). Compared to other techniques the
master-curve methods, being based on a normalized material response, have the
intrinsic advantage that their applicability is not limited to the range of material
properties considered for the construction of the database itself.

In the case of biological materials the constitutive behavior can often be assumed to
be linear poroelastic (e.g. bone (Cowin, 2004), soft tissues (Simon, 1992), gels (Hui
et al., 2005) and reinforced gels (Gupta et al., 2008)). The idea of obtaining mas-
ter curves for the spherical indentation of a linear poroelastic half-space was first
proposed by Agbezuge and Deresiewicz (1974) and further developed by Dere-
siewicz (1976), who considered step-loading conditions. In both cases the problem
is solved using an analytical method which, however, requires a numerical solution,
based on the displacement functions by McNamee and Gibson (1960) and Laplace-
Hankel double transform, following an approach often used in similar problems as
shown by Selvadurai (1994, 2007). Nevertheless the applicability of this pioneering
approach to actual experimental data is limited by the hypothesis of step-loading
conditions, which are virtually impossible to obtain experimentally even for small
permeability values (Galli and Oyen, 2008). The idea of using master-curves for
the identification of poroelastic parameters was more recently revisited by Hui and
Muralidharan (2005), who considered the two dimensional problem of an infinitely
long rigid circular cylinder indenting on a poroelastic half-space. Also in this case
step-loading conditions are assumed, moreover the considered geometry is not rep-
resentative of three dimensional experimental conditions.

In the present work to the master curve approach for spherical indentation is re-



Fast Identification of Poroelastic Parameters from Indentation Tests 243

viewed and extended to ramp-hold test profiles. Its theoretical basis are presented
by showing the parallel with ramp-hold one-dimensional consolidation, a problem
which can be solved analytically. The indentation master curves are obtained by
FE modeling. An algorithm for the fast identification of constitutive parameters
using a master curve database is proposed and validated by identifying constitu-
tive parameters from the results of FE simulations of indentation tests on linear
poroelastic materials with incompressible constituents. Finally two examples of
the application of the method on actual experimental data, from a gelatin gel and
from bone, are presented.

2 Linear Isotropic Poroelasticity Theory

This work considers the quasi-static indentation testing of a saturated linear isotropic
poroelastic medium, that is a porous isotropic solid skeleton saturated with a pore
fluid. Therefore it is useful to summarize the equations which govern the mechan-
ical behavior of such a material. The formalism and definitions adopted herein
conform to those used by Detournay and Cheng (1993), which is one of the stan-
dard references in the field together with the monographs by Wang (2000) and
Coussy (2004), to which the reader is referred for a more extensive introduction to
the theory.

The constitutive equation for the solid skeleton is

σi j +α pδi j = 2Gεi j +
2Gν

1−2ν
εkkδi j, (1)

where σi j and p are the stress tensor and pore pressure, respectively; εi j the strain
tensor, G the shear modulus, ν the drained Poisson’s ratio and δi j Kronecker’s
tensor. Note that G and ν are the elastic properties of the porous medium seen
as a homogeneous linear elastic material and not those of the solid phase itself.
The constitutive parameter α is the variation of the fluid volume in a material unit
volume due to the volumetric change, when the pore pressure can return to its
initial state. The range of variation of α is [0,1]. The response of the fluid phase is
expressed by

p =
2G(νu−ν)

α2 (1−2νu)(1−2ν)
(ζ −αεkk) , (2)

with νu being the undrained Poisson’s ratio and ζ the variation of fluid volume per
unit volume of porous material. Fluid motion is described by means of Darcy’s
law:

qi =−κ p,i, (3)
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where qi is the specific discharge vector, defined as the rate of fluid volume which
crosses a unit area of porous solid having the normal in the xi direction and κ the
permeability coefficient defined as the ratio between the intrinsic permeability and
the fluid (dynamic) viscosity. Note that in (3) body forces (and the effect of gravity)
are assumed to be negligible. Therefore they are not present in the equilibrium
equation, as well:

σi j, j = 0. (4)

Finally the local continuity equation for the fluid mass completes the problem:

∂ζ

∂ t
+qi,i = 0, (5)

where it is assumed that there is no fluid source (the right-hand side set to zero).
Equations (1–5) show that five parameters are required to fully characterize a sat-
urated linear isotropic poroelastic medium: four elastic constants and the perme-
ability, κ . Several different sets of elastic parameters can be chosen, and the choice
typically depends on the problem to be tackled. In the present case the following
set is considered: G, ν , α , νu.

3 One-dimensional Consolidation with Ramp-Hold Load Profile

One-dimensional consolidation is a classical problem in soil mechanics – proba-
bly the classical problem, as it was first studied by Terzaghi (1923). In a uniaxial
consolidation test (also called an oedometer test), load is applied under drained
conditions on the surface of a saturated poroelastic layer of a given initial thick-
ness L, which lies on an impermeable rigid substrate as shown in the schematic in
figure 1 a). While the classical approach assumes step-loading, in the present case
a ramp-hold load profile is considered. The solution to this problem is reported
herein because the problem itself presents analogies with indentation, and the way
its solution can be normalized inspired the master curve approach developed for
indentation. Moreover, to the authors’ knowledge, the analytical solution for one-
dimensional consolidation with a ramp-hold profile is reported in the literature ei-
ther in part, e.g. only in terms of pore pressure, or using a different normalization
(Schiffman, 1958; Olson, 1977; Wang, 2000).

