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Fracture Analysis for Two-dimensional Plane Problems of
Nonhomogeneous Magneto-electro-thermo-elastic Plates
Subjected to Thermal Shock by Using the Meshless Local

Petrov-Galerkin Method

W. J. Feng1, X. Han2 and Y.S. Li3

Abstract: The two-dimensional (2D) fracture problem of nonhomogeneous mag-
neto-electro-thermo-elastic materials under dynamically thermal loading is inves-
tigated by the meshless local Petrov-Galerkin (MLPG) method. The material pa-
rameters are assumed to vary in either the height or width direction of the plates.
The Laplace-transform technique is utilized to solve the time-dependent problems.
In this MLPG analysis, the moving least squares (MLS) method is adopted to ap-
proximate the physical quantities, and the Heaviside step function is taken as a test
function. The validity and efficiency of the MLPG method are firstly examined.
The crack problem of a nonhomogeneous magneto-electro-thermo-elastic plate is
then considered. The field intensity factors (FIFs) including the stress intensity
factor (SIF), electric displacement intensity factor (EDIF), magnetic induction in-
tensity factor (MIIF) and mechanical mode-I strain energy release rate (MSERR)
of the magneto-electro-thermo-elastic materials are computed. The effects of the
nonhomogeneous parameters especially the thermal nonhomogeneous parameters
on the fracture behavior of crack tips are emphatically evaluated and discussed ac-
cording the energy release rate criterion. The results seem useful for the design of
nonhomogeneous material worked in high or low temperature environments.
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1 Introduction

Magnetoelectroelastic materials have been found wide engineering applications for
their mechanical-electrical-magnetic coupling effect. This begins with the work
of Van Suchtelen (1972), who proposed that the combination of piezoelectric-
piezomagnetic phase may exhibit a new material property - the magnetoelectric
coupling effect. Since then, much of the theoretical studies have been carried out
[Avellaneda and Harshe (1994); Benveniste (1995); Li (2000); Nan (1994); Huang
and Kuo (1997)].

On the other hand, magnetoelectroelastic materials have a tendency to develop crit-
ical cracks during the manufacturing and poling process. And the fracture behav-
iors of the materials for both the static crack problems [Gao et al. (2003a,b); Song
and Sih (2003); Tian and Gabbert (2004); Zhou et al. (2005); Zhao et al. (2006);
Wang and Mai (2007)] and dynamic crack problems [Li (2005); Feng et al. (2007);
Feng and Pan (2008)] have been investigated. In addition, heating or nonuniform
temperature fields can also reduce the service life of these kinds of materials and
structures or make them failure especially as they operate at high or low temper-
ature environments. However, up till now, the thermal effects related to cracks
in magnetoelectroelastic materials are reported only in several literatures [Gao et
al. (2003c); Niraula and Wang (2006); Feng et al. (2008)]. Among these papers,
Gao et al. (2003c) analyzed the collinear permeable-crack problems of infinite
magneto–electro–thermo-elastic materials. Niraula and Wang (2006) obtained the
exact solution of penny-shaped crack problem in an infinite magnetoelectroelastic
medium under uniform heat flow. Feng et al. (2008) studied the mechanical be-
havior induced by a penny-shaped crack in a finite magneto-electro-thermal-elastic
layer subjected to a heat flow. It should be pointed out that the work on fracture
analysis for nonhomogenous magnetoelectroelastic materials under thermal load-
ing has not been addressed and that it is much complicated to get the corresponding
analysis solution because of the mathematical difficulty. Thus, numerical method
is an important tool to investigate this kind of problems.

Recently, considerable research in computational mechanics has been devoted to
the development of meshless methods since it does not require a mesh to discretize
the problem domain, and the approximate solution is constructed entirely in terms
of a set of scattered nodes. The meshless local Petrov-Galerkin (MLPG) method
is proposed by Atluri and Zhu (1998), which is based on local weak forms of gov-
erning equations and employs meshless interpolations for both the trial and test
functions. The trial functions are generally constructed by using the moving least
squares (MLS) approximation. These approximations simply rely on the location
of points or nodes in the body, rather than complex meshes [Lancaster and Salka-
uskas (1981)]. In the Petrov-Galerkin formulation, the test functions may be cho-
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sen from a space different from the space of trial functions [Atluri et al. (1999)].
It should be noted that depending on the weak formulation’s test functions of the
MLPG method, Atluri and coworkers developed six different MLPG methodolo-
gies [Atluri and Shen (2002a); Atluri and Shen (2002b)]

