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Abstract: Differential Quadrature (DQ) is one of the efficient derivative approx-
imation techniques but it requires a regular domain with all the points distributed
only along straight lines. This severely restricts the DQ while solving the irregu-
lar domain problems discretized by the random field nodes. This limitation of the
DQ method is overcome in a proposed novel strong-form meshless method, called
the random differential quadrature (RDQ) method. The RDQ method extends the
applicability of the DQ technique over the irregular or regular domains discretized
using the random field nodes by approximating a function value with the fixed
reproducing kernel particle method (fixed RKPM), and discretizing a governing
differential equation by the locally applied DQ method. A superconvergence con-
dition is developed for the RDQ method, which gives more than O(hp+1) function
value convergence for the uniform as well as random field nodes scattered in the
domain. The RDQ method convergence analysis is carried out, and the supercon-
vergence condition is verified by solving several 1D, 2D and elasticity problems.
The applicability of the RDQ method to solve the nonlinear governing differential
equations is successfully demonstrated by solving the fixed-fixed and cantilever
beams for deflection due to the nonlinear electrostatic loading. It is concluded that
the RDQ method effectively handles the irregular or regular domains discretized by
the uniform or random field nodes, with good convergence rates.
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1 Introduction

Meshless methods are in a research area for the past 40 years but the extensive
studies have been carried out in the last decade when people realized its potential to
solve the large deformation and moving boundary problems. It can be broadly cat-
egorized into two types based on how the governing differential equation is solved:
strong- (collocation based) and weak-forms (Galerkin approach based). Some of
the earlier methods which were developed based on the weak-form approach in-
clude the smooth particle hydrodynamics (SPH) [Lucy (1977); Gingold and Mon-
aghan (1977)], the diffuse element method [Nayroles, Touzot and Villon (1992)],
the element-free Galerkin method [Belytschko, Gu and Lu (1994); Belytschko, Lu
and Gu (1994); Lu, Belytschko and Gu (1994)], the natural element method [Braun
and Sambridge (1995)], the reproducing kernel particle method (RKPM) [Liu, Jun
and Zhang (1995); Liu, Chen, Uras and Chang (1996); Liu and Jun (1998)], the par-
tition of unity [Melenk and Babuska (1996)], the meshless local Petrov-Galerkin
approach (MLPG) [Atluri and Zhu (1998)], the local boundary integral equation
method [Zhu, Zhang and Atluri (1998); Atluri, Sladek, Sladek and Zhu (2000)],
the point interpolation method [Liu and Gu (2001)], and the local Kriging method
[Li, Wang and Lam (2004)]. In most of these methods, the least square approx-
imation or the reproducing kernel particle interpolation functions are combined
with Galerkin or the variational weak form of the governing differential equation.
Earlier methods developed based on the strong-form approach include the finite
point method [Onate, Idelsohn, Zienkiewicz and Taylor (1996); Onate, Idelsohn,
Zienkiewicz, Taylor and Sacco (1996)], Hermite cloud method [Li, Ng, Cheng and
Lam (2003)], and the gradient smoothing method [Liu, Zhang, Lam, Li, Xu, Zhong,
Li and Han (2008)]. All these methods were successfully applied to solve different
types of engineering problems [Atluri, Cho and Kim (1999); Atluri, Kim and Cho
(1999); Gilhooley, Xiao, Batra, McCarthy and Gillespie (2008); Idelsohn, Onate,
Calvo and Pin (2003); Li, Wang and Lam (2004); Li, Yew, Ng and Lam (2005);
Liu, Zhang, Li, Lam and Bernard Kee (2006); Onate, Idelsohn, Zienkiewicz, Tay-
lor and Sacco (1996); Sukumar, Moran and Belytschko (1998); Sukumar, Moran,
Semenov and Belicov (2001)]. The weak-form meshless methods are considered
numerically more stable than those based on the strong form. But the strong form
methods can well capture the local high gradients, easy to implement, and are cheap
in the computation.

Most of the weak form methods require some kind of background mesh to carry out
the weak form integration but the MLPG method is a truly meshless method, which
is applied over a local domain, based on the local symmetric weak form. Atluri
(2004), Atluri (2005), and Atluri and Shen (2002) discussed the MLPG method
in detail with its application in the fluid and solid mechanics, respectively. Atluri
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and Shen (2002) discussed different global and local trial and test functions and
provided a broad framework under which different MLPG forms can be derived
by combining it with the different local trial and test functions. Several MLPG
mixed schemes are proposed like, finite difference method through MLPG [Atluri,
Liu and Han (2006b)], finite volume method through MLPG [Atluri, Han and Ra-
jendran (2004)], MLPG mixed collocation method [Atluri, Liu and Han (2006a)].
These MLPG mixed schemes and the MLPG method are applied to solve various
engineering analysis problems like large deformation [Han, Rajendran and Atluri
(2005)], 3D contact problems [Han, Liu, Rajendran and Atluri (2006)], heat con-
duction [XueHong, Shen and Tao (2007)], crack analysis in the 2D and 3D domains
[Sladek, Sladek, Zhang, Solek and Starek (2007)], thermo-piezoelectricity [Sladek,
Sladek, Zhang and Solek (2007)], and shell deformation [Jarak, Soric and Hoster
(2007)]. Cai and Zhu (2008) modified the original MLPG method to overcome
Shepard partition of unity (PU) approximation drawbacks by employing a new PU
based Shepard and least square interpolation approximation. Liu, Chan, Li and Cen
(2008) developed a method for the structural dynamic problems, constructing the
trial functions by the natural neighbour concept and using them with the general
MLPG method. Several researchers modified the MLPG method to solve the spe-
cific engineering problems like, solving Navier-Stokes and energy equations [Aref-
manesh, Najafi and Abdi (2008)], limit analysis of plastic collapse [Chen, Liu and
Cen (2008)], microelectromechanical systems [Dang and Sankar(2008)], topology
optimization [Li and Atluri (2008); Zheng, Long, Xiong and Li (2009)], elasto-
plastic fracture analysis [Long, Liu and Li (2008)], steady state and transient heat
conduction analysis in the 3D solid [Sladek, Sladek, Tan and Atluri (2008)], bound-
ary and initial value problems in piezo-electric and magneto-electric-elastic solids
[Sladek, Sladek, Solek and Atluri (2008)], thermal bending of Reissner-Mindlin
plates [Sladek, Sladek, Solek and Wen (2008)], and 3D potential problems [Pini,
Mazzia and Sartoretto (2008)].

The radial basis function (RBF) based collocation method was used to solve the
modified equal width wave equation [Haq, Siraj and Ali (2008)], the Sturm-Liouville
problem [Reutskiy (2008)], coupled heat transfer and fluid flow problem in Darcy
porous media [Kosec and Šarler (2008)], the nonlinear Schrodinger Equations [Haq,
Siraj and Uddin (2009)], and modeling of dynamic strain localization in quasi-
brittle materials [Le, Mai-Duy, Tran-Cong and Baker (2008)]. Mai-Cao and Tran-
Cong (2008) proposed a new meshless method, based on the level set method and
semi-Lagrangian method coupled with the indirect RBF network method (IRBFNM),
to capture the moving interfaces in passive transport problems; they also applied
the IRBFNM to solve transient problems by combining it with different time inte-
gration schemes [Mai-Cao and Tran-Cong (2005)]. Young, Chen and Lee (2005)
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developed a method based on potential theory and desingularization technique and
applied it to acoustic problems [Young, Chen and Lee (2006)].