In the case of uniaxial strain εxx, from now on indicated by ε for simplicity, the
constitutive equation (1) for stress component σxx (replaced with σ ) reduces to

σ =
2G(1−ν)

1−2ν
ε−α p. (6)
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Figure 1: Schematics of a) one-dimensional consolidation and b) spherical inden-
tation of a half-space.

By combining (2) with (3) and (5) and expressing ε using (6) the diffusion equation
for the pore pressure is obtained:

∂ p
∂ t
− c

∂ 2 p
∂x2 =− νu−ν

α(1−2ν)(1−νu)
dσ

dt
, (7)

where c is the diffusivity coefficient:

c =
2κG(1−ν)(νu−ν)
α2 (1−2ν)2 (1−νu)

. (8)

In the case of ramp-hold load profile with rise time tR and constant load rate γ =
−dσ/dt two diffusion equations have to be solved:

∂ p
∂ t
− c

∂ 2 p
∂x2 = γ

νu−ν

α(1−2ν)(1−νu)
, 0≤ t < tR, (9)

∂ p
∂ t
− c

∂ 2 p
∂x2 = 0, t ≥ tR. (10)

The boundary conditions are

p(0, t) = 0, (11)

p(2L, t) = 0, (12)
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while the initial condition (for t = 0) is

p(x,0) = 0, (13)

and the condition for t = tR is:

pr(x, tR) = ph(x, tR), (14)

where pr and ph are the pressure functions obtained from (9) and (10), respectively.

Equation (9) is a diffusion equation with constant right hand side. Its solution
(Kochina, 1971) is

p(x, t) = γ
νu−ν

α(1−2ν)(1−νu)

∞

∑
n=1,3,...

16L2

n3π3c

[
1− exp

(
−n2π2c

4L2 t
)]

sin
nπx
2L

. (15)

Note that this expression is equivalent to that reported by Wang (2000) for the
pressure of a finite poroelastic layer subjected to uniformly increasing load, with
the difference that herein also the time-independent terms in the expression are
included in the Fourier expansion. The diffusion equation for the hold segment
(10) is homogeneous and yields the following expression for the pressure field:

p(x, t) =
∞

∑
n=1,3,...

γ
νu−ν

α(1−2ν)(1−νu)
16L2

n3π3c

[
exp
(
−n2π2c

4L2 (t− tR)
)

−exp
(
−n2π2c

4L2 t
)]

sin
nπx
2L

.

(16)

To find the expressions for the displacement u(x, t), it is sufficient to introduce (15)
and (16) in (6) and integrate the obtained strain ε = ∂u/∂x imposing the boundary
condition u(2L, t) = 0. The displacement u(x, t) during the ramp is given by

u(x, t) =
γ(1−2ν)
2G(1−ν)

{
t(2L− x)− νu−ν

(1−2ν)(1−νu)

∞

∑
n=1,3,...

32L3

n4π4c

×
[

1− exp
(
−n2π2c

4L2 t
)](

cos
nπx
2L

+1
)}

,

(17)

while that for the hold segment by:

u(x, t) =
γ(1−2ν)
2G(1−ν)

{
tR(2L− x)− νu−ν

(1−2ν)(1−νu)

∞

∑
n=1,3,...

32L3

n4π4c

×
[

exp
(
−n2π2c

4L2 (t− tR)
)
− exp

(
−n2π2c

4L2 t
)](

cos
nπx
2L

+1
)}

.

(18)
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The solution of the problem, as it is the case for step-loading conditions (Detournay
and Cheng, 1993), can be rewritten in terms of non-dimensional time

τ =
√

ct
4L2 (19)

and non-dimensional surface displacement (often called ‘degree of consolidation’)

u∗ =
u(0, t)−u0(0, t)

u∞(0, t)−u0(0, t)
, (20)

where

u0(0, t) =
γtL(1−2νu)

G(1−νu)
, 0≤ t < tR,

u0(0, t) =
γtRL(1−2νu)

G(1−νu)
, t ≥ tR,

(21)

and

u∞(0, t) =
γtL(1−2ν)

G(1−ν)
, 0≤ t < tR,

u∞(0, t) =
γtRL(1−2ν)

G(1−ν)
, t ≥ tR.

(22)

Note that u∗ can vary in the interval [0,1). From expressions (21) and (22) the phys-
ical meaning of u0(0, t) and u∞(0, t) can be inferred: u0(0, t) is the surface displace-
ment which would occur if the actual load at instant t were applied in step-loading
conditions (under undrained conditions) on the virgin material, while u∞(0, t) is the
corresponding settlement for t → ∞ when the pore pressure field vanishes. Note
that u0(0, t) and u∞(0, t) correspond to the elastic solutions to the problem when
Poisson’s ratio is νu and ν respectively. By introducing (17), (18), (21) and (22) in
(20) the expression relating the non-dimensional surface displacement to the non-
dimensional time τ is obtained:

u∗(τ) = 1−
∞

∑
n=1,3,...

