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The Stress Analysis of Thin Contact Layers: a Viscoelastic
Case

C. Y. Chen1 and C. Atkinson2

Abstract: In this paper, we extend our previous analysis of a contact problem
with a circular indenter pressed normally against a semi-infinite elastic composite
to that of a semi-infinite viscoelastic composite which consists of a contact layer
with uniform thickness welded together with another dissimilar medium. Using the
correspondence principle between the Laplace transformed elastic equations and
the viscoelastic ones, the asymptotic results derived previously for the pure elastic
case are readily adopted for the viscoelastic one with the elastic constants replaced
by appropriate functions of Laplace transformed variables for the linear viscoelastic
solid. We focus our analysis on the force induced by the uniform indentation and
investigate the effect of the contact layer and its property on the force generated.
The Laplace transformed force is inverted using the method developed by Schapery
to give the real time behaviour of the force.

Keywords: contact mechanics, viscoelastic composite, thin coating, force versus
displacement

1 Introduction

Contact mechanics is a sub-branch of continuum mechanics that is concerned with
the stresses and deformation of solid bodies in contact with each other. The stress
field beneath an indenter and the associated deformation can be used to interpret
and explain a variety of phenomena. Such contact may result in fracture which
is intentional as in drilling, for example, or to be avoided in order to resist wear.
Precise modelling for each of these events requires adequate constitutive equations
describing the medium and the indenter as well as methods for solving the conse-
quent boundary value problems.

Indentation tests or hardness tests are applications of contact mechanics that are
commonly used in testing the mechanical properties of materials. For homoge-
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neous materials, the measured load or penetration response during elastic loading
of an indentation test can be used to estimate the effective modulus. The identi-
fication of these effective moduli involving non-homogeneous materials, however,
remains a challenging task in practice although various analytical efforts have been
put forward in the study of load transfer between the contact bodies; see Selvadurai
(2007) for a recent review.

For the indentation of a composite material such as a coated system (with a coating
of thickness in the range of 0.2 microns to 5 microns) the effective modulus mea-
sured depends in an unknown way on the elastic properties of the coating and the
semi-infinite substrate although substrate properties are more likely sensed when
the coating is very thin than those sensed when the coating is much thicker. The
nano-indentation technique has been established as the primary tool for investigat-
ing the hardness of small volumes of materials (Malzbender et. al. (2002); Cheng
et. al (2004)). The atomic force microscope (AFM), for example, has been used
as a microindenter of thin biological samples to determine the local elastic moduli
of the tissue (Mahaffy et. al (2000); Dimitriadis et.al. (2002); Clifford and Seah
(2009)). The microscope provides the signals for force and displacement and hence
the force-indentation relation for the material, which can then be used to estimate
elastic moduli, provided that a theoretical model describing the contact is avail-
able. Thus a simple-to-use model will be useful in the routine AMF work or other
indentation tests in general.

Various numerical techniques such as the finite element method have been em-
ployed to optimize the nano-indentation experimental procedure and to support the
evaluation of results ; see, for example, Liu and Tsai (2009); Chen (2002); Poon et.
al. (2008); Henrich et. al. (2009) and the reference therein. Analytical solutions
have also been put forward, for example, by Haider and Holmes (1997) providing
an approximate solution for the indentation of a thin compressible elastic layer by a
flat ended cylinder. This model is further extended and incorporated into a numer-
ical scheme thereby improving the effectiveness of the scheme with the accuracy
and convergence rate dramatically increased (Pavliotis and Holmes (2002)). By
considering axisymmetric indentation of a thin incompressible elastic layer, Chad-
wick (2002) provided estimates for the force and contact radius by asymptotically
matching a lubrication-type expansion in the contact region to the far field of an
edge layer expansion. More recently, Chen and Atkinson (2008) proposed a semi-
analytical formulation developed previously in solving fracture problems in layers
to treat contact problems (Atkinson and Chen (1997); Chen and Atkinson (2005)).
In particular, a singular perturbation technique is employed to obtain relatively ex-
plicit formulae for the situation when the layer is very thin and nano-indentation is
used.
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We continue the analysis carried out in Chen and Atkinson (2008) where a contact
problem with a circular indenter pressed normally against a semi-infinite elastic
composite is considered. The contact layer with uniform thickness (h) is welded
together with another dissimilar medium of an infinite extent, as illustrated in Fig-
ure 1 . Using an integral equation formulation, the force exerted by the indenter on
the contact layer is evaluated for finite h while an asymptotic formula in the limit
h→ 0 is derived using singular perturbation techniques. A brief account of this is
given in the appendix.
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Figure 1: A circular indenter pressed normally against a layered composite.