It was observed that the originally proposed SPH method [Lucy (1977)] is not able
to reproduce the higher order terms well and is not able to satisfy the consistency
condition when solving the problems with finite boundaries. Hence, it was en-
hanced over the last decade to improve its consistency and the stability aspects
[Bonet, Lok (1998); Liu, Jun and Zhang (1995); Liu, Chen, Uras and Chang (1996);
Liu and Jun (1998)]. Liu, Jun and Zhang (1995), and Liu, Chen, Uras and Chang
(1996), and Liu and Jun (1998) modified the SPH window function by introducing
a correction function term and called it as the RKPM; the new SPH window func-
tion is called the modified window function. As the RKPM is inherited from the
SPH method, it has also inherited the SPH characteristics such as the smoothen-
ing of a function value over a local domain by an integral approximation. Because
of the ability of higher order reproducibility, the RKPM is more widely used now
than the original SPH method. Wong and Shie (2008) carried out the large defor-
mation analysis by the SPH based Galerkin method with the moving least square
(MLS) approximation; Wu, Chiu and Wang (2008) proposed a differential RKPM,
in which separate differential reproducing condition sets were developed to com-
pute the derivative shape functions instead of conventionally computing them by
directly taking the RKPM approximation derivative. Aluru (2000) combined the
RKPM interpolation function with the point collocation method to form a novel
strong-form method. Aluru (1999), Aluru and Li (2001), Li, Paulino and Aluru
(2003), Jin, Li and Aluru (2004), and Jin, Li and Aluru (2005) also presented dif-
ferent variations of the RKPM viz. fixed, moving and multiple fixed kernels, and
combined the fixed RKPM with the point collocation method and called it the fi-
nite cloud method [Aluru and Li (2001)]. Li, Liu and Wang (2008) used the RKPM
method to carry out the ductile fracture simulations and shown that they are in well
agreement with the finite element method (FEM) and the existing experimental
data.

Following the idea of an integral Quadrature, Bellman, Kashef and Casti (1972)
proposed the DQ method. As per it, the derivative at any point is approximated by
the weighted sum of function values in whole domain provided that all the points
are collinear. It means that the important task in the DQ method is to determine
the weighting coefficients. Bellman, Kashef and Casti (1972) suggested two ap-
proaches to compute the weighting coefficients. The first approach is the use of
polynomial function as a test function, and the second one uses the test function,
in which the co-ordinates of the grid points are chosen as the roots of the shifted
Legendre polynomials. Both of these approaches have a problem when the order of
algebraic system of equations is very large, making the resulting matrix highly ill-
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conditioned. To overcome this problem, Quan and Chang (1989a), and Quan and
Chang (1989b) proposed another approach, in which the weighting coefficients are
computed using Lagrange interpolation polynomials. Shu, Khoo and Yeo (1994)
proposed a general approach, in which they combined both Bellman, and Quan
and Chang approaches. Using the linear vector space analysis, Shu (2000) proved
that the polynomials used in Bellman, and Quan and Chang approaches are nothing
but the different sets of base polynomial vectors of function approximation. If one
of the base vectors satisfies the function approximation equation so will the other
base vectors, which means that all the approaches will lead to the same values of
the weighting coefficients and in turn similar function approximations. Shan, Shu
and Lu (2008) coupled the local multiquadric-based RBF with the DQ method to
solve the 3D curved boundary fluid flow problems. Liew, Zhang, Ng and Meguid
(2003) applied the DQ method to model the elastic bonding in the 3D composite
laminates. Liew, Huang and Reddy (2003) applied the MLS based DQ (MLSDQ)
to solve the moderately thick plate for the shear deformation; they also applied
the MLSDQ method to solve the 4th-order thin plate bending differential equation
over the irregular boundaries [Liew, Huang and Reddy (2004)]. More work about
the DQ method can be found in Shu (2000), and Naadimuthu, Bellman and Wang
(1984), and Ding, Shu, Yeo and Xu (2006).

The DQ method is an efficient numerical derivative approximation technique but
one of its key requirements is to have a collinear field node arrangement hence, it
is restricted to solve the problems involving the field nodes distributed only in a
fixed pattern over the uniform domains. The main objective of the presented work
is to overcome this limitation of the DQ method through the development of RDQ
method, and carry out its thorough convergence analysis. During the convergence
analysis studies, the superconvergence condition is developed, which always gives
function value convergence greater than O(hp+1), where p is the complete function
approximation monomial order used. For the test problems solved in the presented
work by the superconvergence condition, the convergence rates of O(hp+α), where
α ≥ 1 for function approximation and α ≈ 0.7 to 1 for its derivative approximation,
are obtained for uniform as well as the randomly distributed field nodes. Further,
the RDQ method is applied to study the fixed-fixed and cantilever beams for de-
flection under the application of nonlinear electrostatic loading.

The motivation behind the development of the RDQ method is to extend the ap-
plicability of the DQ method over an irregular domain discretized by random or
uniform field nodes, or a regular domain discretized by the random field nodes.
Therefore, by given set of nodes (in arbitrary or fixed pattern) distributed over a
domain (uniform or non-uniform), the RDQ method solves the governing partial
differential equation (PDE) along with the appropriate boundary conditions (BC)
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in its strong form. This is achieved by creating the background or auxiliary set of
nodes, called the virtual nodes, over the computational domain as shown in Fig. 1.
The function values at these virtual nodes are approximated in terms of the nodal
parameter values of the surrounding field nodes by the fixed RKPM interpolation.
Thus, a linear transformation matrix in the form of shape function values is as-
sociated with the nodal parameter values at the field nodes with the approximate
function values at the virtual nodes. The derivative terms from the governing PDE
are discretized at the virtual nodes by the locally applied DQ method. By means of
the earlier developed transformation matrix, the derivative approximation equations
at the virtual nodes are expressed in the form of unknown field node parameter val-
ues. All the BCs are imposed in the strong form. The PDE discretization equations
are combined with the BC equations to give a global system of equations, which
can be solved by any solver. In order to avoid the DQ method getting unstable
as demonstrated by Zong and Lam (2002), it is applied locally, i.e. a local DQ
domain is created around each virtual node in the x and y directions, the virtual
nodes falling in it are taken into consideration for the derivative approximation at
the central virtual node.

Compared with the existing strong-form meshless methods, the merit of the RDQ
method is that the fixed RKPM function is used only to approximate the function
values at virtual nodes and not to approximate the derivative terms from the gov-
erning PDE, while the derivative terms from the governing PDE are approximated
by the locally applied DQ method. Because of this, in the RDQ method, the deriva-
tive approximation accuracy is independent of the monomial order used in the fixed
RKPM interpolation. This makes the RDQ method different from the collocation
based strong-form methods, in which the derivative terms from the governing PDE
are approximated by the shape function derivatives. As compared with the other
weak-form methods, the RDQ method is capable of well capturing the local high
gradients, which will be shown in Section 5.3.