8
n4π4τ2

(
1− exp

(
−n2

π
2
τ

2)) 0≤ τ ≤ τR

(23)

u∗(τ) = 1−
∞

∑
n=1,3,...

8
n4π4τ2

R

[
exp
(
−n2

π
2 (

τ
2− τ

2
R
))
− exp

(
−n2

π
2
τ

2)]
τ ≥ τR,

(24)

where τR =
√

ctR/4L2.
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The obtained expressions for u∗(τ) represent a master curve, in the sense that, given
τR, it is unique for all the materials and specimen geometries. Plots of master curves
corresponding to different values of τR are reported in figure 2. There is one master
curve for the ramp, from which the master curves for the hold segment depart with
the abscissa of the transition kink point being τR. All the master curves lie between
the two limit cases of an indefinitely long ramp (τR→ ∞) and of step-loading con-
ditions (τR = 0), which is the classical oedometric master curve (Detournay and
Cheng, 1993):

u∗(τ) = 1−
∞

∑
n=1,3,...

8
n2π2

(
1− exp

(
−n2

π
2
τ

2)) . (25)

It is important to highlight that the one-dimensional consolidation test, in which
the surface displacement-time profile is recorded, allows for the determination of
3 of the 5 poroelastic constitutive parameters in whichever domain, ut or u∗τ ,
the fit of experimental data is carried out. In the displacement-time functions
(17) and (18) three ratios containing the constitutive parameters can be isolated:
(1−2ν)/[2G((1−ν)], (νu−ν)/[(1−2ν)(1−νu)] and c, defined by (8), while in
the normalized domain G, ν and νu, appear in the normalization of displacement
(20) and c in the normalization of time (19). Note that the permeability κ and the
parameter α only appear in the diffusivity coefficient c therefore, if both are to be
determined, even when the other three constitutive parameters are known only the
ratio κ/α2 can be identified.

4 Spherical Indentation with Ramp-Hold Load Profile

The normalization of time and displacement in the case of spherical indentation of
a poroelastic half-space, figure 1 b), is analogous to that for one-dimensional con-
solidation. The non-dimensional time t∗ is given by (Agbezuge and Deresiewicz,
1974)

t∗ =
√

ct
Rh(t)

, (26)

where R is the indenter radius and h(t) the indentation depth. Note that for one-
dimensional consolidation, definition (19), the denominator is the layer thickness
2L which has the physical meaning of being twice the length of the ‘drainage path’
(the longest distance the fluid has to cover to escape the medium) while in (26) it
is the contact radius

√
Rh(t), for which the same meaning cannot be assumed. The

non-dimensional indentation depth is

h∗ =
h(t)−h0(t)

h∞(t)−h0(t)
, (27)
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Figure 2: Master curves for one-dimensional consolidation with a ramp-hold pro-
file: the hold segment master curves for the different non-dimensional rise times
τR, plotted with points, lie between the ramp (solid line) and step-loading (dashed
line) master curves.

where, analogously to one-dimensional consolidation, h0(t) is the indentation depth
which would be measured if the actual load at instant t were applied in step-loading
conditions (under undrained conditions) on the virgin material and h∞(t) is the cor-
responding indentation depth at t = ∞ when the pore pressure field vanishes. These
two limiting situations again correspond to the elastic solutions when Poisson’s
ratio is νu and ν .

As stated previously no closed-form analytical solution for the poroelastic inden-
tation problem is available, therefore FE modeling was utilized. A master curve
library was built imposing that the constituents are incompressible (α = 1 and
νu = 0.5). This assumption is characterized by the strongest poroelastic effect,
therefore the obtained master curves are more reliable, and in particular the nor-
malization of displacement (27) since the difference h∞(t)− h0(t) is larger. Note
that both the extension of the contact area and the contact pressure distribution de-
pend on Poisson’s ratio, therefore each pair (νu,ν) leads to a different set of master
curves (Deresiewicz, 1976). In the present work the attention was limited to the
case νu = 0.5, which is a very common assumption in soil mechanics, for gels
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(Chiarelli, 2004; Lin and Hu, 2006) and, in first approximation, for soft tissues
(Simon, 1992).