The MLPG method has been successfully applied to several kinds of problems in-
cluding elasto-statics [Li et al. (2003); Han and Atluri (2003); Han and Atluri
(2004a); Sellountos et al. (2005)], elasto-dynamics [Han and Atluri (2004b)], im-
pact problems [Han et al. (2006)], shell problems [Sladek et al. (2006a); Jarak et
al. (2007)], heat conduction problems [Sladek et al. (2008a)], fracture problems
[Batra and Ching (2002); Gao et al. (2006); Sladek et al. (2007a); Long et al.
(2008)], thermoelastic problems [Qian and Batra (2005); Ching and Yen (2005);
Ching and Chen (2006); Sladek et al.(2006b)], thermo-piezoelectric and axisym-
metric piezoelectric problems [Sladek et al. (2007b); Sladek et al. (2008b)], and
magneto-electro-elastic problems [Sladek et al. (2008c)]. A comprehensive pre-
sentation on the application of the MLPG method to different types of boundary
value problems can be found in the book of [Atluri (2004)]. However, to date, to
the best of our knowledge, no report is presented on the nonhomogeneous magneto-
electro-thermo-elastic fracture problem, let alone by the MLPG method.

This paper aims to investigate the two-dimensional (2D) fracture problems of non-
homogeneous magneto-electro-thermo-elastic materials under thermal loading by
the MLPG method. In this MLPG analysis, the MLS method is adopted to ap-
proximate the physical quantities, and the Heaviside step function is taken as a test
function. The validity and efficiency of the MLPG method are firstly examined,
and the stress intensity factor (SIF), electric displacement intensity factor (EDIF),
magnetic induction intensity factor (MIIF) and mechanical mode-I strain energy
release rate (MSERR) of the magneto-electro-thermo-elastic plates are computed
and further analyzed.

2 Fundamental equations of magneto-electro-thermo-elasticity

For a nonhomogeneous magneto-electro-thermo-elastic solid, the constitutive equa-
tions related the mechanical stresses σi j, electric displacements Di and magnetic
inductions Bi with the elastic strains γi j, electric fields Ei, magnetic fields Hi and
temperature increment θ are given by Huang and Kuo (1997)

σi j (x, t) = ci jkl(x)γkl (x, t)− eki j(x)Ek (x, t)− fki j(x)Hk (x, t)−λi j (x)θ (x, t) (1a)

Di (x, t) = eikl(x)γkl (x, t)+ εik(x)Ek (x, t)+gik(x)Hk (x, t)+ pi(x)θ (x, t) (1b)

Bi (x, t) = fikl(x)γkl (x, t)+gik(x)Ek (x, t)+ µik (x)Hk (x, t)+mi(x)θ (x, t) (1c)
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where ci jkl , εik and µik denote the elastic stiffnesses, dielectric permittivities and
magnetic permeabilities, respectively; eki j, fki j and gik are the piezoelectric, piezo-
magnetic and magnetoelectric coupling coefficients, respectively; λi j, pi and mi are
the thermal modules, pyroelectric and pyromagnetic constants, respectively. x and
t denote the coordinate and time, respectively.

The Fourier’s heat conduction law can be expressed as

qi (x, t) =−ki j(x)θ, j (x, t) (2)

where qi and ki j are the heat fluxes and thermal conductivities, respectively. Sub-
script comma denotes the partial differentiation with respect to the coordinate.

The elastic strains γi j, electric fields Ei, magnetic fields Hi are related to the dis-
placements ui, electric potential φ and magnetic potential ψ by

γkl (x, t) = [ui, j (x, t)+u j,i (x, t)]
/

2 (3a)

Ei (x, t) =−φ,i (x, t) (3b)

Hi (x, t) =−ψ,i (x, t) (3c)

In the absence of body forces, free charges and internal heat generation, the me-
chanical, electromagnetic and heat equilibrium equations of magneto-electro-thermo-
elasticity are

σi j, j (x, t) = ρ(x)üi (x, t) (4a)

D j, j (x, t) = 0 (4b)

B j, j (x, t) = 0 (4c)

[ki j (x, t)θ,i (x, t)], j = ρ(x)c(x)θ̇ (x, t) (4d)

where ρ and c are, respectively, the mass density and specific heat. The dots over a
quantity indicate the time derivative.