Here we extend the results for the pure elastic composite further to consider the
viscoelastic case. It is well known that a correspondence principle exists between
the Laplace transformed viscoelastic equations and the elastic ones. It is therefore
relatively simple to go from the solution for an elastic problem to a viscoelastic
one. To avoid repetition, we will omit the detailed formulation of the elastic model,
the reader is referred to Chen and Atkinson (2008) for details, and list some of the
basic equations for the theory of viscoelasticity for small strain. The constitutive
equations relating the stress to the history of strain can be written, for an isotropic
solid, as

si j =
∫ t

−∞

G(t− τ)
dei j

dτ
dτ,
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and

σkk =
∫ t

−∞

H(t− τ)
dεkk

dτ
dτ,

where the deviatoric components are defined as

si j = σi j−
1
3

δi jσkk, and ei j = εi j−
1
3

δi jεkk,

and the repeated suffices sum over 1, 2, and 3. As usual, εi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
is

the definition of small strain (see Christensen (1971)). An alternative representation
to the integral notation in the form of differential operators is given as

Psi j = Qei j and M σkk = N εkk,

where P,Q,M and N are polynomials in the time derivative ∂/∂ t. The equations of
motion which are the same for both the pure elastic and viscoelastic cases are

ρ
∂ 2ui

∂ t2 = σi j, j,

where ρ is the density of the material.

As can be easily seen, the existence of the correspondence principle ensures that the
Laplace transforms of the above equations of motion and the constitutive equation
are identical to those of the elasticity equations with the elastic moduli replaced by
appropriate functions of p, the Laplace transform variable. Thus

s̄i j(p) = pḠ(p) ēi j(p) and σ̄kk(p) = pH̄(p) ε̄kk(p), (1.1)

where

Ḡ(p) =
∫

∞

0
e−pt G(t)dt and H̄(p) =

∫
∞

0
e−pt H(t)dt,

and pḠi(p) corresponds to an elastic constant. The equations of motion for the
plane strain case, ignoring the inertia terms, become

∂ σ̄i j

∂x j
= 0, i, j = 1,2, (1.2)

where in all the above equations it is assumed that all variables are zero prior to
time t = 0.
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As a first example, the standard linear solid is considered and using the differential
operator notation, the constitutive equations are(

d
dt

+β

)
si j = a0

(
d
dt

+α

)
ei j, (1.3)(

d
dt

+η

)
σkk = b0

(
d
dt

+ζ

)
εkk, (1.4)

where α,β ,η ,ζ ,a0, and b0 are positive constants. Taking the Laplace transform of
the above equations and using equation (1.1), we have

pḠ(p) = a0

(
p+α

p+β

)
, and pH̄(p) = b0

(
p+ζ

p+η

)
. (1.5)

We shall adopt a common approximation for viscoelastic solids by taking Poisson’s
ratio ν to be constant. It can be deduced that

H̄(p) =
(

ν +1
1−2ν

)
Ḡ(p),

and the time transformed elastic constants become

2µ̄(p) = pḠ(p), λ̄ (p) =
1
3
(

pH̄(p)− pḠ(p)
)

and Ē(p) =
(

ν +1
3

)
pḠ(p).

(1.6)

The relaxation functions can be inverted to give

G(t) = a0

{(
α

β

)
−
(

α−β

β

)
e−β t

}
, (1.7)

H(t) = a0

(
ν +1
1−2ν

){(
α

β

)
−
(

α−β

β

)
e−β t

}
. (1.8)

2 Force versus displacement - the pure elastic case

An asymptotic formula for the total force F in the limit h→ 0 has been derived for
the pure elastic case in Chen and Atkinson (2008). Some typos unfortunately have
appeared in the previous work (Section 5 -Force versus displacement). We correct
these typos here and repeat part of the analysis for the force induced by a uniform
indentation when h is infinitesimal before extending it to the viscoelastic case.

To evaluate the total force F exerted by the punch on the elastic composite we
require

F = −2π

∫ a

0
r
(

σ
(2)
33

)
z=0

dr, (2.1)
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where a is the radius of the circular indenter and σ
(2)
33 is the normal stress acting on

the surface of the contact layer z = 0. With the formulation,

r
(

σ
(2)
33

)
z=0

=
∂

∂ r

(∫ a

r

ug(u)du√
t2− r2

)
, (2.2)

thus

F
2π

=
∫ a

0
g(u)du. (2.3)

The density function g(u) satisfies the equation

g(u) =
2
π

(
µ2

1−ν2

)
δ0 +

2
π

(
µ2

1−ν2

)∫ a

0
g(t) I(u, t)dt, (2.4)

for 0 < u < a, where µ2 and ν2 are elastic constants for the contact layer (medium
2) and

I(u, t) =
∫

∞

0
F (ρ,h)cos(uρ)cos(tρ)dρ, (2.5)

with

F (ρ,h) =
(

1−ν2

µ2

)[
1−
(

γ5− γ3ρhe−2ρh− γ4e−4ρh

γ5 + γ3ρ2h2e−2ρh + γ1e−2ρh + γ4e−4ρh

)]
, (2.6)

h being the thickness of the contact layer and γ’s being functions of elastic con-
stants. See appendix for the derivation of the density function g(u).
We can express (2.3) as

F
2π

=
∫ a−ε

0
g(u)du+

∫ a

a−ε

g(u)du, (2.7)

where ε is such that h << ε << a. This means that ε→ 0 and h/ε→ 0 as h→ 0 but
ε is otherwise arbitrary; one could choose ε = h1/3 for example (compare Atkinson
and Leppington (1983) for other examples where this idea is used).