Compared with the classical FEM, the merit of the RDQ method is that it can effec-
tively handle the moving boundary problems, which is difficult for the FEM due to
the problems of the mesh distortion and element singularities. In the RDQ method,
the field nodes act as Lagrangian grid, and the virtual nodes act as Eulerian grid.
The field nodes are free to move anywhere in the domain and no interconnectivity
information among them is required. The virtual nodes are fixed in a space so that
it is always possible to discretize the governing PDE by locally applying the DQ
method over the virtual nodes.

This paper is organized as follows. The fixed RKPM is discussed in Section 2, the
DQ and RDQ method formulations are given in Sections 3 and 4, respectively. The
superconvergence condition is derived, and several test problems are solved using
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the RDQ method, in Section 5. In Section 6, the RDQ method is applied to solve
the fixed-fixed and cantilever beams for deflection due to the nonlinear electrostatic
loading, and the conclusions are given in Section 7.

2 Fixed reproducing kernel particle method

In this section, the fixed RKPM interpolation function is discussed along with the
cubic spline window function equation that will be used in the RDQ method.

The fixed RKPM interpolation function has several advantages over its classical,
moving and the multiple fixed forms such as the partition of unity principle, con-
stant moment matrix, and less computational efforts required. As per the fixed
RKPM interpolation, function value approximation is given by,

f h(x,y) =
∫
Ω

C(x,y,u,v) K(xk−u,yk− v) f (u,v) du dv (1)

where f h(x,y) is a function approximation of the function value f (x,y) at a node
(x,y), and K(xk− u,yk− v) is a kernel function fixed at a node (xk,yk). The un-
known correction functions, C(x,y,u,v)= PT (u,v) c(x,y), where PT (u,v)= {b1(u,v), b2(u,v), ..., bm(u,v)}
is an m-order column vector of monomials, are determined by the consistency or
reproducing condition. After simplifying, the shape functions are given as,

f h(x,y) =
NP

∑
I=1

NI(x,y) uI, where I = 1 to NP are interpolation nodes (2)

where, NI(x,y) and uI are the fixed RKPM shape function and the field nodal pa-
rameters, respectively [Aluru (2000); Aluru and Li (2001)].

The kernel function, K(xk−u,yk−v), is a window function normalized over a local
domain such that it is nonzero within the local domain and zero outside of it,

K(xk−u,yk− v) =
1
dx

w
(

xk−u
dx

)
1
dy

w
(

yk− v
dy

)
(3)

where, dx and dy are the cloud sizes in the x and y directions, respectively. In the
RDQ method, the cubic spline function is used as the window function,

w(zI) =



0, zI <−2
1
6(zI +2)3, −2≤ zI ≤−1
2
3 − z2

I (1+ zI
2 ), −1≤ zI ≤ 0

2
3 − z2

I (1−
zI
2 ), 0≤ zI ≤ 1

−1
6 (zI−2)3, 1≤ zI ≤ 2

0, zI > 2

(4)
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It is seen from Eq. (2) that uI 6= f h(x,y)I i.e. it does not have the delta function
property. Thus, in the RDQ method, essential boundary conditions are imposed as
explained in Section 4.

Jin, Li and Aluru (2001), and Atluri and Shen (2002) discussed the RKPM and
MLS shape functions equivalence. Atluri and Shen (2002) shown that if the same
kernel and the window functions are chosen in the RKPM and MLS, respectively,
with the same consistency order, k, the resulting shape functions are identical.

3 Differential quadrature formulation

In the DQ method, the derivative terms in the governing PDE are approximated by
the two approaches, the first by polynomials and the second by Fourier series. The
polynomial based PDE discretization is adopted in the RDQ method.

In the polynomial based DQ, it is assumed that the function f (x) is sufficiently
smooth over a domain [a, b] for N grid points, x1,x2, ...,xN , so that its 1st-order
derivative, f (1)

x (x), at any node is approximated by,

f (1)
x (xi) =

Nx

∑
j=1

ai j f (x j), for i = 1, 2, ..., Nx (5)

where, f (x j) is a function value at the point x j, and ai j are the 1st-order derivative
DQ weighting coefficients. The 2D function, f (x,y), derivatives are approximated
as,

f (1)
x (xi,y j) =

Nx

∑
k=1

ax
ik f (xk,y j), f (1)

y (xi,y j) =
Ny

∑
k=1

ay
jk f (xi,yk) (6)

where, ax
ik and ay

jk are the DQ weighting coefficients, and Nx and Ny are the total
virtual nodes located inside the virtual node (xi,y j) local DQ domain in the x and
y directions, respectively. Once the ax

ik and ay
jk weighting coefficients are deter-

mined, the numerical bridge to link the derivative terms from the governing PDE
with the field node parameter values is established by approximating the virtual
node function values by fixed RKPM interpolation. In the RDQ method, the DQ
weighting coefficients are computed using Shu’s general approach [Shu, Khoo and
Yeo (1994)] as given,

ax
ik =

1
xi− xk

Nx

∏
m=1,m 6=i,k

(
xi− xm

xk− xm

)
and ax

ii =−
Nx

∑
k=1k 6=i

ax
ik (7)

Similar expressions can be written for ay
ik and ay

ii, the 1st-order derivative DQ
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weighting coefficients with respect to the y variable. The 2D case 2nd-order deriva-
tive DQ discretization equations are given as,

f (2)
x (xi, y j) =

Nx

∑
k=1

bik f h (xk,y j), f (2)
y (xi, y j) =

Ny

∑
k=1

b jk f h (xi,yk)

and

f (2)
xy (xi, y j) =

Nx

∑
l=1

ail

Ny

∑
k=1

a jk f h(xl,yk) (8)

where,

bik = 2aik

[
aii−

1
xi− xk

]
for i 6= k, bii =−

Nx

∑
k=1k 6=i

bik for i = k (9)

Recurrent formula for higher order weighting coefficients is given by Shu (2000).

4 The RDQ method

The main limitation of the DQ method to have all collinear field nodes is overcome
in RDQ method. The field nodes are created in the uniform or random manner. The
virtual nodes are created by cosine distribution,

xi = x0 +
L
2

[
1− cos

(
i−1
N−1

π

)]
, for i = 1, 2, ..., N virtual nodes (10)

where x0 and L are the starting co-ordinate and domain length, respectively. As per
Runge phenomenon, with increase in the field variable interpolation order by the
uniform node distribution, the numerical solution gets unstable across the domain
boundaries. This can be avoided if the nodes are distributed densely near the bound-
aries and progressively become uniform with in the domain. This requirement is
fulfilled by Chebyshev nodes. Chebyshev polynomials of the 1st-kind [Christoph
(1997); Sarra (2006)] are the roots of 2nd-order Chebyshev differential equation,
whose roots are called as Chebyshev nodes or Chebyshev-Gauss-Lobatto (CGL)
points. As the CGL points, xk = −cos [((k−1)/(N−1))π] , for k = 1, 2, ..., N,
cover the domain boundaries ±1, it is easy to impose the essential boundary con-
ditions. Eq. (10) is the CGL node equation applied over domain [x0, (x0 +L)].