An axisymmetric FE model of the indentation process was developed using ABAQUS
(Version 6.7, SIMULIA, Providence, RI, USA). The model is sufficiently large for
the specimen to be considered a half-space (the maximum obtained indentation
depth was approximately 1/1000 of the thickness of modeled poroelastic layer).
The indenter was modeled as an analytical rigid surface and the contact between
the indenter and the poroelastic half-space surface was imposed to be frictionless.
The poroelastic material was assumed to be saturated. The half-space was dis-
cretized using eight-node elements with biquadratic displacement interpolation, bi-
linear pore pressure interpolation, and reduced integration. It was assumed that
water can diffuse freely across the entire surface of the half-space, including the
contact region (the indenter is permeable). Given the purpose of the present work,
which is aimed at presenting the identification methodology, only the case of a per-
meable indenter was considered, however the approach can also be applied to the
case of an impermeable indenter (e.g. by adopting the modeling strategy proposed
by Warner et al. (2001)). Since an accurate estimation of the values of h0 and h∞ is
crucial for obtaining reliable h∗ (t∗) master curves, FE modeling was used to com-
pute the elastic limits (i.e. for νu and ν) rather than using either Hertz’s formula
(Johnson, 2003) or its ‘corrected’ version by Hay and Wolff (2001). For the elastic
model, eight-node elements with biquadratic displacement interpolation, reduced
integration, hybrid with linear pressure interpolation were employed (the hybrid
formulation is to be preferred in the case of material incompressibility, as is the
case of the simulations to assess the values of h0(t)). The master curve database
was built by parameterizing the FE model: ν varied in the range [0− 0.45] with a
0.01 step and for each of these values 17 different rise times (loading rates) were
considered (the imposed load was kept constant). Therefore approximately 800
simulations were required.

The master curves were built using only the results corresponding to the hold seg-
ment and, in particular, the master curve for the ramp was built using h(tR) values
from simulations with different rise times. This strategy was chosen because re-
sults corresponding to the ramp, and especially to its initial stages, can present
oscillations which are due the fact that in the FE model the contact radius varies
discretely, therefore an increase in load does not necessarily lead to an increase in
contact radius (Mesarovic and Fleck, 1999). Although this does not affect the over-
all smoothness of the solution for the h(t) domain it leads to a non-negligible noise
when the h∗(t∗) values are computed, because the normalization (27) is carried out
by computing h0 and h∞ values from the value of the corresponding applied load.

The master curves for the extreme values of Poisson’s ratio, 0 and 0.45, and dif-
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ferent rise times are reported in figure 3. The curves are plotted for the non-
dimensional time interval 0.2≤ t∗ ≤ 4 because for t∗ > 4 they are nearly horizontal
(therefore not suitable for identification) while t∗ ≈ 0.2 corresponds to the shortest
rise time which was considered. Smaller values of the inferior limit of the interval
could be obtained by adopting shorter rise times (and for tR = 0 the solution by
Deresiewicz (1976)), however this would not lead to a significant improvement of
the parameter identification results because, as a general rule, the experimental data
corresponding to the initial stages of the test are de-weighted because of the uncer-
tainties related to the onset of contact. By comparing the curves corresponding to
ν = 0 and ν = 0.45 it can be noted how the consolidation process advances faster
when Poisson’s ratio is larger, as could be expected, since the total time-dependent
displacement is proportional to the difference between νu and ν : for step-loading
conditions and using Hertz’s formula (Selvadurai, 2004), the ratio of h∞ to h0 is
given by

h∞

h0
=
(

1−ν

1−νu

) 2
3

. (28)

This implies that the identification of material parameters is more delicate when
the difference between the values of the undrained and drained Poisson’s ratios is
small, because the time-dependent displacement to be experimentally measured is
small.

When comparing one-dimensional consolidation master curves (figure 2) with those
for indentation (figure 3), the analogy between the two problems stands out: the
portions of master curve corresponding to hold segments depart from that for the
ramp with a marked increase in the slope (kink point) and the master curves corre-
sponding to infinite rise time and to step-loading (not plotted for the indentation)
are lower and upper bounds, respectively, which define the region where normal-
ized experimental points can lie.

5 Identification Algorithm

The key component of an identification method is the optimization algorithm which
has to be reliable and sufficiently efficient in terms of required computing time, es-
pecially when dealing with large amounts of data. The procedure presented herein
is based on MATLAB® Optimization Toolbox™(Version 7.4, The MathWorks,
Natick, MA, USA) and in particular on its non-linear least-squares optimization
routine, the use of which in the context of material property identification is re-
ported in the literature (Cugnoni et al., 2007; Galli et al., 2008).

Given the datapoints (u1,y1), . . . ,(um,ym) of the curve to be fit and the fitting model
M(xxx,u) (governed by a set of parameters xxx), the goal of the identification procedure
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Figure 3: Master curves for spherical indentation with a ramp-hold profile for ν = 0
(top) and ν = 0.45 (bottom) and different rise times (of increasing values from left
to right). Consolidation advances faster when Poisson’s ratio is higher because
the total time dependent displacement is smaller, as shown in equation (28). The
master curves for spherical indentation are analogous to those for one-dimensional
consolidation (figure 2) with the different curves for the hold segment departing
from that of the ramp.
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is to find the set of parameters xxxid which provides the best fit. For any choice of xxx
it is possible to compute the residuals

fi =
yi−M(xxx,ui)

y
, i = 1, . . . ,m, (29)

where y is the average value of y. If a least squares fit is chosen, the parameters are
determined as the minimizer xxxid of the sum of the square residuals

F(xxx) =
1
2

m

∑
i=1

( fi(xxx))2. (30)

The minimization strategy is specific to the optimization algorithm, which in the
present case is a subspace trust region method and is based on the interior-reflective
Newton method (Optimization Toolbox™ 4 User’s Guide, 2008). A synthetic
flowchart of the proposed identification algorithm is presented in figure 4. The
input data consists of the experimental time-displacement curve which is interpo-
lated on a grid of m equally-spaced points (t1,h1), . . . ,(tm,hm) (in the present work
m was set to 200). Each point (ti,hi) is assigned a weight wi ∈ [0,1] to be multiplied
by the respective residual fi. Therefore the objective function (30) becomes

F(xxx) =
1
2

m

∑
i=1

(wi fi(xxx))2. (31)

Thus the influence on the final result of the less reliable portions of the curve, can
be penalized (it is typically the case of the initial part of the ramp).

