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Abstract: Virtual reality can enable computer scientists and domain experts to
perform in virtuo experiments of numerical models of complex systems. Such
dynamical and interactive experiments are indeed needed when it comes to com-
plex systems with complex dynamics and structures. In this context, the question
of the modeling tool to study such models is crucial. Such tool, called a virtuo-
scope, must enable the virtual experimentation of models inside a conceptual and
experimental framework for imagining, modeling and experimenting the complex-
ity of the studied systems. This article describes a conceptual framework and a
meta model, called RéISCOP, that enable the construction and simulation of mod-
els of biological, chemical or physical systems. The multi-interaction conceptual
framework, based on the reification of interactions, is built upon the concepts of
autonomy, structural coupling and asynchronous scheduling of those reified inter-
actions. Applications and virtual reality experiments described in the last section
show the expressiveness of this approach and its capacity to actually formulate het-
erogeneous models in heterogeneous time and space scales, which is required for
studying biological complex systems.
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iments, multi interaction systems

1 Introduction

All research fields find themselves confronted with the problem of taking into ac-
count the complexity of the systems they are studying (Laughlin, 2005). This com-
plexity stems first and foremost from the diversity of components, structures and
interactions at work in the system. No theory capable of formalizing this complex-
ity currently exists and, for this reason, there are no a priori methods for formal
evidence as there are in highly formalized models. In the absence of formal evi-
dence, one must rely on experimenting the system throughout its evolution in order
to be able to conduct a posteriori experimental validations.
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Virtual reality provides a conceptual and experimental framework adapted to imag-
ining, modeling and experimenting this complexity. Users of virtual reality sys-
tems, immersed in real time within this space by the triple mediation of senses
(perception), action (experimentation) and mind (modeling) are spectators, actors
and/or creators of these virtual worlds (Tisseau, 2001b). Virtual reality places the
user at the heart of a virtual laboratory and thus shares similarities with methods
from experimental sciences: the user can therefore investigate the virtual world us-
ing various methods, e.g. numerical methods. Building a representation of a system
and experimenting the resulting model enables experimenters to apply a scientific
approach on an object as if it was a natural phenomenon. This type of investigation
is known as “in virtuo experimentation” for its similarities with the expressions in
vivo and in vitro. The “virtuoscope” thus refers to the virtual laboratory for study-
ing complex systems, which is based on concepts, models and tools from virtual
reality (Fuchs, Moreau, and Tisseau, 2006).

For the in virtuo experimentation of complex systems, the “virtuoscope” conceptual
tool associates the virtual world with laws for creating the experimented systems.
Thereafter, humans are directly engaged in the in virtuo experimentations of the
numerical models within the virtual environment. Here, the experimentation refers
to the dynamical building of a model by locally disrupting it, modifying one or
another component of the model. The principle is to rely on the dynamical visu-
alisation and experiment of the model to place the thematician1 –domain expert–
inside a virtual laboratory, which meets a modelers’ need (Endy and Brent, 2001).
The concept of virtual laboratory has already been proposed (Ramat and Preux,
2003; Amblard, Ferrand, and Hill, 2001), but not from the virtual reality’s point of
view. Classically, a virtual laboratory is seen as a tool to study representations. We
propose to see it as the representation of a laboratory in which models, as natural
systems, are built, experimented and studied.

Yet, such a tool requires more research and development. For instance, Baudouin,
Chevaillier, Le Pallec, and Beney (2008) focus on the interaction between the
learner and the virtual environment. In our case, the complexity led us to focus
on the models’ construction and the first issue we address is the dynamical ex-
perimentation of models, which requires a modeling framework for the models’
description and modification. Such framework must therefore enable thematicians
and computer scientists to build and interact with complex models together. More
generally, modeling complex systems requires different roles (Drogoul, Vanber-
gue, and Meurisse, 2003), each of which is based on its own expertise. Various
expertises mean various theoretical and methodological tools for the modeling ac-

1 see Drogoul, Vanbergue, and Meurisse (2003) for a definition of the term thematician from the
computer science simulation point of view.
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tivity. It is therefore necessary to enable multi-modeling and the use of different
modeling formalisms for studying complex systems (Bonneaud, Redou, Thebault,
and Chevaillier, 2007). Hence, not only the “virtuoscope” must enable the building
of models by both computer scientists and thematicians, but it must also enable
the use of different modeling material by various thematicians and the building of
heterogeneous models. The coupling of heterogeneous models was addressed in
Bonneaud, Redou, Thebault, and Chevaillier (2007) and was achieved through the
data: models are encapsulated in agents, which are in charge of the coupling. Ramat
and Preux (2003) have proposed a simulation platform VLE which principle is to
have a general and common formalism, based on DEVS (Zeigler, 1989), to express
and couple all the other formalisms. We stress out the fact that those propositions
do not try to address the dynamical building of the models within a virtual world.
Moreover, those solutions do not ease the building of models by both thematicians
and computer scientists.

The aim of this article is to describe the meta-model RéISCOP and the paradig-
matic framework of multi-interaction systems that supports it. We argue that this
meta model structures a “virtuoscope”, i.e. gives thematicians and computer scien-
tists the conceptual tools to build and dynamically experiment their models. Yet,
because there is no general solution to manage the complexity of the models, such
an instance of a “virtuoscope” must be constructed in confrontation with a spe-
cific field of application. Our proposal has been fulfilled in confrontation with the
study of living entities. As we will see later on, the temporal multi-scale aspects
and the heterogeneity of the phenomena brought into play in biology imply that
the suggested solution extends to the simulation of physio-chemical phenomena in
general.