For 2D plane strain problem, the constitutive equations can be written as
σ11
σ33
σ13


=

c11 c13 0
c13 c33 0
0 0 c44


γ11
γ33
2γ13

−
 0 e31

0 e33
e15 0

{E1
E3

}
−

 0 f31
0 f33
f15 0

{H1
H3

}
−


λ11
λ33
0

θ

= cγ − eE− fH−λθ (5a)
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{
D1
D3

}

=
[

0 0 e15
e31 e33 0

]
γ11
γ33

2γ13

+
[

ε11 0
0 ε33

]{
E1
E3

}
+
[

g11 0
0 g33

]{
H1
H3

}
+
{

p1
p3

}
θ

= eT
γ − εE− gH− pθ (5b)

{
B1
B3

}

=
[

0 0 f15
f31 f33 0

]
γ11
γ33
2γ13

+
[

g11 0
0 g33

]{
E1
E3

}
+
[

µ11 0
0 µ33

]{
H1
H3

}
+
{

m1
m3

}
θ

= fT
γ − gE− µH−mθ (5c)

where the quantities described by standardized boldfaces stand for matrices and the
ones by italic boldfaces stand for vectors.

The following essential and natural boundary conditions are assumed

ui (x, t) = ũi (x, t) , x ∈ Γu (6a)

ti (x, t) = σi j (x, t)n j (x) = t̃i (x, t) , x ∈ Γt (6b)

φ(x) = φ̃(x), x ∈ Γφ (7a)

D j(x)n j(x) = D̃(x), x ∈ ΓQ (7b)

ψ(x) = ψ̃(x), x ∈ Γψ (8a)

B j(x)n j(x) = B̃(x), x ∈ ΓR (8b)

θ (x, t) = θ̃ (x, t) , x ∈ Γθ (9a)

q(x, t) = ki j(x)θ,i (x, t)n j(x) = q̃(x, t) , x ∈ Γq (9b)

for the mechanical field, electrical field, magnetic field and thermal field, respec-
tively. In Eqs. (6)-(9), Γu, Γφ , Γψand Γθ are the parts of the global boundary
with the prescribed elastic displacements, electric potential, magnetic potential and
temperature increment, respectively; and on Γt , ΓQ, ΓR and Γq, the stress, electric
displacement, magnetic induction and heat flux are prescribed, respectively; n j are
the components of a unit vector outward normal at a point on the natural boundary.
For the 2D plane strain problem, i, j = 1,3.
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The initial conditions for the mechanical and thermal fields are assumed as

ui (x,0) = 0, x ∈ Ω (10a)

u̇i (x,0) = 0, x ∈ Ω (10b)

θ (x,0) = 0, x ∈ Ω (10c)

where Ω denotes the whole global domain.

3 Interpolation approximation

The MLS method is generally considered to be one of the best schemes to interpo-
late data with reasonable accuracy. Consider a domain Ωx in the neighborhood of
the point x. Ωx is located within the problem domain Ω. The MLS approximate
Uh(x) of U(x) in the subdomain Ωx are defined by

Uh(x) = pT (x)a(x) (11)

where Uh(x) is the approximate function of extended displacement, and

Uh(x) =
{

uh
1(x) uh

3(x) φ h (x) ψh(x) θ h(x)
}

(12a)

and p(x) is a complete monomial basis function of order m, which can be expressed
as

pT (x) =
{

1 x1 x3
}

, for m = 3 (12b)

pT (x) =
{

1 x1 x3 x2
1 x1x3 x2

3
}

, for m = 6 (12c)

The coefficient matrix a(x) in Eq. (11) can be obtained by minimizing the following
weighted L2 norm:

Jk(x) =
n

∑
i=1

wi(x)
[

pT (xi)ak(x)−Ûk
i

]2
=
[
P ·ak(x)− Ûk

]T
W
[
P ·ak(x)− Ûk

]
(13)

where k = 1,2, · · · ,5 denote the mechanical, electrical and magnetic components,
respectively. ak is the kth column of a. Ûk is the kth column of Û, which is the n×5
matrix with the element Ûi corresponding to the fictitious extended displacement
vector at node xi. P is the n×m matrix composed by n vectors pT (xi). W is a diag-
onal weighted n×n matrix, and the element wi(x) of which is the weight function
associated with the node i. xi denotes the value of x at node i. n is the number of
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nodes in Ωx. In this study, the following spline weight function is introduced [Krysl
and Belytschko (1995)]

wi(x) =

{
1−6r2 +8r3−3r4 0≤ r ≤ 1
0 r ≥ 1

(14)

where r = ‖x− xi‖/dmax, dmax is the radius of the influence domain of point x. The
choice of the shape of the influence domain can be arbitrary. In most cases, for
simplicity, square domains or circular domains are adopted.