4.1 Function value Interpolation and the DQ domain creation

The field variable interpolation domain is created around each virtual node as
shown in Fig. 1. The field nodes falling in it are taken into consideration for
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the function value approximation at that virtual node by the fixed RKPM interpola-
tion function. Any local domain shape can be considered like a circle or rectangle;
the circular shape is adopted in the RDQ method. Let dx = αx ∆x and dy = αy ∆y

be the domain sizes in the x and y directions, respectively [Aluru and Li (2001)],
where, ∆x and ∆y are nodal spacings in the x and y directions, respectively. The
nodal spacings are easily computed for the uniform field node distribution but for
the random field nodes, it is done while computing the shape functions by taking
the nodal co-ordinates average. The αx and αy define the local domain sizes in the
x and y directions, respectively. Two approaches are studied to define αx and αy.
As per the first approach, the positivity condition is derived based on the fact that
the fixed RKPM interpolation kernel function is nonzero only over a certain local
domain. As per Eq. (4), the kernel function will be zero if zI > 2 or zI <−2, which
means that αx and αy should have the values such that zI < 2 or zI >−2,

(xk− xi)
αx∆x

≥−2 and
(xk− xi)

αx∆x
≤ 2 (11)

αx ∈
[(

xk− xi

2∆x

)
,−
(

xk− xi

2∆x

)]
for the domain [2, −2] (12)

where, i and k refers the field and virtual nodes, respectively. The highest absolute
αx is selected from all the values obtained by Eq. (12). In the second approach,
an extensive numerical analysis is carried out and found out that for a function
convergence, αx = 2.23 (for 1D) and αx = 1.17 (for 2D) gives good results. αx =
1.17 is adopted for a presented work [Aluru and Li (2001)].

 
Figure 1: Virtual and field node distributions and the fixed RKPM interpolation 
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The local DQ domain is created around each virtual node in the x and y direc-
tions and the virtual nodes falling in it are considered for the locally applied DQ
approximation at that virtual node as shown in Fig. 1. A function value at each vir-
tual node is approximated by the interpolation domain created earlier by the fixed
RKPM interpolation as,

f h(xi, y j) =
NP

∑
k=1

Nk(xi,y j) uk (13)

where Nk(xi,y j) are the shape functions at NP field nodes located in the local do-
main around the virtual node (xi,y j), f h(xi,y j) is the function approximation at
virtual node (xi,y j), and uk are the nodal parameters. The governing PDE is dis-
cretized at all the internal virtual nodes, Dirichlet and Neumann boundary condi-
tions are imposed at the boundary virtual nodes in the strong form by the RDQ
method. All the boundary condition equations are combined with the governing
PDE discretization equations to get the global equations matrix.

4.2 Imposing Dirichlet boundary conditions

Dirichlet boundary conditions are imposed in the strong form at boundary virtual
nodes by assuming uI = f h(x,y)I . For example, if the 1st and 4th virtual nodes are
on Dirichlet boundary, the modified stiffness matrix is given as,

1 0 0 0
k21 k22 k23 k24
k31 k32 k33 k34
0 0 0 1




u1
u2
u3
u4

=


b1
F2
F3
b4

 (14)

thus, u1 and u4 are computed as b1 and b4, respectively.

4.3 Solving final system of equations

It is necessary to have the virtual nodes at least equal to the field nodes to get the
unique solution; the solution is improved as the virtual nodes are increased. Sup-
pose the final system of equations is KmxnUnx1 = Fmx1, where m > n; to get a square
K matrix, it is solved in a least square sense by multiplying KT on both sides to get
K′nxnUn×1 = F ′nx1. Thus, the solution vector is computed by minimizing the residual
error (K′U −F ′). As the fixed RKPM interpolation function does not have a delta
function property, the field node function values are computed by interpolating each
field node by the surrounding field nodes by Eq. (13).
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4.4 Approximate derivatives computation

A novel approach called the weighted derivatives approach is formulated to com-
pute the approximate derivative values at all field nodes such that the 1st- and 2nd-
order derivatives with respect to the x variable at node (xk) are given as,

f (xk),x =
NP

∑
i=1

Ni (xk) f (xi),x and f (xk),xx =
NP

∑
i=1

Ni(xx) f (xi),xx (15)

where xi are the field nodes in the field node, xk, interpolation domain, and f (xi),x =
f (xi)− f (xk)

(xi−xk)
, f (xi),xx =

f (xi),x− f (xk),x
(xi−xk)

and Ni (xk) are the 1st- and 2nd-order approximate
derivatives, and the shape function values at the ith node, respectively. Eqs. (5) and
(8) are not related with Eq. (15), as they are utilized to approximate the derivative
terms from governing PDE while discretizing it at the internal virtual nodes, where
as Eq. (15) is used to compute the field node approximate derivative values after
computing the nodal parameter values. The expressions similar to Eq. (15) can be
written for the y variable derivatives.

4.5 Convergence rate computation

The convergence rates for all the presented problems are computed by [Mukherjee
and Mukherjee (1997); Aluru and Li (2001)],

ε =
1

| f e|max

√
1

NP

NP

∑
I=1

[
f (e)
I − f (n)

I

]2
(16)

where ε is a global error in the solution, f (e)
I and f (n)

I are Ith field node exact and
numerical function values, respectively, and NP are the total field nodes.

In order to compute the global error and convergence rates for randomly scattered
field nodes, first the random field node function values are computed by the RDQ
method. The solution is then approximated over the equal number of uniformly
distributed points [Aluru (2000)] by the random field node function values. The
function values, and the 1st- and 2nd-order derivatives are computed for these uni-
form points and the convergence curves are plotted by the nodal spacings given as
[Aluru (2000); Aluru and Li (2001)],

h = hx = hy =
length√
NP−1

, where NP is the total random field nodes (17)

where, hx and hy are nodal spacings in the x and y directions, respectively, for the
uniformly distributed points, and length is a domain length.
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5 Convergence analysis

It is observed that the solution accuracy is affected by the ratio of field and virtual
nodes. In order to identify their relation, an analytical condition, called the super-
convergence condition, is derived which correlate the number of field and virtual
nodes. The RDQ method numerical accuracy is studied using the superconvergence
condition by solving several test problems. All the convergence rates are computed
using the global errors obtained by Eq. (16).