When h/a << 1, to leading order, the indenter hardly notices the layer except near
its end at u = a. Thus, to analyse the behaviour and derive a solution for g(u)
near u = a in the limit h→ 0, an inner coordinate X is defined which relates to the
outer coordinate u by u = a + hX for −a/h < X < 0 with G−(X) = g(a + hX).
An analytical method is developed for these coordinates and summarised in the ap-
pendix. The outer approximation for g(u), denoted by g(o)(u), will thus be used
in the first integral of equation (2.7) and the inner approximation, G−(X), in the
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second. Again, the inner and outer approximations used below in (2.8) and (2.12)
are derived in Chen and Atkinson (2008), we therefore refer the reader to the afore
mentioned paper for details.

Using the outer approximation g(o)(u) below

g(o)(u) =
2δ0

π

(
µ1

1−ν1

)
+h
{

β0

(
1

a−u
+

1
a+u

)
+α0

[
1+C1

(
µ2

1−ν2

)]
δ (a−u)

}
+ h2

{
γ0 [log(a−u)+ log(a+u)]− α0C2

π

(
µ2

1−ν2

)(
1

(a−u)2 +
1

(a+u)2

)}
,

(2.8)

and integrating, we have

∫ a−ε

0
g(o)(u)du =

2δ0

π

(
µ1

1−ν1

)
(a− ε)+hβ0[− logε + log(2a− ε)]

+ h2

[
g(a)
4a2

(
C2

π

)2(
µ1

1−ν1

)2

(2a log(2a− ε)−2(a− ε)− ε log(ε(2a− ε)))

−α0
C2

π

(
µ2

1−ν2

)(
1
ε
− 1

2a− ε

)]
, (2.9)

where δ0 is the depth of indentation and µ1 and ν1 are elastic constants for the
substrate layer (medium 1). The constants α0,β0 and γ0 are determined through
matching and

C1 =
1−ν2

µ2
− 1−ν1

µ1
, C2 =−

(
1−ν1

µ1

)
m1,

with m1 given by (A.17) in the appendix.

Since ε << a, we can expand log(2a− ε) to obtain

∫ a−ε

0
g(o)(u)du =

2δ0

π

(
µ1

1−ν1

)
(a− ε)+hβ0

(
log2a− logε− ε

2a
+O((ε/2a)2)

)
+O(h2).

(2.10)
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To evaluate
∫ a

a−ε

g(u)du, we rewrite this in inner coordinates so

∫ a

a−ε

g(u)du = h
∫ 0

−ε/h
G−(X)dX , (2.11)

and the expansion as X→−∞, using the inner approximation, is conveniently writ-
ten as

G−(X) = B
(

1− m0

π
δ (−X)− m1

π

1
(X−1)

− m2

(X−1)2

)
+G1(X), (2.12)

for X < 0; B and β0 are given by

B = B̂+h
β0

2a
, B̂ =

2δ0

π

(
µ1

1−ν1

)
, and β0 =

m1

π
B̂, (2.13)

and δ (−X) is non-zero at 0− to be consistent with previous asymptotic results. The
constants m0, m1 and m2 are functions of elastic constants (see equations (A.16)
and (A.17) in appendix), the detailed formulations are omitted here. Note that the
capital G−(X) or G1(X) notation is used here to denote the inner coordinate of the
function g(u), it is not to be confused with the relaxation functions G1(t) and G2(t)
in the previous sections.

It follows that∫ a

a−ε

g(u)du∼ hB
[

ε

h
− m0

π
+

m1

π
log
(

ε

h
+1
)

+m2

(
−1+

1
ε/h+1

)]
+h

∫ 0

−∞

G1(X)dX , as ε/h→ ∞. (2.14)

Writing

G1−(ξ ) =
∫ 0

−∞

G1(X)eiξ X dX , (2.15)

then

G1−(ξ ) = G−(ξ )− B
iξ

+
Bm0

π
+

Bm1

π

∫ 0

−∞

eiξ X dX
(X−1)

+Bm2

∫ 0

−∞

eiξ X dX
(X−1)2 . (2.16)

Taking the limit of G1−(ξ ) as ξ → 0 with

G−(ξ ) = B
(

1
iξ
− m0

π
− m1

π
log(iξ )+m2 (iξ ) log(iξ )+ · · ·

)
, (2.17)
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and using the asymptotic results∫ 0

−∞

eiξ X dX
(X−1)

=
(

γ + logξ +
iπ
2

)
+ iξ

(
γ + logξ +

iπ
2

)
+O(ξ 2),

with γ = 0.577215665 being Euler constant and∫ 0

−∞

eiξ X dX
(X−1)2 = 1+ iξ

(
γ + logξ +

iπ
2

)
+O(ξ 2),

gives

lim
ξ→0

G1−(ξ ) =
Bm1

π
γ +Bm2 +O(ξ ). (2.18)

Thus substituting into equation (2.14) and using (2.13), we get

∫ a

a−ε

g(u)du = B̂ε + h
[

β0ε

2a
+ B̂

(
−m0

π
+

m1γ

π
+

m1

π
log
(

ε

h

)])
+O(h2).