The vector xxx contains the poroelastic parameters to be identified. Although in the
implemented routine, constant values can be assigned to known constitutive pa-
rameters, for the sake of generality, in the following it will be assumed that three
constitutive parameters are to be identified. As it is the case for one dimensional
consolidation (section 3), for indentation up to three constitutive parameters can be
identified. Since κ and α , also in this case, only appear in the diffusivity coefficient
(8) the seven possible sets of three parameters to be identified are:

1. (G,ν ,κ)

2. (G,νu,κ)

3. (ν ,νu,κ)

4. (G,ν ,α)

5. (G,νu,α)
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Figure 4: Flowchart of the identification algorithm featuring two optimization
steps, one in the non-dimensional (∗) domain, and the other in the dimensional
(d) domain (see text for details).

6. (ν ,νu,α)

7. (G,ν ,νu)

In the following it will be assumed that the set of unknown parameters is (G,ν ,κ).

To start the identification process an initial guess of the parameter values (G0, ν0

and κ0) has to be provided. Moreover these values are utilized to normalize the
values of the parameters in the vector xxx, which therefore is given by:

xxxT =
(

G
G0

ν

ν0
κ

κ0

)
. (32)

This normalization improves matrix conditioning (Cugnoni et al., 2007). As is
shown in figure 4, the core of the routine, the identification loop, consists of two
nested optimizations, first in the normalized domain h∗t∗, then in the real ht domain.
At each iteration both optimizations are carried out. In both cases a constrained
optimization scheme is adopted and the objective functions are minimized in the
parameter space defined by

G ∈
(
G0 ·10−2,G0 ·102) ,

ν ∈ (0,0.45) ,

κ ∈
(
κ

0 ·10−6,κ0 ·106) . (33)
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As it can be seen the bounds on G and κ are very loose, therefore the optimization
with respect to these two parameters can be considered virtually unconstrained.

In the first optimization, for each input point (ti,hi) the corresponding (t∗i ,h∗i ) point
is computed using the current values of the constitutive parameters xxx. While the
evaluation of t∗i via (26) is straightforward, the evaluation of h∗i requires assessing
the values of h∞i and h0i, which were computed solving for h the ‘corrected’ Hertz’s
formula by Hay and Wolff (2001):

P = η
4E

3(1−ν2)
R

1
2 h

3
2 , (34)

where the correction factor η is given by

η = 1+
2(1−2ν)
3π (1−ν)

√
h
R

. (35)

Note that for incompressible materials, as is the case for h0 when the assumption
νu = 0.5 is made, (34) reduces to Hertz’s formula (γ = 1). Using equation (34) is
computationally more expensive than adopting Hertz’s formula because there is no
closed-form solution for h when ν 6= 0, nevertheless it allows for better estimation
of h∞i and as a consequence more accurate values for h∗i . This first optimization
aims at finding the values of the constitutive parameters, gathered in the vector xxx∗,
which characterize the master curve from the database which best fits the normal-
ized experimental points (t∗i ,h∗i ). The residuals are given by

f ∗i =
h∗i −h∗MCi

h∗
, i = 1, . . . ,m, (36)

where h∗MCi are the values assumed by the database master curve in correspondence
of the values t∗i .

In principle the identified parameter values xxx∗ should already correspond to the
best possible fit in the dimensional domain. Nevertheless what is done when nor-
malizing the data according to (27) is essentially zooming in on the region of the
displacement-time curve corresponding to the hold segment; as a consequence the
procedure can be particularly sensitive to the noise in experimental data. In the
second optimization stage it is checked that the results obtained in the normalized
domain correspond to a good fit in the dimensional domain.

In the second optimization stage, the actual experimental points (ti,hi) are fit start-
ing from the normalized experimental points (t∗i ,h∗i ) obtained at the end of the for-
mer optimization stage (the identified parameter values xxx∗ are introduced as first pa-
rameter guess). The time-displacement curve hd(t) corresponding to (t∗1 ,h∗1), . . . ,(t

∗
m,h∗m)
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is computed by solving (26) and (27) for t and h (again (34) is used to calculate
hd

0(t) and hd
∞(t)). In this second optimization the residuals are given by

f d
i =

hi−hd
i

h
, i = 1, . . . ,m, (37)

where hd
i are the values assumed by the curve hd(t) corresponding to the values

ti. Eventually this latter optimization stage provides a second set of constitutive
parameters xxxd to be introduced as new guess in the h∗t∗ optimization stage.