The minimization of Jk(x) (k = 1,2, · · · ,5) leads to the following relation

A(x)a(x) = B(x) Û (15)

where A(x) and B(x) can, respectively, be expressed as

A(x) = PT WP =
n

∑
i=1

wi(x)p(xi) pT (xi) (16a)

B(x) = PT W = [w1(x)p(x1) ,w2(x)p(x2) , · · ·wn(x)p(xn)] (16b)

Solving a(x) from Eq. (15) and substituting it into Eq. (11), the approximated
function of the extended displacement can be obtained as

Uh(x) = ϕ(x)Û (17)

where

ϕ(x) = pT (x)A−1 (x)B(x) (18)

Thus, the mechanical displacement, electrical potential, magnetic potential and
temperature increment in Ω can finally be written as

uh(x) = ΦΦΦ1(x)û (19a)

φ
h(x) = Φ2(x)φ̂ (19b)

ψ
h(x) = Φ2(x)ψ̂ (19c)

θ
h(x) = Φ2(x)θ̂ (19d)

where

uh(x) =
{

uh
1(x) uh

3(x)
}T (20a)
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ΦΦΦ1(x) =
[

Φ(x) 0
0 Φ(x)

]
(20b)

Φ2(x) = Φ(x) (20c)

Φ(x) is a corresponding row vector with N elements, and N is the total node num-
ber in Ω. If node i is in the influence domain of x, the corresponding element
Φi(x) = ϕ i(x); otherwise, Φi(x) = 0. û is the corresponding column vector with 2N
elements, and φ̂ , ψ̂ and θ̂ are the corresponding column vectors with N elements.

4 The MLPG formulation

Introduce the Laplace transform

L [ f (x, t)] = f̄ (x, p) =
∫

∞

0
f (x, t)e−ptdt (21)

where p is the Laplace transform parameter. Applying the Laplace transform to
Eqs. (4), one obtains

σ̄i j, j (x, p)−ρ(x)p2ūi (x, p) = 0 (22a)

D̄ j, j (x, p) = 0 (22b)

B̄ j, j (x, p) = 0 (22c)[
ki j(x)θ̄,i (x, p)

]
, j−ρ(x)c(x)pθ̄ (x, p) = 0 (22d)

Using the weighted residual method, the local weak-form of the governing equa-
tions in a subdomain Ωs (which includes the node s) can be obtained as∫

Ωs

[
σ̄i j, j (x, p)−ρ(x)p2ūi (x, p)

]
u∗ik(x)dΩ = 0 (23a)

∫
Ωs

D̄ j, j (x, p)v∗ (x)dΩ = 0 (23b)∫
Ωs

B̄ j, j (x, p)m∗ (x)dΩ = 0 (23c)∫
Ωs

{[
ki j(x)θ̄,i (x, p)

]
, j−ρ(x)c(x) pθ̄ (x, p)

}
n∗ (x)dΩ = 0 (23d)

where u∗ik(x),v
∗(x), m∗(x) and n∗(x) are the test functions of the mechanical, elec-

tric, magnetic and temperature fields in the Laplace domain, respectively. Applying
the Gauss divergence theorem, Eqs. (23) can further be written as∫

∂Ωs

σ̄i j (x, p)u∗ik(x)n j(x)dΓ−
∫

Ωs

[
σ̄i j (x, p)u∗ik, j(x)+ρ(x)p2ūi (x, p)u∗ik(x)

]
dΩ = 0



Fracture Analysis for Two-dimensional Plane Problems 9

(24a)∫
∂Ωs

D̄ j (x, p)v∗ (x)n j(x)dΓ−
∫

Ωs

D̄ j (x, p)v∗, j(x)dΩ = 0 (24b)∫
∂Ωs

B̄ j (x, p)m∗ (x)n j(x)dΓ−
∫

Ωs

B̄ j (x, p)m∗, j(x)dΩ = 0 (24c)

∫
∂Ωs

ki j(x)θ̄,i (x, p)n∗(x)n j(x)dΓ−
∫

Ωs

ki j(x)θ̄,i (x, p)n∗, j(x)dΩ

−
∫

Ωs

ρ(x)c(x) pθ̄ (x, p)n∗(x)dΩ = 0

(24d)

By choosing the Heaviside step function as the test functions in each subdomain, a
system of linear algebraic equations yield from Eqs. (24)

Ks
mm (x, p) Ks

me (x) Ks
mg(x) −Ks

mθ
(x)

Ks
em(x) −Ks

ee(x) −Ks
eg(x) Ks

eθ
(x)

Ks
gm(x) −Ks

ge(x) −Ks
gg(x) Ks

gθ
(x)

0 0 0 −Ks
θθ

(x, p)




ûs (p)
φ̂ s (p)
ψ̂s (p)
θ̂ s (p)

=


Fs

m (x, p)
Fs

e (x, p)
Fs

g (x, p)
Fs

θ
(x, p)