5.1 The superconvergence condition

Let Nv and Nr be the number of field and virtual nodes, respectively, distributed in
a computational domain. In order to identify the relationship between them, for a
given problem, it is supposed that two graphs are plotted viz. ln(E) versus ln(hr)
and ln(E) versus ln(hrhv) where, E is a global error, and hr and hv are the field and
virtual node spacings, respectively; let m1 and m2 be the slopes of these graphs,
respectively. The m1 and m2 equations can be written as,

ln(E) = m1 ln(hr) and ln(E) = m2 ln(hr/hv) (18)

m1

m2
=

ln(hr/hv)
ln(hr)

(19)

Nv ≥ Nr for a unique solution, and hr = L/(Nr−1) and hv = L/(Nv−1) where, L
is a domain length. It can be stated by observation that ln(hr) has a zero or negative
value as hr ≤ 1, ln(hr/hv) always has a zero or positive value as hr ≥ hv, and ln(E)
has either a positive or negative value as E > 0 or E < 0. Based on this input, four
conditions are possible for the m1, m2 and m1/m2 signs. Careful consideration of
these four conditions results in only one valid possibility as given in Tab. 1,

Table 1: Different possibilities of m1, m2 and m1/m2 signs

m1 m2 m1/m2 Is valid?
+ve +ve +ve No
+ve -ve -ve Yes
-ve -ve +ve No
-ve +ve -ve No

Thus, m1, m2 and m1/m2 should have +ve, -ve and -ve signs, respectively. For
the different numbers of field nodes and fixed number of virtual nodes, m2 is not a
constant but has a different value at each hr/hv location. Thus, in order to maintain
a constant λ = (m1/m2) value with respect to different Nr values, the 3rd graph,
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(λ ) versus (hr), is plotted. The origin of (λ ) versus (hr) graph is at (hv, 0) as the
lowest values of hr = hv and λ = 0. The slope of the third graph with respect to the
origin and using any two points on the graph, (λ1, hr1) and (λ2, hr2), can be as,

λ1−0 = hr1−hv and λ2−0 = hr2−hv (20)

λ1

λ2
=

(hr1−hv)
(hr2−hv)

(21)

for a fixed m1 value, Eq. (21) is simplified as,

(m2)2

(m2)1
=

(hr1−hv)
(hr2−hv)

(22)

If the m1 and λ values are fixed, the successive m2 values can be computed and by
further fixing hv and hr1 values, the successive hr2 values can be computed by Eq.
(22). If a test problem is solved using these successive hr values (corresponding
to fixed m1 value) and a fixed Nv value hence, as per Eq. (22), m1 convergence
rate should be achieved. Thus, it shows that if a test problem is solved using the
field nodes obtained by Eq. (22) and approximating a function value by up to p
order monomials, a convergence rate higher than o

(
hp+1

)
is possibly obtained.

Therefore, Eq. (22) is called as the superconvergence condition. The application of
Eq. (22) is demonstrated in Sections 5.2 and 5.3 by solving several 1D and 2D test
problems, respectively.

The approximate field node function derivatives are computed by the weighted
derivatives approach as explained in Section 4.4, the numerical error in the com-
puted derivatives is more than the corresponding function values. In order to obtain
a good convergence, it is essential to ensure that the derivative error norm reduces
as we increase the field nodes. In order to achieve this thus, the complete or Sobolev
error norm is computed after applying Eq. (22),

(E)0 =

√
Nr

∑
I=1

( f e− f n)2, Sobolev norm of the order 0 (23)

(E)1 = (E)0 +

√√√√ Nr, 3

∑
I=1, j=1

[(
∂ f
∂x j

)e

−
(

∂ f
∂x j

)n]2

, Sobolev norm of the order 1

(24)
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where (E)0 and (E)1 are 0th and 1st order Sobolev error norms, respectively, and
e and n are the exact and numerical values, respectively. It is seen from Eq. (24)
that as the square of the error in the function and its corresponding derivative values
is added, the (E)0 term contribution to the (E)1 term becomes less as compared
with the derivatives error term. Hence, with the successively increasing field nodes
and if (E)1 reduces, then actually the derivatives error term reduces. Thus, Sobolev
or complete error norm computed by Eq. (24) can be fairly taken as an indicator of
the reduction in the derivatives error at the field nodes.

5.2 1-D problems

The first 1D problem is a Poisson equation with a constant force term. Its governing
equation and boundary conditions are given as,

d2 f
dx2 = 2, (0 < x < 8) and f (x = 0) = 0, f (x = 8) = 64 (25)

The exact solution is given as f (x) = x2. This problem is solved by including the
2nd-order monomials in the function approximation polynomial basis, and using 6,
21, 161, 321 field and 460 virtual nodes. The convergence curves are plotted in Fig.
2 and it is seen that the convergence values obtained by the random field nodes are
equally good as uniform field nodes. The analytical and numerical function value
comparisons are given in Fig. 3.

 
Figure 2: Convergence plots for the first 1D problem of Poisson equation by the 

uniform and random field node distributions. 
 

Figure 2: Convergence plots for the first 1D problem of Poisson equation by the
uniform and random field node distributions.
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The second 1D problem is a mixed boundary value problem with the analytical
solution containing the 4th-order monomial therefore; it is interesting to see how
the RDQ method converges by including the 2nd-order monomials. Its governing
equation and boundary conditions are as,

d2 f
dx2 =

105
2

x2− 15
2

, (−1 < x < 1) and f (x =−1) = 1,
d f
dx

(x = 1) = 10 (26)

 
a 

 
b 

 
 

Figure 3: Function values comparison for the 1st 1D problem of Poisson equation
using a) uniform and b) random field nodes, respectively.

The analytical solution is given as f (x) = 35/8x4− 15/4x2 + 3/8. This problem
is solved by the superconvergence condition with m1 = 3, Nv = 641, hr1 = 0.05
and λ1 = −1.2. The successive λ values are obtained by dividing the λ1 value
by 3 and using Eq. (22) to compute the corresponding hr2 values. As such,
Nr = 58, 145, 299, 464, 569, and 632 are obtained. In order to compare the re-
sults, this problem is also solved by 2nd set of 21, 41, 81, 161, 321, 641 field and
641 virtual nodes, respectively. The convergence curves obtained by both field
node sets are plotted in Figs. 4a and 4b and the corresponding convergence rates
are given in Tab. 2. It is seen from Tab. 2 that all the convergence values obtained
by the field nodes computed by Eq. (22) are improved, the derivative convergence
values are superconvergent, and the function value convergence by the random field
nodes is also superconvergent. Fig. 5a shows the reduction in the complete Sobolev
norm up to order 2 by the superconvergence condition field nodes. This problem
is also solved by the 4th-order monomials; the convergence curves are given in
Fig. 5b. When Tab. 2 and Fig. 5b are compared, it is observed that the derivative
convergence values are considerably improved and the random field nodes conver-
gence values are almost equal to or better than by the uniform nodes. This indicates
that the RDQ method is capable of equally handling the uniform and random node
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distributions, which is one of the objectives of its development. The analytical and
numerical solution comparison curves are given in Fig. 6. From all the results it
is seen that quite good function and its 1st- and 2nd-order derivatives convergence
rates are achieved by the RDQ method with the domain discretized by uniform and
the random field nodes.

It is observed from Tab. 2 that the convergence rates obtained by the superconver-
gence condition are improved and the derivatives values are superconvergent. It is
seen from Fig. 5b that the RDQ method converges at the faster rate with increase
in the function approximation monomial order.