(2.19)

Summing equations (2.10) and (2.19) gives, correct to order h, with B̂ and β0 given
by (2.13),

F
2π

=
2δ0

π

(
µ1

1−ν1

)[
a+h

(m1

π
(log2a+ γ− logh) − m0

π

)]
+O(h2). (2.20)

Significantly, the result of equation (2.20) is independent of ε assuming only that
ε/h→ ∞.

The asymptotic result is verified below: in Figure 2(a) the total force F is plotted
for µ1/µ2 = 2 where the dotted line nearer to h = 0 is the asymptotic result given
by equation (2.20) and the solid line for finite h is given by (2.3) and (2.4). The
curves show good agreement where the dotted-line overlaps with the solid line. In
Figure 2 (b), the total force is plotted for fixed values of h while µ1/µ2 is allowed
to vary. As expected, all curves intersect at the point when µ1/µ2 = 1 and, while
holding µ2 fixed, the smaller h is, the larger the effect of increasing µ1/µ2 has on
the total force. The force F shown in Figure 2 has been normalised by Fe which is
induced by a uniform indentation in medium 2 alone, i.e. Fe = lim

h→∞

F .

To give a measure of the effect of the layer and its property on the force gener-
ated by the uniform indentation, we differentiate the force of equation (2.20) with
respect to the layer thickness h and show the result in Figure 3 as the property of
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Figure 2: (a) The asymptotic and numerical results for F with µ1/µ2 = 2; (b) the
resulting force F for varying µ1/µ2 (µ2 fixed) with different fixed values of h.

medium 2 (µ2) varies while holding the substrate (medium 1) fixed. The result sug-
gests that as h→ 0, the force generated becomes more sensitive to changes in the
contact layer, i.e. dF/dh increases as µ2 increases and this effect becomes more
pronounced as h→ 0. The result here can also be used to help identify the property
of a material, for example, in an experiment where a nano-indenter is used to press
into a material of unknown property (medium 2) which can be a very fine powder
or layer resting on some substrate (medium 1) of known property. From equation
(2.20), we have as h→ 0,

dF
dh

(
1−ν1

µ1

)
π

2δ0
=

m1

π
(log2a + γ − 1) − m0

π
− m1

π
logh + O(h).

If we write Y1 =− 1
logh

, this gives

Y1
dF
dh

(
1−ν1

µ1

)
π

2δ0
=

m1

π
+ Y1

(m1

π
(log2a + γ − 1) − m0

π

)
+ O(Y1h).

Hence plotting the left hand side versus Y1 from experiments as h→ 0 would give
a straight line intersecting the axis Y1 = 0 at m1/π and with slope

m1

π
(log2a + γ − 1) − m0

π
.

With the properties of the substrate, i.e. ν1 and µ1 known, we thus have two equa-
tions to determine ν2 and µ2. The expressions of m0 and m1 are given by (A.16)
and (A.17) in the appendix.
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Figure 3: The numerical results for dF/dh with varying µ2/µ1 while holding µ1
fixed for h = 10−3, 10−4, 10−5.

3 Time-dependent force - viscoelastic case

Using the correspondence principle and the asymptotic formula for the total force
exerted on the contact layer when h is small (equation (2.20)), the Laplace trans-
formed time-dependent force can be written as, for h→ 0,

F̄(p)
2π

=
2
π

(
µ̄1(p)
1−ν1

)
δ0

p

[
a + h

(
m̄1

π
(log2a+ γ− logh) − m̄0

π

)]
+ O(h2), (3.1)

where m̄1 and m̄0 are functions of elastic constants which are now replaced by
appropriate functions of p.

To obtain the real time behaviour of the force, we invert F̄(p) numerically using
the method developed by Schapery. The method assumes that the function F(t) is
of the form

F(t) = F∞ +
n

∑
i=1

Ai e−xi t , (3.2)
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where F∞ is the residue given by the pole at the origin p = 0 and xi’s are prescribed
positive constants. The unknown coefficients Ai’s are to be determined from the set
of simultaneous equations[

F̄(p)− F∞

p

]
p→xi

=

[
n

∑
j=1

A j

p+ x j

]
p→xi

. (3.3)

With an explicit formula (3.1) available for small h, the time-dependent force can
be calculated with relative ease. The asymptotic formula, however, is no longer
valid when h becomes large. In this case, we derive the time dependent force F(t)
by first evaluating the time-dependent density function g(u, t) which for the pure
elastic case is given by (2.4), namely,

g(u) =
2
π

(
µ2

1−ν2

)
δ0 +

2
π

(
µ2

1−ν2

)∫ a

0
g(r) I(u,r)dr, (3.4)

and

I(u,r) =
∫

∞

0
F (ρ,h)cos(uρ)cos(rρ)dρ, (3.5)

where 0 < u < a and F (ρ,h) is given by (2.6). Using the correspondence principle,
the Laplace transformed ḡ(u, p) becomes