To quantify the difference between the constitutive parameters in the two vectors
xxx∗ and xxxd the norm ξ is defined

ξ =
3

∑
i=1

∣∣x∗i − xd
i

∣∣
x∗i

. (38)

The identification loop is iterated until the difference between the constitutive pa-
rameters in the two vectors xxx∗ and xxxd is negligible. The convergence condition

ξ < 0.01 (39)

is assumed. When (39) cannot be satisfied, the procedure is repeated until the
maximum number of iterations nmax

it = 50 is reached. In this case the values of xxx∗

and xxxd which yield min(ξ ) are kept. The final output of the identification algorithm
is the unique set of identified parameters xxxid defined as the arithmetic average of xxx∗

and xxxd :

xxxid =
xxx∗+ xxxd

2
. (40)

6 Validation

The reliability of the proposed approach was ascertained by carrying out identifi-
cation on h(t) curves obtained by forward FE analyses. In particular the procedure
was subjected to two tests:

• Test 1: Identification of poroelastic properties from five sets of FE-generated
indentation displacement-time curves using randomly generated constitutive
parameters;

• Test 2: Identification of constitutive parameters of three ‘materials’ having
the same shear modulus and permeability but different Poisson’s ratio, from
data perturbed with ±1% white noise.
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These identifications also allowed for quantification of the computing time require-
ments of the identification procedure. The maximum duration of one identification,
which corresponds to the case of reaching the maximum number of iterations, on
a personal computer equipped with a dual core 2.16 GHz cpu, was in the order of
1 minute. This result is particularly significant because it proves that the proposed
approach allows for rapid analysis of large numbers of indentation tests.

Test 1

For the first test, five sets of values of constitutive properties were randomly chosen
in the intervals

G ∈
(
Gr ·10−1,Gr ·101) ,

ν ∈ (0,0.45) ,

κ ∈
(
κ

r ·10−2,κr ·102) . (41)

where Gr and κr are reference values. To make the test more severe, the same
criterion for the initial guess of parameters was adopted for all five sets as if the hy-
pothetical user of the identification algorithm did not examine experimental curves
before processing them for identification. The values of G0 and ν0 were estimated
via Hertz’s contact formula since for such an initial guess the application of the
more complex formula by Hay and Wolff (34) does not lead to any improvement in
the results. It was assumed that the indenter displacements at the end of the ramp
and at the end of the test are 1.1h0 and 0.9h∞ respectively, while κ0 was assessed
starting from the assumption that the rise time corresponds to t∗ = 1 and solving
(26) for κ . As previously discussed, the reliability of experimental (and FE) results
for the ramp, and especially for its initial stages, is affected from the uncertainties
to the onset and progress of contact and therefore the following strategy for the
weights wi was adopted:

wi = 0, t < 0.1tR,

wi =
t
tR

0.1, tR ≤ t < tR,

wi = 1, t ≥ tR.

(42)

It can be seen that the first 10% of the ramp, when the specimen surface has just
been engaged, is discarded while the following points have increasing influence on
the indentation results as contact becomes well-established.

The properties assigned to the five ‘materials’ with randomly-generated poroelas-
tic properties are summarized in table 1 along with the results of the identification.
The identification of the shear modulus proves to be accurate: with the exception of



258 Copyright © 2009 Tech Science Press CMES, vol.48, no.3, pp.241-268, 2009

the fifth set of material properties, the obtained results for identified shear modulus
Gid fall in the interval Gid/G± 11%. Considering again sets 1 to 4, an analogous
conclusion can be drawn for the permeability: the value of this parameter can span
many orders of magnitude, therefore the fact that the maximum error in the identi-
fied values κ id is about 40% can be considered a more than satisfactory result. The
identification of Poisson’s ratio proves to be more diffucult since it is particularly
sensitive to the initial hypothesis on the values of h0 and h∞, as shown in equation
(28): for sets 1 to 5 an average underestimation of about 30% is obtained. To un-
derstand the influence of the guess of the values of h0 and h∞ on the quality of the
results, it is instructive to consider the identification relative to set 5. The results
reported in table 1 are satisfactory but less accurate than those for set 1 to 4 with
errors of 21%, 36% and 157% on G, ν and κ , respectively. Examination of the
target curve h(t) plotted in figure 5, it is clear that, towards the end of the test, the
curve is almost flat; therefore the assumption that the indentation depth at the end
of the test is 90% of the asymptotic value clearly leads to an overestimation of h∞.
A more appropriate hypothesis would be that at the displacement at end of the test
corresponds to 0.98h∞. The identified parameters corresponding to this latter guess
are reported in table 1 (the set is labeled ‘5a’): it can be seen how the quality of
the results has significantly improved: the errors on G, ν and κ decrease to 3%,
8% and 29%, respectively. This confirms that with just a qualitative assessment
of the slope of the h− t curve at the end of the test, the initial guess on parameter
values and therefore the eventual results of the identification can be significantly
improved. The comparison between the h(t) curves identified with the two hypoth-
esis on h∞ is reported in figure 5. The difference between the two fits is minimal
with the only significant difference being that the second assumption on the value
of h∞ leads to a better fit of the first part of the ht curve for the hold segment. This
plot also illustrates how small the time dependent displacement is when Poisson’s
ratio is larger than 0.4.