Table 2: Convergence rates for the 2nd 1D problem using up to 2nd-order monomi-
als

function for 2nd set superconvergence for 2nd set Superconvergence
(uni. nodes) (uniform nodes) (ran. nodes) (random nodes)

f 1.7 3.0 1.8 3.8
f,x 0.9 1.8 0.8 2.1
f,xx 0.9 1.2 0.7 1.4

 
a 

 
b 

 
 
Figure 4: Convergence curves for the 2nd 1D problem of Poisson equation by a)
uniform and b) random field nodes, respectively. The curves are plotted using field
nodes obtained by uniformly decreasing h and by the superconvergence condition.

The third 1D problem is having a local high gradient. This problem is solved by the
2nd-order monomials. Its governing equation and boundary conditions are given as,

d2 f
dx2 =−6x−

[(
2

α2

)
−4
(

x−β

α2

)2
]

exp

[
−
(

x−β

α

)2
]

(0 < x < 1) (27)
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f (x = 0)= exp
[
−
(

β 2

α2

)]
,

d f (x = 1)
dx

=−3−2
(

1−β

α2

)
exp

[
−
(

1−β

α

)2
]

(28)

Its analytical solution is given as f (x) =−x3 +exp
[
−((x−β )/α)2

]
. This problem

is solved using the superconvergence condition by fixing m1 = 2, Nv = 641, hr1 =
0.05 and λ1 =−1.2. The successive λ values are obtained by dividing the λ1 by 2
and using Eq. (22) to compute the corresponding hr2 values.

 
a 

 
b 

 
 
Figure 5: For the 2nd 1D problem, a) reduction in the complete error norm with
increasing the field nodes obtained by superconvergence condition b) convergence
plots by the uniform and random field nodes, with the 4th-order monomials.

Hence, Nr = 21, 40, 75, 133, 219, 327, 433, 517 and 572 are obtained. The con-
vergences are given in Fig. 7 and it is noted that the uniform field nodes function
value convergence is O

(
hp+2.1

)
and all the derivatives convergence values are also

superconvergent, Sobolev error norm is plotted in Fig. 8.

5.3 2-D problems

The first 2-D problem is a Laplace equation with Dirichlet boundary conditions as,

∇
2 f = 0, (0 < x < 1) and (0 < y < 1) (29)

f (x = 0,y) =−y3, f (x = 1,y) =−1− y3 +3y2 +3y (30)

f (x,y = 0) = x3, f (x,y = 1) =−1− x3 +3x2 +3x (31)



On the Convergence of RDQ Method and Its Application 61

 
a 

 
b 

 
 

Figure 6: Numerical and analytical function values comparison for the 2nd 1D
problem by a) uniform and b) random field nodes, respectively

 
a 

 
b 

 
 
Figure 7: Convergence curves for the 3rd 1D problem of local high gradient by a)
uniform and b) random field nodes, respectively.

Analytical solution is given as f (x,y) = −x3− y3 + 3xy2 + 3x2y. The problem is
solved with the 2nd-order monomials, and 5×5, 9×9, 17×17, 33×33, 44×44 field
and 44×44 virtual nodes. The convergence curves are plotted in Figs. 9a and
9b, and it is observed that better function convergence is achieved by the random
field nodes but the derivatives convergence remain unchanged. The analytical and
numerical function values comparison plots are given in Figs. 10a and 10b.

The 2nd 2-D problem is also Laplace equation with mixed boundary conditions as,

∇
2 f = 0 , (0 < x < 1) and (0 < y < 1) (32)
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Figure 8 Reduction in the Sobolev error norm for the 3rd 1D problem. 

 
Figure 8: Reduction in the Sobolev error norm for the 3rd 1D problem.

f (x = 0,y) =−y3, f (x = 1,y) =−1− y3 +3y2 +3y (33)

d f
dy

(x,y = 0) = 3x2,
d f
dy

(x,y = 1) =−3+6x+3x2 (34)

Analytical solution is given as, f (x,y) = −x3− y3 + 3xy2 + 3x2y. This problem

 
a 

 
b 

 
 

Figure 9: Convergence curves for the 1st 2D problem of Laplace equation by a)
uniform and b) random field nodes, respectively, by the 2nd-order monomials.

is solved with the 2nd-order monomials, and 5×5, 9×9, 17×17, 33×33, 41×41,
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44×44 field and 44×44 virtual nodes. The convergence curves are plotted in Figs.
11a and 11b and it is observed that better function convergence is achieved by the
random field nodes.

The third 2-D problem solved is of local high gradient value at node (0.5, 0.5). Its
governing equation and the boundary conditions are given as,

∇
2 f =−6x−6y−

[(
4

α2

)
−4
(

x−β

α2

)
−4
(

y−β

α2

)]
×

exp

[
−
(

x−β

α

)2

−
(

y−β

α

)2
]

, (0 < x < 1) and (0 < y < 1) (35)

f (x = 0,y) =−y3 + exp

[
−
(

β

α

)2

−
(

(y−β )
α

)2
]

(36)

f (x = 1,y) =−1− y3 + exp

[
−
(

(1−β )
α

)2

−
(

(y−β )
α

)2
]

(37)

d f
dy

(x,y = 0) =
2β

α2 exp

[
−
(

β

α

)2

−
(

(x−β )
α

)2
]

(38)

d f
dy

(x,y = 1) =−3−2
(

(1−β )
α2

)
exp

[
−
(

(x−β )
α

)2

−
(

(1−β )
α

)2
]

(39)

The analytical solution is given as,

f (x,y) =−x3− y3 + exp
[
−((x−β )/α)2− ((y−β )/α)2

]
.

This problem is solved with the 2nd-order monomials and the superconvergence
condition by fixing m1 = 2, Nv = 44×44, hr1 = 0.25 and λ1 =−1.2. The successive
λ values are obtained by dividing the λ1 by 2 and using Eq. (22) to compute
the hr2 values. Thus, Nr = 5× 5, 9× 9, 13× 13 and 19× 19 are obtained. The
convergence curves are plotted in Figs. 12a and 12b and it is observed that the
derivative convergence values are superconvergent in nature. Fig. 13 shows the
numerical and analytical function values comparison.
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a 

 
b 

 
 Figure 10: Numerical and analytical function values comparison for 1st 2D problem

of Laplace equation by 33×33 a) uniform b) random field nodes, respectively.

The 4th 2D problem is of steady-state heat conduction in a rectangular plate domain
with a heat source. Its governing equation and boundary conditions are as,

∇
2T =−2 s2 sech2 [s(y−0.5)] tanh[s(y−0.5)],(0 < x < 0.5), (0 < y < 1) (40)

∂ f
∂n

= 0 along x = 0 and 0.5, T (y = 0) =− tanh
( s

2

)
, T (y = 1) = tanh

( s
2

)
(41)

The successive λ values are obtained by dividing the λ1 by 3 and using Eq. (22)
to compute the corresponding hr2 values. As a result, Nr = 6× 6, 13× 13, 21×
21 and 28×28 are obtained. The temperature and its gradient convergence plots are
given in Fig. 14a and the corresponding convergence values are 3.2 and 2.4. The
Sobolev norm plot with increasing field nodes, and the numerical and analytical
temperature comparisons are given in Figs. 14b and 15, respectively.