 (25)

where

Ks
mm (x, p) =

∫
Ls+Γsu

N1(x)c(x)B1 (x)dΓ−
∫

Ωs

ρ (x) p2IΦΦΦ1(x)dΩ (26a)

Ks
me(x) =

∫
Ls+Γsu

N1(x)e(x)B2 (x)dΓ (26b)

Ks
mg(x) =

∫
Ls+Γsu

N1(x)f(x)B2 (x)dΓ (26c)

Ks
mθ (x) =

∫
Ls+Γsu

N1(x)λ (x)Φ2 (x)dΓ (26d)

Ks
em(x) =

∫
Ls+Γsφ

N2 (x)eT (x)B1 (x)dΓ (26e)

Ks
ee(x) =

∫
Ls+Γsφ

N2 (x)ε(x)B2 (x)dΓ (26f)

Ks
eg(x) =

∫
Ls+Γsφ

N2 (x)g(x)B2(x)dΓ (26g)

Ks
eθ (x) =

∫
Ls+Γsφ

N2 (x) p(x)Φ2(x)dΓ (26h)
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Ks
gm(x) =

∫
Ls+Γsψ

N2 (x) fT (x)B1 (x)dΓ (26i)

Ks
ge(x) =

∫
Ls+Γsψ

N2 (x)g(x)B2(x)dΓ (26j)

Ks
gg(x) =

∫
Ls+Γsψ

N2 (x)µ(x)B2(x)dΓ (26k)

Ks
gθ (x) =

∫
Ls+Γsψ

N2 (x)m(x)Φ2(x)dΓ (26l)

Ks
θθ (x, p) =

∫
Ls+Γsθ

N2(x)k(x)B2 (x)dΓ−
∫

Ωs

ρ(x)c(x) pΦ2(x)dΩ (26m)

with Γ being the local boundary totally inside the global domain. Γsu, Γsφ , Γsψ

and Γsθ are the parts of the local boundaries which coincide with the global elas-
tic displacement, electric potential, magnetic potential and temperature increment
boundaries, respectively. k(x) is the matrix of thermal conductivity. I is the unit
matrix defined by

I =
[

1 0
0 1

]
(27)

N1(x) and N2(x) are related to the normal vector n j(x) on ∂Ωs by

N1(x) =
[

n1(x) 0 n2(x)
0 n2(x) n1(x)

]
(28a)

N2(x) =
{

n1(x) n2(x)
}

(28b)

B1(x) and B2(x) can be expressed as

B1(x) =

Φ,1(x) 0
0 Φ,2(x)

Φ,2(x) Φ,1(x)

 (29a)

B2(x) =
[

Φ,1(x)
Φ,2(x)

]
(29b)

{
Fs

m (x, p) Fs
e (x, p)

[
Fs

g (x, p) Fs
θ
(x, p)

]}T

is the load vector associated with the boundary conditions, the elements of which
are

Fs
m (x, p) =−

∫
Γst

˜̄t (x, p)dΓ (30a)
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Fs
e (x, p) =−

∫
ΓsD

˜̄D(x, p)dΓ (30b)

Fs
g (x, p) =−

∫
ΓsB

˜̄B(x, p)dΓ (30c)

Fs
θ (x, p) =−

∫
Γsq

˜̄q(x, p)dΓ (30d)

with Γst , ΓsD, ΓsB and Γsq being the parts of the local boundaries which coin-
cide with the global stress, electric displacement, magnetic induction and heat flux
boundaries, respectively.

The total system of equations can be obtained by superposing the corresponding
ones of all the subdomains. And it can be expressed as

KÛ = F (31)

where K, Û , F , are the extended stiffness matrix, fictitious displacement vector and
loading vector, respectively.

The displacements, electric potential, magnetic potential and temperature in the
time domain can finally be obtained by applying the inverse Laplace transform
technique. In the present work, the Stehfest’s inversion algorithm [Stehfest (1970)]
is used, i.e., if f̄ (x, p) is known, the approximate value of f (x, t) at a specific time
t is given by

f (x, t) =
ln2

t

M

∑
i=1

vi f̄
(

x,
ln2

t
i
)

(32)

where

vi = (−1)M/2+i
min(i,M/2)

∑
k=[i+1/2]

kM/2 (2k)!
(M/2− k)!(k−1)!(i− k)!(2k− i)!

(33)

5 The essential boundary conditions

Because the shape function of MLPG method lacks the delta function property, the
essential boundary conditions can not be enforced directly. In this paper, a simple
transformation technique presented in [Atluri et al. (1999)], which can transform
the fictitious value Û to actual value U in order to impose the essential boundary
conditions directly, is adopted.