Test 2

For the second test, the indenter time-displacement curves for three materials hav-
ing the same shear modulus Gr and permeability κr, and of increasing values Pois-
son’s ratio, ν = 0.15, 0.25, 0.35, were perturbed with ±1% white noise, a level of
noise which exceeds that typically found in instrumented indentation testing. For
all the three sets of data the initial guess on the parameter values was made adopt-
ing the same strategy used for the first test: the displacements at the end of the
ramp and at the end of the test were assumed to be 1.1h0 and 0.9h∞ respectively,
κ0 was derived from the assumption that the rise time corresponds to t∗ = 1 and
the weights defined in (42) were employed. Identification was carried out for both
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the original unperturbed data and for the perturbed data. The results summarized
in table 2 show that the loss of accuracy in the identified results caused by the
introduction of noise is not significant. For sets 1 and 2 only the error on the per-
meability increases noticeably, staying however within an acceptable level (42%)
for a parameter which, as already mentioned, can span over orders of magnitude. In
the case of set 3 the results regarding the perturbed data are even better than those
on the original data; on the one hand, this suggests that the initial guess for the
parameter values is the primary factor in the final outcome of the identification, but
on the other, this shows that the identification algorithm can tolerate the imposed
level of noise even for the larger Poisson’s ratio value. The plots of the original
and perturbed data for set 1 with the respective identified curves and residuals are
reported in figures 6 and 7. Both the fits in the ht domain and those in the h∗t∗

domain are very good and the curves identified from the perturbed data exhibit the
average trends in the residuals of the curves identified from the unperturbed data.
Moreover in figure 7 it is possible to appreciate the amplification effect that the h∗t∗

normalization has on the imposed noise.

Set
G
Gr ν

κ

κr
Gid

Gr ν id κ id

κr ξ
Gid

G
ν id

ν

κ id

κ

1 8.50 0.06 4.86E-01 8.08 0.06 2.82E-01 0.001 0.95 1.01 0.58

2 0.21 0.28 4.60E+01 0.23 0.16 4.77E+01 0.029 1.11 0.58 1.04

3 0.93 0.13 1.47E+01 0.94 0.07 1.05E+01 0.007 1.01 0.60 0.71

4 3.98 0.25 6.80E+01 4.25 0.15 6.39E+01 0.014 1.07 0.63 0.94

5 8.20 0.41 3.69E-02 9.94 0.26 9.49E-02 0.039 1.21 0.64 2.57

5a 8.22 0.41 3.69E-02 8.43 0.38 2.62E-02 0.036 1.03 0.92 0.71
Table 1: Summary of the randomly generated constitutive parameters (G, ν and κ)
for the five sets of data considered in Test 1 and corresponding identified results.
The subscript r indicates the reference values with respect to which the parameters
were normalized while the superscript id indicates the identified values. The results
for set 5a were obtained utilizing a different initial guess of the parameter values
(see text for details). The value of the error norm ξ was computed according to
(38).
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Figure 5: Results for validation test 1, identification of the fifth set (table 1) of
randomly generated constitutive parameters (the units for t and h are time (t) and
length (L), respectively). The identified h(t) curve on the left and the respective
residuals fi are relative to the first guess on the value of h∞ (the displacement at
end of the test corresponds to 0.9h∞); the identified h(t) curve and the residuals fi

on the right are relative to the second guess on the value of h∞ (the displacement at
end of the test corresponds to 0.98h∞). The difference between the two fits is mini-
mal, but the second guess leads to a more accurate identification of the constitutive
parameters.

7 Application Examples

The identification procedure was tested on experimental data from two extreme
types of spherical indentation test: a ‘macroindentation’ test, 12.7 mm indenter
radius, on gelatin gel and a nanoindentation test, 21 µm indenter radius, on bone
immersed in water. This exercise was aimed at further benchmarking the algorithm
rather than at an actual material characterization, therefore only one experimental
curve for each material was considered, and the description of the specimen prepa-
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unperturbed data perturbed data

Set ν ξ
Gid

Gr
ν id

ν

κ id

κr ξ
Gid

Gr
ν id

ν

κ id

κr

1 0.15 0.005 0.98 0.92 0.87 0.004 0.96 1.03 0.77

2 0.25 0.005 1.00 0.89 0.90 0.004 1.05 0.73 1.42

3 0.35 0.012 1.09 0.78 1.82 0.010 1.05 0.84 1.65
Table 2: Summary of the results of the identification of the parameters G, ν and κ

for the three sets of data utilized in Test 2. The shear modulus and the permeability
were assigned the reference values Gr and κr in all the three cases, while the value
of Poisson’s ratio increased from set 1 to 3. The superscript id indicates the identi-
fied values. The perturbed data were obtained by applying ±1% white noise to the
unperturbed time-displacement curve (see text for details). The value of the error
norm ξ was computed according to (38).