ḡ(u, p) =
2
π

(
µ̄2

1−ν2

)
δ0

p
+

2
π

(
µ̄2

1−ν2

)∫ a

0
ḡ(r, p) Ī(u,r, p)dr, (3.6)

and

Ī(u,r, p) =
∫

∞

0
F̄ (ρ,h, p)cos(uρ)cos(rρ)dρ, (3.7)

with the elastic constants in F̄ (ρ,h, p) replaced by appropriate functions of p. To
invert the integral for the real time g(u, t), again we assume the time-dependent
density function is of the form

g(u, t) = g∞(u)+
n

∑
i=1

Ai(u)e−xi t , 0 < u < a, (3.8)

where g∞(u) is the residue given by the pole at the origin p = 0, then[
ḡ(u, p)− g∞(u)

p

]
p→xi

=

[
n

∑
j=1

A j(u)
p+ x j

]
p→xi

. (3.9)
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To find g∞(u), we write

ḡ(u, p) =
g∞(u)

p
+ ĝ(u, p), (3.10)

and ĝ(u, p) is analytic at p = 0. Substituting back into the integral equation, multi-
plying throughout by p and taking the limit p→ 0 give,

g∞(u) =
2
π

(
µ2∞

1−ν2

)
δ0 +

2
π

(
µ2∞

1−ν2

)∫ a

0
g∞(r) Ī∞(u,r)dr, (3.11)

where

I∞(u,r) = lim
p→0

Ī(u,r, p) and µ2∞ = lim
p→0

µ̄2(p). (3.12)

The function g∞(u) can now be evaluated numerically by dividing the range of
integration from 0 to a into n intervals. This then gives us a system of n +1 equa-
tions and n+1 unknowns. These unknown g∞(ui)’s, i = 1,2, · · ·n+1, are found by
inverting a (n+1)× (n+1) matrix. Equation (3.6) is similarly discretised to eval-
uate ḡ(ui, p)’s for each p = xi and subsequently, the formula (3.9) is applied to find
A j(ui) at each ui for i = 1,2, · · · ,n+1. The real time g(u, t) can now be computed
using (3.8) which is further integrated to give the total force F(t) for finite h.

4 Numerical simulations

To illustrate the viscoelastic effect on the force induced by a fixed displacement,
three cases are considered below in which the contact layer, medium 2, is viscoelas-
tic while medium 1 is elastic. In each case, the corresponding relaxation functions
are plotted to show the relative stiffness of the media and the time-dependent forces
are given with different values of layer thickness h to illustrate the effect of the con-
tact layer. The resulting force is normalised by that of an indentation in a single
medium (medium 1) for comparison. The relaxation functions G1(t) and G2(t)
are computed using equation (1.7) with the subscript indicating the appropriate
medium. The fixed parameter values taken for all three cases are

α1 = β1, α2 = 0.5, β2 = 0.8, a01 = 2.4, (4.13)

while a02 varies for each case; a01 and a02 represent the constant a0 of equation
(1.7) for medium 1 and medium 2 respectively. Additionally, Poisson’s ratios, ν1 =
ν2 = 0.3, are taken to be constant throughout for both media and the indentation
depth δ0 = 0.1 is fixed for all three cases.

The results show that the force relaxes as the material (medium 2) relaxes; in Figure
4, as the property of medium 2 approaches that of medium 1, the normalised force
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tends to unity and as the contact layer becomes smaller (h decreases), the closer it is
to unity. In Figure 5, G1(0) < G2(0) and G1(∞) > G2(∞), we thus expect F(0) > 1
and F(∞) < 1; while in Figure 6, G1(t) > G2(t) and thus F(t) < 1 for all time and
F(t) decreases as the material relaxes with time.
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Figure 4: (a) Relaxation functions and (b) the corresponding time-dependent forces
with the layer thickness h = 2, 1, 0.4, 0.1, 0.01 and a02 = 4.

h=0.4

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0  2  4  6  8  10  12  14  16  18  20

(a) Relaxation functions (b) Total force

timetime

medium 1

medium 2 h=2
h=1

h=0.01
h=0.1

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0  2  4  6  8  10  12  14  16  18  20

Figure 5: (a) Relaxation functions and (b) the corresponding time-dependent
forces; a02 = 3.

The time dependent effect of the layer on the force induced as the material relaxes is
shown in Figure 7 in which medium 1 is assumed elastic and medium 2 viscoelastic.
As medium 2 relaxes with time, the force becomes less sensitive to the changes in
medium 2 and so dF/dh decreases as t increases and this sensitivity reduces as h
becomes large. This result is consistent with that shown in Figure 3 for the pure
elastic case where dF/dh increases as µ2 increases and h decreases.
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Figure 6: (a) Relaxation functions and (b) the corresponding time-dependent
forces; a02 = 2.4.
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Figure 7: The numerical results for real time dF/dh with the relaxation functions
given by Figure 4 (a); h = 10−3, 10−4 and 10−5.
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5 Conclusion

This paper extends a previous paper by Chen and Atkinson (2008) to deduce force
- displacement curves, in particular, for thin coating on known substrates enabling
the determination of properties of the coating material. Methods are developed
which apply to the contact problem and give analytic results. Earlier work de-
veloping these singular perturbation methods for fracture problems is described in
Atkinson and Chen (1997) and Chen and Atkinson(2005). The methods developed
here should apply to cases when the layer is infinitesimal.