The MLS approximate values of all the nodes can be written as

U = ΦΦΦÛ (34)
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where U is an extended displacement vector with 5N elements, and ΦΦΦ is the 5N×
5N shape function matrix. From Eq. (34), we have

Û = ΦΦΦ
−1U (35)

Substituting Eq. (35) into Eq. (31), one obtains

KΦΦΦ
−1U = F (36)

Thus, the essential boundary conditions can be imposed through Eqs. (36). In
fact, we do not need transform all the fictitious nodal values to the actual nodal
ones. In order to alleviate the computational cost effectively, only the nodes with
prescribed essential boundary conditions need to be considered, and the remainders
of procedures are the same as the case of a full transformation given above.

6 Validation

To validate the proposed approach, numerical results are firstly compared with the
possible analytical solutions. Consider a homogeneous magneto-electro-thermo-
elastic square plate under a sudden heating on the top side. For the thermal field,
the analytical solution can be obtained as

θ (z, t) = 1− 4
π

∞

∑
n=0

(−1)n

2n+1
exp

[
−(2n+1)2

π2κt
4a2

]
cos
(

(2n+1)πz
2a

)
(37)

where a is the side-length of the plate and κ = k33/ρc is the diffusivity coefficient.
It should be remarked that the solution is the same as the one for homogeneous
thermoelastic material [Carslaw and Jaeger (1959)]. In what follows, the magneto-
electro-thermo-elastic solid is taken as BaTiO3-CoFe2O4 composite with a volume
fraction Vf = 0.5, and the material constants of which are taken as [Ootao and
Tanigawa (2005)]

c11 = 226×109Nm−2, c13 = 124×109Nm−2, c33 = 216×109Nm−2,

c44 = 44×109Nm−2, e31 =−2.2Cm−2, e33 = 9.3Cm−2, e15 = 5.8Cm−2,

f31 = 290.2N / Am, f33 = 350N / Am, f15 = 275N / Am,

α1 = 12.85×10−61/K, α2 = 12.85×10−61/K, α3 = 8.2×10−61/K,

ε11 = 5.64×10−9C2 / Nm2, ε33 = 6.35×10−9C2 / Nm2,

g11 = 5.367×10−12Ns / VC, g33 = 2737.5×10−12Ns / VC,
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p3 = 1.0×10−4C/m2K,

µ11 = 297×10−6Ns2C−2, µ33 = 83.5×10−6Ns2C−2,

m3 = 1.1×10−4N/AmK,

k11 = 2.85W/Km, k33 = 2.85W/Km,

ρ = 5.55×103kg/m3, c = 637Ws/kgK

It also should be pointed out that the pyromagnetic constant of the composite con-
sidered here is further assumed for the sake of calculation in this study.

The plate with a size of a× a = 1m× 1m is discretized by 121 equidistantly dis-
tributed nodes for the MLS approximation. The nodal arrangement and boundary
conditions are given in Fig. 1. The transient heat shock load on the top side of the
plate is T0H (t), where H (t) is the Heaviside function. T0 = 1K is assumed in all
the numerical procedure including the next section.
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Figure 1: A magneto-electro-thermo-elastic square plate under thermal shock on
the top side

As shown in Fig. 2, the calculated temperatures at the bottom and the mid-line of
the plate are nearly the same as those obtained from the analytical solution given
in Eq. (37) with a relative error 0.01%. Figs. 3 and 4, respectively, show the
electric potential and magnetic potential calculated by the MLPG method and by
FEM. For both the electric potential and magnetic potential, the agreements of the
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different lines parallel to x-axis versus
normalized time

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-σ
x/λ

33
T 0

tk33/ρca2

 MLPG:z/a=0.0
 MLPG:z/a=0.5
 FEM:z/a=0.0
 FEM:z/a=0.5

Figure 5: Normalized stresses at two
different lines parallel to x-axis versus
normalized time

numerical results by the two methods are excellent. A good agreement can also be
observed for the calculated stress −σx

/
λ33T0 by the MLPG method and by FEM

(Fig. 5). The comparisons between the results obtained by the present method and
ones by the analytical solution or FEM confirm the accuracy and effectiveness of
the present method.

The accuracy of the present method can also be verified by comparing the mode-I
stress intensity factor of the reduced case of the present study with the one given
by Sladek et al. (2007b) before. For example, for a central crack in a plate of
thermo-piezoelectric PZT-5H with the same geometry as the one given by Sladek
et al. (2007b), assume that the thermal load T0H (t) with T0 = 1K is applied on the



Fracture Analysis for Two-dimensional Plane Problems 15

outer boundary of the plate, and that vanishing value of temperature is kept on crack
surfaces. As shown in Fig. 6, the results agree very well with the corresponding
ones presented by Sladek et al. (2007b).