It is seen from Fig. 14a that good function and derivative convergences are achieved
by the superconvergence condition field nodes. The superconvergent derivative
values confirm that the weighted derivatives approach gives very good results.

5.4 Elasticity problems

All problems are solved for plane stress condition with the governing equation as,

σi, j +Bi = 0 (42)

where, σi and Bi are the stresses and body forces in the ith direction, respectively.
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a 

 
b 

 
 

Figure 11: Convergence plots for the 2nd 2D problem of Laplace equation by a)
uniform b) random field nodes, respectively.

5.4.1 Cantilever beam under pure bending

A cantilever beam under the bending load is shown in Fig. 16a. The analytical
solutions are derived as [Timoshenko and Goodier (1970), and Zhilun (1992)],

u =
M
EI

xy, v =
−ν0M

2EI
y2− M

2EI
x2 and σx =

My
I

, σy = 0, σxy = 0 (43)

 
a 

 
b 

 
 

Figure 12: Convergence plots for the 3rd 2D problem of local high gradient by a)
uniform b) random field node distributions, respectively.

This problem is solved for L = 48, D = 12, M =−24000, ν0 = 0.3, E = 3.0×1007,
and 13×13, 17×17, 21×21, 29×29 field and 41×41 virtual nodes, with the 1st-
order monomials in the function approximation. The u and v displacement conver-
gence rates, by discretizing the domain with uniform and the random field nodes,
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are given as 1.0 and 1.3, and 1.96 and 2.0, respectively, corresponding convergence
plots are given in Fig. 16b. When this problem is solved by 9×9 uniform field
and 41×41 virtual nodes with the 2nd-order monomials, the analytical solutions are
almost exactly reproduced with the u and v displacements global error values as
3.53×10−13 and 2.54×10−12, respectively.

 
Figure 13: The numerical and analytical function values comparison for the third 

2-D problem of local high gradient using the uniform field node distribution. 
 

Figure 13: The numerical and analytical function values comparison for the third
2-D problem of local high gradient using the uniform field node distribution.

5.4.2 Cantilever beam under pure shear

A cantilever beam loaded under the pure shear is shown in Fig. 17a with stresses
as,

σxx =
P(L− x)y

I
, σxy =

−P
2 I

(
D2

4
− y2

)
and σy = 0 (44)

The analytical solutions are derived as [Timoshenko and Goodier (1970), and Zhilun
(1992)],

u =
Pyx
EI

(
L− x

2

)
− ν0Py3

6EI
+

Py3

6GI
− PD2y

8GI
, v =

−ν0Py2(L− x)
2EI

−
(

Px2

EI

)(
L
2
− x

6

)
(45)

where, G = E/2(1+ν0), I = D3/12 (beam has a unit thickness). This problem
is solved for L = 48, D = 12, P = −1000, ν0 = 0.3, E = 3.0× 1007, and 13×13,
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Figure 14: For the 4th 2D problem of steady-state heat conduction a) convergence
plots using uniform field nodes, b) reduction in Sobolev norm with field nodes.

 
Figure 15: Temperature distribution within the domain. 

 
Figure 15: Temperature distribution within the domain.

17×17, 21×21, 29×29 field and 41×41 virtual nodes, with the 2nd-order monomi-
als. The u and v displacement convergence rates by the uniform and random field
nodes are 1.94 and 1.9, and 1.5 and 2.0, respectively; the corresponding conver-
gence curves are plotted in Fig. 17b. When this problem is solved by 9×9 field and
41×41 virtual nodes with 1st-, 2nd- and 3rd-order monomials, the numerical results
are steadily improved as shown in Tab. 3.
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a 
 

b 

 
 

Figure 16: For a cantilever beam under pure bending load a) schematic of a can-
tilever beam under a pure bending load, b) u and v displacement convergence plots
by the uniform and random field nodes.

Table 3: Decrease in the global error values with increase in the monomial order

Monomial order Global error in u Global error in v
1 1.38×10−04 1.2
2 3.78×10−05 5.03×10−02

3 3.26×10−09 2.43×10−09

5.4.3 Semi infinite plate with central hole

The RDQ method is applied to solve a semi-infinite plate with a central hole. Due
to the symmetric boundary value problem, only one quarter of the plate is used as
the computation domain as shown in Fig. 18a. The analytical solutions in Cartesian
co-ordinate system are given as,

u =
(

1+ν0

E

)
P[

r
1+ν0

cosθ +
(

2
1+ν0

)
b2

r
cosθ +

b2

2 r
cos(3θ)− b4

2 r3 cos(3θ)
]

(46)

v =
(

1+ν0

E

)
P[(

−ν0 r
1+ν0

)
sinθ −

(
1−ν0

1+ν0

)
b2 sinθ

r
+

b2 sin(3θ)
2 r

− b4 sin(3θ)
2 r3

]
(47)
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where, r and θ are the local polar co-ordinates at each field node. Along 2, all the
traction components are equal to zero i.e.

σ
′
xx = nxtx +nyty = 0 and σ

′
xy =−nytx +nxty = 0 (48)

 
a 

 
b 

 
 

Figure 17: For a cantilever beam under pure shear load a) schematic of a cantilever
beam under a pure shear load, b) u and v displacement convergence plots by the
uniform and random field nodes.

where, tx = nxσxx +nyσxy and ty = nxσyx +nyσyy, nx and ny are the direction cosines
in the x and y directions, respectively. The problem is solved for a = 1, b = 5,
P = 1, ν0 = 0.3 and E = 1000, and 6×6, 11×11, 21×21, 31×31 uniform field
and 34×34 virtual nodes, with the 2nd-order monomials. The u and v displacement
convergence values by the uniform field nodes are obtained as 0.3, 0.3, respectively,
and the convergence curves are plotted in Fig. 18b. Along the boundary 1, the
numerical and analytical σxx values are given in Fig. 19.

6 Application of the RDQ method in solving the fixed-fixed and cantilever
beams under the nonlinear electrostatic loading

In this section, the RDQ method is tested for the 4th-order field variable repro-
ducibility by solving the fixed-fixed and cantilever beams, as shown in Figs. 20a
and 20b, respectively, for the slope and deflection under uniformly distributed loads
(UDL) using the thin beam theory [Popov (1990)]; the same beam configurations
are solved by applying the nonlinear electrostatic force field. The thin beam gov-
erning equation [Timoshenko and Goodier (1970); Popov (1990)] is,

EI
d4w(x)

dx4 = q(x) (by Timoshenko thin beam theory) (49)
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where, q(x) is an applied load, EI is Flexural rigidity, and w is the beam deflection.
Fixed-fixed beam under UDL is solved with the boundary conditions,

w(x = 0) = 0, w(x = L) = 0,
dw(x = 0)

dx
= 0 and

dw(x = L)
dx

= 0 (50)

 
a 

 
b 

 
 

Figure 18: Semi-infinite plate with a central load a) schematic of the computational
domain, b) u and v displacement convergence plots by uniform field nodes.