ration and testing is limited to few essential notes. Gelatin from porcine skin, 250
g Bloom, in powder form (Sigma-Aldrich Chemie GmbH, Steinheim, Germany)
was dissolved in water, weight ratio gelatin to water 1:4, at 55°C, under moderate
agitation for 15 minutes. The solution was then cast in a glass mold and kept at
room temperature for 24 hours. A cylindrical specimen of about 40 mm height and
70 mm diameter was obtained. The indentation test was carried out on an Instron
5544 (Instron, High Wycombe, UK) testing apparatus equipped with a 5 N load
cell. The maximum imposed load was 0.5 N, with a ramp of 20 s and a hold time
of 180 s. The experimental data for bone was taken from a previous study on the
mechanical response of bone immersed in different solvents (Bembey et al., 2006)
and the median curve considered here is the same one analyzed by Oyen (2008).
The maximum imposed load was 0.025 N, with a ramp of 25 s and a hold time of
120 s. The reader is referred to the cited article for a complete description of the
experimental procedure .

As discussed early, up to three constitutive parameters can be identified from an
indentation tests, therefore assumptions were made on the values of the remaining
two. For both materials G, ν and κ were the identified parameters and the values of
νu and α were imposed. For both materials it was assumed νu = 0.5, and in the case
of gelatin it was assumed that the constituents are incompressible, therefore α = 1,
while in the case of bone, the assumption α = 0.14 was made (Cowin, 2004). As
in the case of the tests used for the validation of the identification procedure, the
initial guess of the parameter values, both for the gel and for bone, was derived
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Figure 6: Results for validation test 2, identification of the first set (table 1) of
randomly generated constitutive parameters without noise (the units for t and h are
time (t) and length (L), respectively). Both the fit of the h(t) curve and that of the
h∗(t∗) are satisfactory with only the first h∗(t∗) point being off target, however its
influence on the identification results is negligible as it is heavily penalized by the
adopted weighting strategy (42)

from the assumption that the indenter displacements at the end of the ramp and at
the end of the test are 1.1h0 and 0.9h∞ respectively, while the rise time corresponds
to t∗ = 1. The identified values of G, ν and κ were 2.42·10−2 MPa, 0.185, and
1.1 mm4N−1s−1 for gelatin and 466 MPa, 0.259, and 6.5·10−8 mm4N−1s−1 for
bone. To check the quality of the identification, forward FE simulations of the
experiments were carried out, using as input data the identified properties. The
features of the adopted FE models are in line with those of the models used to create
the master curve database and are not reported for the sake of brevity. Comparisons
between the experimental data, the obtained fit using the proposed identification
procedure and the results of the forward FE simulations are reported in figure 8. It
can be appreciated how there is complete agreement of the three sets of data in both
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Figure 7: Results for validation test 2, identification of the first set (table 1) of
randomly generated constitutive parameters with ±1% noise (the units for t and h
are time (t) and length (L), respectively). Both the fit of the h(t) curve and that of
the h∗(t∗) are satisfactory, exhibiting the average trend in the residuals of the curves
identified from the unperturbed data (figure 6). The plots of the residuals show how
the noise is significantly amplified by the normalization.

cases.

These two examples of the application of the identification approach highlight the
intrinsic advantage the master-curve method has on other identification methods
based on a database of dimensional solutions, e.g. Gupta et al. (2008): the same
database of master curves can be applied to any kind of material, any ramp-hold
profile and any indenter radius. The only caveat is that the deformation of the solid
skeleton should not significantly exceed its elastic limit, since it is assumed that
there are no material property alterations beneath the indenter. To have an estimate
of the strain level in the material the formula εR = 0.2

√
h/R (Johnson, 2003) can

be employed, where εR is a representative strain, to be compared with the elastic
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Figure 8: Application of the identification procedure to actual experimental data:
‘macroindentation’ of a gelatin gel (left) and nanoindentation of bone immersed
in water (right). The applied loads are 0.5 N and 25 mN, respectively. In both
cases the identification algorithm lead to a very good fit of experimental data. The
quality of the identification is further demonstrated by the excellent agreement with
the results of forward FE simulations, using the identified poroelastic parameters
as input material properties.

strain limit.

8 Conclusions

A method for the identification of material poroelastic parameters from ramp-hold
spherical indentation test is proposed. The procedure is based on a database of
nondimensional master curves, therefore it is applicable to any pertinent experi-
mental data independent of material properties, indenter radius and lengths of the
ramp and hold segments. The approach proves to be effective in terms of both re-
quired computational effort and accuracy: the identification of three constitutive
parameters, from one experimental curve, takes about one minute. Although the
uniqueness of the solution cannot be assured, if a sensible guess of the initial pa-
rameters is introduced in the identification algorithm, the accuracy in the obtained
results is good. Moreover such a guess can easily be drawn from a qualitative as-
sessment of the time-displacement curve and, in particular, from an estimation of
the value of the asymptotic displacement. Herein the application of the identifi-
cation algorithm was limited to the case of νu = 0.5 and to a permeable indenter,
nevertheless the inclusion of a variable undrained Poisson’s ratio and of the inden-
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ter impermeability is straightforward as it would only require an enlargement of the
master curve database.
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