Nano-indentation techniques have been established as the primary tool for inves-
tigating the hardness of small volumes of materials (Malzbender et. al. 2002;
Cheng and Cheng 2004). The atomic force microscope (AFM) has been used as
a micro-indenter of thin biological samples to determine the local elastic moduli
of the tissue (Mahaffy et. al. 2000; Dimitriadis , et. al. 2002). The microscope
provides the signals for force and displacement, and hence the force-indentation
relationship for the material, which can then be used to estimate the elastic mod-
uli, provided that a theoretical model describing the contact is available. Thus, a
simple-to-use model will be useful in the routine AMF work and indentation tests
in general. A model that provides an approximate solution for the indentation of
a thin compressible elastic layer by a flat-ended cylinder has been developed by
Haider and Holmes (1997). By considering the axisymmetric indentation of a thin
incompressible elatic layer, Chadwick (2002) provided estimates for the force and
contact radius by asymptotically matching a lubrication-type expansion in the con-
tact region to the far field of an edge layer expansion.

In priciple, the limit result of Section 2 when h→ 0, i.e.

Y1
dF
dh

(
1−ν1

µ1

)
π

2δ0
=

m1

π
+ Y1

m1

π
(log2a + γ − 1) − m0

π
+ O(Y1h),

can be extended to other contact shapes. This result allows one to deduce layer
properties in both the elastic and viscoelastic cases, although some numerical in-
version of the Laplace transform is of course required in the viscoelastic case.

Acknowledgement: The first author would like to thank the National Science
Council of Taiwan for their financial support.

References

Atkinson, C.; Chen, C.Y. (1997): The influence of layer thickness on the stress
intensity factor of a crack lying in an (visco)elastic layer embedded in a different
(visco)elastic medium. (Mode I analysis). Proc. R. Soc. Lond., A453, 1445-1471.



The Stress Analysis of Thin Contact Layers 235

Atkinson, C.; Leppington, F.G. (1983): The asymptotic solution of some integral
equations. IMA J. Appl. Math. 31, 169-182.

Chadwick, R.S. (2002): Axisymmetric indentation of a thin incompressible elastic
layer. SIAM J. Appl. Math. 62, 1520-1530.

Chen, C.Y.; Atkinson C. (2005): The influence of layer thickness on the stress
intensity factor of a penny-shaped crack lying in a sandwiched viscoelastic bimate-
rial. Int. J. Eng. Sci., 43, 222-249.

Cheng, Y.T.; Cheng C.M. (2004): Scaling, dimensional analysis, and indentation
measurements. Mater. Sci. Eng. R., 44, 91.

Chen, C.Y.; Atkinson, C. (2008): The stress analysis of thin contact layers: a
singular perturbation method for integral equations. Proc. R. Soc. Lond. A464,
1439-1459.

Chen, J. (2002): Computational Simulations of micro-indentation tests using gra-
dient plasticity. CMES: Computer Modeling in Engineering & Sciences 3(6), 743-
754.

Christensen R.M. (1971): An introduction to the theory of viscoelasticity, Aca-
demic Press, London.

Clifford C.A.; Seah M.P. (2009): Nanoindentation measurement of Young’s mod-
ulus for compliant layers on stiffer substrates including the effect of Poisson’s ra-
tios. Nanotech. 20(14), article no. 145708.

Dimitriadis, E.K.; Horkay, F.; Maresca, J.; Kachar, B.; Chadwick, R. S. (2002):
Determination of elastic moduli of thin layers of soft material using the atomic
force microscope. Biophys. J. 82, 2798-2810.

Green, A.E.; Zerna W. (1968): Theoretical elasticity, Oxford University Press,
London. Haider, M.A.; Holmes, M.H. (1997) A mathematical approximation for
the soltion for a static indentation test. J. Biomech. 3, 747-751.

Heinrich, C.; Waas, A.M.; Wineman, A.S. (2009): Determination of material
properties using nanoindentation and multiple indenter tips. Int. J. Solids Struct.
46(2), 364-376.

Liu, D.S.; Tsai, C.Y. (2009): Estimation of thermo-elasto-plastic properties of
thin-film mechanical properties using MD nanoindentation simulations and an in-
verse FEM/ANN computational scheme. CMES: Computer Modeling in Engineer-
ing & Sciences 39(1), 29-47.

Mahaffy, R.E.; Shih, C.K.; Mackintosh, F.C.; Kas, J. (2000): Scanning probe-
based frequency dependent microrheology of polymer gels and biological cells.
Phys. Rev. Lett. 85, 880-883.