7 Dynamic fracture analysis of nonhomogeneous magneto-electro-thermo-
elastic plates with cracks

7.1 An edge crack in a finite magneto-electro-thermo-elastic plate under ther-
mal shock on the lateral side

For 2D plane crack problems of magnetoelectroelastic materials, the generalized
field intensity factors (FIFs) including SIFs KII and KI , EDIF KD and MIIF KB are
related to the displacements, electric potential and magnetic potential in the vicinity
of crack tips, and they can be expressed as [Sladek et al. (2007b); García-Sánchez
et al. (2007)]

KII

KI

KD

KB

=
√

π

2r

[
Re(ΞΞΞ)−1

]
u1
u3
φ

ψ

 (38)

where the matrix ΞΞΞ is determined by the material properties. r is the radial polar
coordinate with origin at the crack tip. The mechanical mode-I strain energy release
rate (MSERR) can further be given as (Tian and Gabbert, 2004)

GM
I =

1
4

(Λ21KIKII +Λ22KIKI +Λ23KIKD +Λ24KIKB) (39)

where Λi j is the element of matrix ΛΛΛ with ΛΛΛ = Re(ΞΞΞ).
In this section, an edge crack of length a = 1.0m in a nonhomogeneous magneto-
electro-thermo-elastic plate with height 2h = 4.0m and width w = 2.0m is consid-
ered. The plate is assumed to be subjected to a sudden temperature decrease T0 on
the left side (Fig. 7). Due to the symmetry, only half of the cracked plate is modeled
for simplicity, and 441 equidistantly distributed nodes are employed for the MLPG
method. For the nonhomogeneous material considered here, the material constants
at z = 0 are taken as the corresponding ones of BaTiO3-CoFe2O4 composite with a
volume fraction Vf = 0.5 (listed before). And all the material parameters are firstly
assumed to vary continuously along the z-direction in the following form:

Π(z) = Π0 exp(β |z|) (40)

where Π0 denotes the corresponding material parameters at z = 0, andβ is the in-
troduced nonhomogeneous parameter.
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Figure 9: Normalized EDIF of an edge
crack versus normalized time for differ-
ent nonhomogeneous parameter βh
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Figure 10: Normalized MIIF of an edge
crack versus normalized time for differ-
ent nonhomogeneous parameter βh
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Figure 11: Normalized MSERR of
an edge crack versus normalized time
for different nonhomogeneous parame-
ter βh

Figs. 8 to 11 show the effects of normalized nonhomogeneous parameter βh on the
normalized FIFs and MSERR, where

KI0 =
(
λ11c13

/
c11−λ33

)
T0
√

πa (41a)

KD0 =
(
λ11e31

/
c11 + p3

)
T0
√

πa (41b)

KB0 =
(
λ11 f31

/
c11 +m3

)
T0
√

πa (41c)

and

GM
I0 =

πa
4

Λ22
(
λ11c13

/
c11−λ33

)2 T 2
0 (42)
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As shown in these figures, the steady values of both the FIFs and MSERR in-
crease with the increasing of βh. Furthermore, the times for them to reach their
corresponding steady values slightly increase as well with the increasing of βh.
Fig. 11 implies that according to energy release rate criterion, decreasing the non-
homogeneous parameter can impede the crack propagation and growth. Similar
phenomenon is, in fact, observed by Ueda (2004) before for an edge crack problem
in a nonhomogeneous piezoelectric strip.

Different material parameters perhaps have different effects on the fracture behav-
iors of the cracks. As well known, the MSERR is an important fracture parameter
of magnetoelectroelastic materials. Thus, in what follows, the effects of a single
thermal material parameter on the MSERR are respectively evaluated emphatically.
For the sake of convenience, the following expressions are introduced:

λ11 = λ110 exp(β1 |z|) (43a)

λ33 = λ330 exp(β2 |z|) (43b)

p3 = p30 exp(β3 |z|) (43c)

m3 = m30 exp(β4 |z|) (43d) 
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Figure 12: Normalized MSERR of
an edge crack versus normalized time
for different nonhomogeneous parame-
ter β1h
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Figure 13: Normalized MSERR of
an edge crack versus normalized time
for different nonhomogeneous parame-
ter β2h