The beam parameters are q =−3.0 N, E = 3×107 Pa, ν = 0.3, length(L) = 20 m,
thickness(t) = 0.1 m and width(D) = 1.0 m. The deflection and slope analytical
solutions are given as,

w(x) =
q x2 (L− x)2

24 EI
and

dw(x)
dx

=
q

EI

[
x L2

12
− L x2

4
+

x3

6

]
(51)

The problem is solved by 41 uniform and random, field and virtual nodes, respec-
tively; corresponding solutions are plotted in Figs. 21a and 21b, respectively. The
nonlinear electrostatic force field is applied on the fixed-fixed beam as given,

q(x) =
ε0 ṽ2 w̃

2 g2

[
1+ 0.65

g
w̃

]
(52)

Where, ε0, ṽ, w̃ are the vacuum permittivity
(
8.8541878176×10−12 F / m

)
, ap-

plied voltage and the beam width, respectively, and g = g0−w(x) where, g0 is an
initial gap between the beam and bottom fixed plate. The beam parameters are
ṽ = 15.05 volt, E = 169 GPa, ν = 0.3, L = 80 µm, t = 0.5 µm and w̃ = 10 µm. As
the beam starts to deflect due to applied electrostatic force field given by Eq. (52),
the load becomes nonlinear. Thus, it becomes an implicit problem which needs
to be solved by inner iterations with a relaxation technique. For the given beam
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parameters, beam deflection is plotted in Fig. 22a, and Fig. 22b show the peak
deflection convergence during the inner iterations. It can be seen from Fig. 22a
that the field node deflection values are smoothly computed, which demonstrate
that the RDQ method can effectively handle the nonlinear deformation problems.
In order to compare the results, the inner iterations are carried out by fixed point
and Newton methods and both gave equal results.

A cantilever beam (Fig. 20b) under the UDL is solved with boundary conditions
as,

w(x = 0) = 0,
dw(x = 0)

dx
= 0 and

d2w(x = L)
dx2 = 0,

d3w(x = L)
dx3 = 0 (53)

 
 

 
Figure 19: Numerical and analytical stress, σxx, comparison along the boundary 1.
As the field nodes are increased, the maximum numerical σxx value approaches its
analytical value.
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b 

 
 

Figure 20: a) Schematic of a fixed-fixed beam under the UDL, b) Schematic of a
cantilever beam under the UDL.
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Figure 21: Numerical and analytical deflection and slope values comparison for a
fixed-fixed beam under the UDL by a) uniform, b) random, field nodes.

All the beam parameters are same as fixed-fixed beam with analytical solutions as,

w(x) =
q

24 EI

[
x4−4x3L+6x2L2] and

dw(x)
dx

=
q

EI

[
x3

6
− L x2

2
+

x2L
2

]
(54)

This problem is solved by 41 uniform and random, field and virtual nodes, respec-
tively; the corresponding numerical solutions are given in Figs. 23a and 23b. The
nonlinear electrostatic force field is applied on the cantilever beam as given in Eq.
(52). The beam parameters used are ṽ = 2.64453 volt, E = 169 GPa, ν = 0.3,
L = 80 µm, t = 0.5 µm and w̃ = 10 µm.

 
a 

 
b 

 
 

Figure 22: Fixed-fixed beam under the influence of nonlinear electrostatic load
a) beam deflection due to ṽ = 15.05 volt, b) peak deflection convergence with the
inner iterations.
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Figure 23: Numerical and analytical deflection and slope values comparison for a
cantilever beam under the UDL by a) uniform, b) random, field nodes.

For Newton iteration technique, there should be only one discretization equation
per node but if Eq. (53) is observed, it is seen that two boundary conditions are
applied at each of the leftmost and rightmost domain nodes. Hence, this difficulty
is overcome by transferring one of the boundary conditions at the leftmost and
rightmost nodes to their neighbouring nodes as given,(

dw
dx

)
1
=

(w2−w1)
(x2− x1)

= 0, as w1 = 0, so w2 = 0

and

w,xxx|N =
w,xx|N− w,xx|N−1

xN− xN−1
= 0, as w,xx|N = 0, w,xx|N−1 = 0 (55)

where, w1, w2, and x1, x2 are the deflections and co-ordinates at the node 1 and 2,
respectively, and N is the total nodes. The modified boundary conditions are as,

w1 = 0, w2 = 0 and
(

d2w
dx2

)
N

= 0,

(
d2w
dx2

)
N−1

= 0 (56)

Using Eq. (56) with Eqs. (49) and (52), Newton method is employed at the virtual
nodes with the residual, R = KU −F , as a function. The virtual node deflection
values at nth iteration, where, n > 1, are computed by the deflections values at the
0th and 1st iteration as given,

J
[

∂R(w1
vir)

∂w

] [
w2

vir−w1
vir
]
=−R

(
w1

vir
)

applied at jth virtual node (57)

J
[

∂R(w1
vir)

∂w

]
j
=

k jU1− k jU0

w1
j −w0

j
− ∂F(w1)

∂w

∣∣∣∣
j
,

∂F(w1)
∂w

∣∣∣∣
j
=

F(w1
j)−F(w0

j)

w1
j −w0

j
,
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and

R(w1) j = K jU1−F(w1
j) (58)

where J
[

∂R(w1
vir)

∂w

]
j

is Jacobean matrix computed at jth virtual node by the residual

function R. Eqs. (57) and (58) are solved together iteratively till the peak deflection
field node value converges. For the given beam parameters, the beam deflection is
computed by Newton method as explained and plotted in Fig. 24a, and Fig. 24b
shows the peak deflection convergence during the inner iterations.

All the results obtained by solving the elasticity problems shows that the RDQ
method can effectively handle different field variable distribution orders in the en-
gineering problems. The results obtained by applying the nonlinear electrostatic
force field on the fixed-fixed and cantilever beam analysis shows that the RDQ
method can be successfully applied to solve the nonlinear differential equations in
the mechanics.

 
a 

 
b 

 
 

Figure 24: For a cantilever beam under the influence of nonlinear electrostatic load-
ing a) beam deflection plot, b) peak beam deflection convergence during the inner
iterations.

7 Conclusions

In this paper, a novel strong-form meshless method called the RDQ method is
developed. For the RDQ method, the superconvergence condition is developed
and the RDQ method convergence analysis is carried out using it. It is observed
that if the number of field nodes are computed by the superconvergence condition,
the function and its approximate derivatives converge at the rate O(hp+α), where
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α ≥ 1 for the function approximation and α ≈ 0.7 to 1 for its derivative approxi-
mation. The convergence analysis also shows that if the complete and consistent
order monomials are included in the function approximation, the function and its
derivatives are exactly reproduced. The RDQ method is successfully demonstrated
to solve the fixed-fixed and cantilever beams loaded by the nonlinear electrostatic
force field. It is observed from all the convergence plots and values that the RDQ
method effectively handles the randomly distributed field nodes and sometimes
performs even better than the uniform field nodes. It is also seen that the weighted
derivatives approach effectively computes the 1st- and 2nd-order function deriva-
tives.
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