Malzbender, J.; den Toonder, J. M. J.; Balkenende, A. R.; de With, G. (2002):



236 Copyright © 2009 Tech Science Press CMES, vol.48, no.3, pp.219-240, 2009

A methodology to determine the mechanical properties of thin films with appli-
cation to nano-particle filled methyltrimethoxysilane sol-gel coatings. Mater. Sci.
Eng. R. 36 47.

Pavliotis G.A.; Holmes M.H. (2002): A perturbation-based numerical method
for solving a three-dimensional axisymmetric indentation problem J. Eng. Math.
43(1), 1-17.

Poon, B.; Rittel, D.; Ravichandran, G. (2008): An analysis of nanoindentation in
elasto-plastic solids. Int. J. Solids Struct. 45(25-26), 6399-6415.

Selvadurai, A.P.S. (2007): The analytical method in geomechanics. Appl. Mech.
Rev. 60, 87-106.

Van Dyke, M. (1975): Perturbation methods in fluid mechanics, The Parabolic
Press, California.

Appendix

A brief description of the analysis which was carried out for the contact problem in
a pure elastic composite is given below, the reader is referred to Chen and Atkinson
(2008) for details. There were typos in the previous work which have been cor-
rected below. By taking the double Fourier Transform of the equation of motion
(1.2) for the pure elastic case, a relationship between the transformed stress and
displacement on the contact boundary z = 0 is obtained, namely,

¯̄σ = κ(ρ,h) ¯̄u, κ(ρ,h)= ρ

(
µ2

1−ν2

)(
γ5 + γ3ρ2h2e−2ρh + γ1e−2ρh + γ4e−4ρh

γ5− γ3ρhe−2ρh− γ4e−4ρh

)
,

(A.1)

with ¯̄σ and ¯̄u denoting the transformed normal stress σ
(2)
33 and displacement u(2)

3 of
region (2) (indicated by the superscript) on the boundary z = 0. The constant ν is
Poisson’s ratio and µ, λ Lamé constants with the subscripts indicating medium 1
and 2 respectively; γ’s are functions of these elastic constants.

To solve this with a mixed boundary condition, a uniform circular indentation
u(2)

3 = δ0 on z = 0 for r ≤ a and σ
(2)
33 = 0 for r > a and , an integral represen-

tation is derived for u(2)
3 on z = 0. The approach taken is similar to that used in

Atkinson and Chen (2005) (cf. Green and Zerna 1968) by modelling the prob-
lem with a continuous function g(t). To achieve this, it is assumed that σ

(2)
33 =

−it
(r2+(it)2)3/2 on the boundary z = 0 with r2 = x2 +y2 which has double Fourier trans-

form ¯̄σ (2)
33 = −2πe−it(ξ 2+ζ 2)1/2

, ξ and ζ being Fourier transform variables. Using
the stress-displacement relation (A.1) the displacement ¯̄u(2)

3 (denoted by ¯̄u on z = 0)
can be written in terms of the stress ¯̄σ (2)

33 (denoted by ¯̄σ on z = 0) as
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¯̄u = 2π

(
1−ν2

µ2

)
e−itρ

ρ
−2πe−itρ

[
1

κ(ρ,h)
+
(

1−ν2

µ2

)
1
ρ

]
, ρ = (ξ 2 +ζ

2)1/2.

(A.2)

An integral expression for u(2)
3 is derived by first inverting ¯̄u in the above equation,

which is then multiplied by a continuous function g(t) and integrated over t from 0
to a, then taking the real part to give

u(2)
3 =

(
1−ν2

µ2

)
Re
(∫ a

0

g(t)dt
(r2− t2)1/2

)
−Re

(∫ a

0
Q(t,r)g(t)dt

)
, (A.3)

where

Q(t,r) =
∫ 2π

0
F (ρ,h)e−itρJ0(−ρr)dρ, (A.4)

with J0 being a Bessel function and

F (ρ,h) =
ρ

κ(ρ,h)
+
(

1−ν2

µ2

)
. (A.5)

Assuming that the displacement u(2)
3 = δ0, a constant, within the contact region, the

equation is inverted to give the integral equation for g(u) as

g(u) =
2
π

(
µ2

1−ν2

)
δ0 +

2
π

(
µ2

1−ν2

)∫ a

0
g(t)I(u, t)dt, (A.6)

for 0 < u < a, where

I(u, t) =
∫

∞

0
F (ρ,h)cos(uρ)cos(tρ)dρ. (A.7)

The function g(u) can be evaluated numerically for 0 < u < a when h, the thickness
of the contact layer, is finite and subsequently the total force acting on the circular
region is derived using equation (2.1)

When h << a, the numerical solution for g(u) using the integral equation above
diverges at the point u = a and so a singular perturbation technique is employed
to derive the solution for g(u) near u = a in the limit h→ 0 by defining an inner
coordinate system,

u = a+ εX , t = a+ εT, ερ = η , for −a/ε < X , T < 0, (A.8)
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and h = ε with G(X) = g(a+εX). Thus equation (A.6) written in inner coordinates
is now