It should be pointed out that except for β1h in Fig. 12, β2h in Fig. 13, β3h in Fig. 14
and β4h in Fig. 15; the other material parameters are kept to be the corresponding
ones of BaTiO3-CoFe2O4. It is easily seen from Fig. 12 to 15 that the MSERR
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Figure 14: Normalized MSERR of
an edge crack versus normalized time
for different nonhomogeneous parame-
ter β3h
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Figure 15: Normalized MSERR of
an edge crack versus normalized time
for different nonhomogeneous parame-
ter β4h
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Figure 16: Normalized SIF of an edge
crack versus normalized time for differ-
ent nonhomogeneous parameter γw
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Figure 17: Normalized EDIF of an edge
crack versus normalized time for differ-
ent nonhomogeneous parameter γw

decreases with the increasing of either β1h or β3h, the MSERR increases with the
increasing of β2h, and that the MSERR has no obvious variance for different β4h.
Thus, according to energy release rate criterion, the larger λ11 is, the more stable
the crack is. Increasing p3 will slightly retard the crack extension as well. On the
contrary, decreasing λ33 will impede the crack propagation and growth. However,
it is not easy to impede the crack initiation by adjusting the material parameter m3.

In order to examine the effect of the vary direction of material properties on the
thermal shock, the case of varying material properties in the x direction is also
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Figure 18: Normalized MIIF of an edge
crack versus normalized time for differ-
ent nonhomogeneous parameter γw
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Figure 19: Normalized MSERR of
an edge crack versus normalized time
for different nonhomogeneous parame-
ter γw

considered. The material parameters are assumed as

Σ(x) = Σ0 exp(γx) (44)

where Σ0 denotes the corresponding material properties at x = 0, and γ is the non-
homogeneous parameter in the x direction.

The effects of normalized nonhomogeneous parameter γw on the normalized FIFs
and MSERR are shown in Figs. 16-19. Contrary to the case of the material pa-
rameters changing along the z direction, FIFs and MSERR decreasing with the
increasing of γw. It means that increasing the nonhomogeneous parameters along
x direction can inhibit the crack growth and weaken the effect of the thermal shock.

7.2 A central crack in a finite magneto-electro-thermo-elastic plate under ther-
mal shock on the top side

In this section, a central crack of length 2a in a finite magneto-electro-thermo-
elastic plate is analyzed. The plate’s width, height and the crack’s length are re-
spectively 2w = 4.0m, 2h = 4.0m and 2a = 2.0m. Taking advantage of symmetry,
only a quarter of the plate is modeled. The geometry of the considered model is
given in Fig. 20. For the MLS approximation, 441 equidistantly distributed nodes
are used. The nodal arrangement and boundary conditions are also displayed in
Fig. 20. Limited by the length of this paper, only some typical numerical results
are given in this section.
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elastic plate obtained by MLPG method
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for different nonhomogeneous parame-
ter βh

Figs. 21 and 22, respectively, show the normalized FIFs and MSERR of the central
crack situated in a homogeneous magneto-electro-thermal-elastic plate subjected
to thermal shock on the top side. And for comparison, the corresponding results
obtained by FEM are plotted in these figures simultaneously. It is easily seen from
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these figures that similar to an edge crack, there is a good coincidence between the
results given by MLPG method and the ones by FEM.

Fig. 23 presents the effects of the nonhomogeous parameterβ (defined in Eq. (40))
on the normalized MSERR. It is found that similar to the case of an edge crack, the
MSERR increase with increasing of βh. However, comparing Fig. 23 with Fig. 11,
it is noted that the times that the normalized MSERR of a central crack reaching
the corresponding steady values are much longer than the corresponding ones of an
edge crack.

8 Conclusions

The fracture problems of nonhomogeneous magneto-electro-thermo-elastic plate
under thermal shock are investigated by the meshless local Petrov-Galerkin method.
The material parameters are assumed to vary in either the height or width direction.
Both the FIFs and mechanical mode-I MSERR of cracks in the magneto-electro-
thermo-elastic plates are calculated. The following conclusions can be drawn.

(1). MLPG method is an effective numerical method to treat the coupling problem
of nonhomogeneous magneto-electro-thermo-elasticity under thermal shock.

(2). For either edge crack or central crack problems of nonhomogeneous magneto-
electro-thermo-elastic plate under a definite thermal shock, according to the maxi-
mum energy release rate criterion, both decreasing the nonhomogeneous parameter
defined by βh and increasing the nonhomogeneous parameter defined by γw will
impede crack initiation and growth.

(3). According to energy release rate criterion, both increasing λ11 and p3 will
retard the crack propagation and growth. On the other hand, decreasing λ33 can
also impede crack to initiate and grow. However, adjusting m3 has insignificant
effects on the fracture behaviors.

(4). For a central crack in a finite magneto-electro-thermo-elastic plate, the times
that the normalized MSERRs reach their steady values are much longer than the
corresponding ones for the case of an edge crack.
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