G−(X) =
2δ0

π

(
µ2

1−ν2

)
+

2
π

(
µ2

1−ν2

)∫ 0

−a/ε

G−(T ) I(X ,T )dT , (A.9)

for −a/ε < X < 0. The definition for G(X) is extended so that for X > 0,

G+(X) =
2
π

(
µ2

1−ν2

)∫ 0

−∞

G−(T ) I(X ,T )dT. (A.10)

Taking the Fourier Transform of G+(X) and G−(X) with

G−(ξ ) =
∫ 0

−∞

G−(X)eiξ X dX and G+(ξ ) =
∫

∞

0
G+(X)eiξ X dX , (A.11)

where the subscripts ’+’ and ’-’ of the half Fourier transform G−(ξ ) and G+(ξ )
denote regions of upper and lower half-planes of regularity and ignoring the higher
order terms gives

G−(ξ )
q(|ξ |)

− 2
π

(
µ2

1−ν2

)
δ0

iξ
=−G+(ξ ), (A.12)

and

q(|ξ |) =
γ5 + γ3 |ξ |2 e−2|ξ |+ γ1 e−2|ξ |+ γ4 e−4|ξ |

γ5− γ3 |ξ |e−2|ξ |− γ4 e−4|ξ | , (A.13)

where γ ′s being functions of the elastic constants are given by

γ1 =
γ2

µ2
2 (3µ1 +λ1)(λ2 +3µ2)(λ2 + µ2)

,

γ2 = µ
2
2 (λ2 + µ2)(2µ

2
1 +(λ2 + µ2)(λ1 +3µ1))−µ

2
1 (λ1 + µ1)(4µ2(λ2 + µ2)

+(λ 2
2 + µ

2
2 )),

γ3 =
16(λ2 + µ2)(λ1µ2 +3µ1µ2 +λ1µ1 + µ2

1 )(µ2−µ1)
µ2

2 (3µ1 +λ1)(λ2 +3µ2)
,

γ4 =
4(µ1−µ2)((λ1−µ1)(λ2µ1−3µ1µ2)− (λ2−µ2)(λ1µ2−3µ1µ2))

µ2
2 (3µ1 +λ1)(λ2 +3µ2)

,

γ5 =
4(λ1µ2 +3µ1µ2 +λ1µ1 + µ2

1 )((µ2
2 +λ2µ2 +3µ1µ2 +λ2µ1)

µ2
2 (3µ1 +λ1)(λ2 +3µ2)

.
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Equation (A.12) is rewritten to give the Wiener-Hopf equation

G−(ξ )
q−(ξ )

− 2
π

(
µ2

1−ν2

)
δ0

iξ
q+(0) =

−G+(ξ )q+(ξ )+
2
π

(
µ2

1−ν2

)
δ0

iξ
(q+(ξ )−q+(0)) = L(ξ ), (A.14)

where

q−(ξ ) = q−(0)
(

1− m0

π
(iξ )− m1

π
(iξ ) log(iξ )−m2 (iξ )2 log(iξ )+ · · ·

)
,

as ξ → 0, (A.15)

and

m0 =−
∫

∞

0
logy

d
dy

(
f (y)

y
dy
)

, f (y) = tan−1
(

Imq(−iy)
Req(−iy)

)
, (A.16)

with q−(0) = q+(0) = q1/2
0 and

q0 =
µ1(1−ν2)
µ2(1−ν1)

, m1 = 2
(

γ5− γ4

γ1 + γ4 + γ5

)
− 2(γ4 + γ5)− γ3

γ5− γ4
. (A.17)

Note that m2 does not appear in the expansion for G−(X) below or the subsequent
expansion for the total force. Using analytic continuation, the function L(ξ ) is thus
analytic in the whole ξ -plane and both sides of the equation are bounded for large
ξ . Applying Liouville’s theorem with L(ξ ) = A/iξ , an expansion for G−(ξ ) in the
limit ξ → ∞ can be obtained and inverted to give G−(X) as X → 0. The constant
A, which we expect to be of order ε , is unknown as a consequence of resacling
with inner coordinates and is obtained through matching with the outer solution.
Here we follow the matching principle of Van Dyke and matching a two-term inner
solution written in three-term outer with a three-term outer solution written in two-
term inner. The three-term outer solution is

g(o)(u) =
2δ0

π

(
µ1

1−ν1

)
+h
{

β0

(
1

a−u
+

1
a+u

)
+α0

[
1+C1

(
µ2

1−ν2

)]
δ (a−u)

}
+h2

{
γ0 [log(a−u)+ log(a+u)]−α0

C2

π

(
µ2

1−ν2

)(
1

(a−u)2 +
1

(a+u)2

)}
,

(A.18)
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with α0, β0 and γ0 being unknown. Matching gives

A =
hδ0

aπ

[
µ1 µ2

(1−ν1)(1−ν2)

]1/2 m1

π
, (A.19)

and so inverting G−(ξ ) above, taking the limit ξ → ∞, q−(ξ )→ 1, we obtain

G−(X) =
2δ0

π

[
µ1 µ2

(1−ν1)(1−ν2)

]1/2(
1+

h
2a

m1

π

)
, X → 0− . (A.20)