More precisely, the individual-based modeling approach (DeAngelis, Rose, and
Huston, 1994) along with the properties of the biological systems led us to sug-
gest a shift of focus from “individual-centered” to “interaction-centered”. Such
shift of focus uncovers the conceptual means to build the meta-model RéISCOP.
In section 2, we exhibit the paradigmatic framework which describes the concepts,
method and point of view on which is built RéISCOP. We highlight the motivations
which led us to adopt the principles of autonomy and reification of interactions.
Section 3 then goes on to present the general RéISCOP meta-model. The notions
of interaction, phenomena, organization and autonomous systems are developed in
this section. Finally, the last section illustrates this proposition by describing a sim-
ulation platform based on the RéISCOP and working experimentations that were
conducted with this platform.
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2 Paradigmatic framework : multi-interaction systems

The arguments put forward in this section come from the two following contexts:
the study of the living and virtual reality. These contexts enable us to explore
two interpretations of autonomy which lead to the concepts of structural coupling,
reification of interactions, chaotic asynchronous iterations and organization in au-
tonomous systems. Those concepts structure the paradigmatic framework which
supports the ReISCOP meta-model.

2.1 Autonomy for numerical models

First, we notice that the notion of autonomy as a principle for constructing numer-
ical models in virtual reality is required (Tisseau, 2001a):

• In essence, as we aim to model systems made up of autonomous entities
(cells of a living system, or individuals of a given species when modeling
ecosystems, etc.).

• By necessity, so that the entities which make up the universe might adapt
to modifications of exterior conditions in simulation (due to interactions,
disruptions or other unforeseen modifications within the environment, par-
ticularly when Man and his free will are “in the loop”), thus enabling the
experiment.

• By ignorance, as the absence of a model for the global dynamics of specific
systems leads to the autonomization of their components’ models. We would
thus like to see the emergence of global behaviors out of individual behaviors.

• By conviction; by accepting to share the control of the evolution of virtual
universes between numerical models which populate these universes and the
users which participate in them.

Multi agent systems (MAS) are a bottom up approach and are based on the system’s
entities autonomy. The system dynamic emerges from the agents activities and
interactions. In the literature, the MAS approach is considered as the most natural
paradigm to implement autonomy2 in numerical models (Wooldridge, 2001).

2.2 Autonomy for biological models

Biology is essentially a science more experimental than theoretical. The techni-
cal and theoretical contributions that physics, with Schröginger or Delbrück for

2 As consequence, we will refer to MAS to build our proposition. But, we insist on the fact that the
paradigmatic framework proposed does not necessary correspond to MAS.
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instance, has made to biology have enabled the advent of molecular biology and
genomics. The consequences of this revolution have included a huge increase in
data for creating models as well as giving rise to biological complexity. Thus, much
like the advances in physical sciences at the beginning of the last century, a change
in paradigm (Capra, 1997) is today occuring in biology and giving rise to “ theo-
retical biology”, “systems biology” (Kitano, 2002) or “integrative biology”. These
new theoretical approaches are indistinguishable from modeling and call upon the
concepts of systems, interaction, retroaction, regulation, organization, evolution,
etc., in order to process the complexity of living entities.

Amongst those different theoretical approaches, the work of Maturana and Varela
(Varela, 1979) is particularly relevant. Indeed, in addition to the significant episte-
mological advances made possible in biology by the definition of the autopoiesis
principle and in cognitive sciences by enaction, Varela’s work introduced a new def-
inition for autonomy. In order to render biological mechanisms intelligible, Varela
suggests modeling living entities as interwoven autonomous systems. These sys-
tems are dynamic and defined as units by their organization. He also suggests that
a biological system must be operationally closed. Such a system therefore contains
the means and the conditions to produce itself.

The aim of this article is therefore to unify this particular vision of biological au-
tonomy with the autonomy principle for computerized entities in order to influence
the way numerical models are built.

2.3 From structural coupling to reifying interactions

Structural Coupling. Consider that a system is characterized by its dynamics
and structure. To an observer, structure is the current state of the system which
is subjected to the actions of the immaterial dynamics of the system. The word
“structure” here refers to a specific meaning linked to the modeling paradigm that
we are outlining. Here, for computer models, the structure is defined as a set of
elements that are, in the end, only numerical values when dissociated from the
dynamic aspect of the system. Next, in order to understand the relationship between
an autonomous system and its environment, Varela points out that we must reason
in terms of structural coupling. That is to say that the environment’s influence on
a system is perceived by that system as a disruption of its structure. Therefore,
an autonomous system has only perceptions of itself. It will not react to exterior
commands on its dynamics (allonomy or reactivity) but can react in an autonomous
manner to an alteration of its structure by the environment. It can therefore only
perceive3 other systems via the disruptions that they cause.

3 A cognitive system such as this can only “know” the world by building up a representation of it
through experience.
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Figure 1: On the left are two systems communicating via inputs and outputs. On
the right are two systems communicating via structural coupling.

For the model designer, focus is thus placed on the autonomy of what the dynamics
of the different systems are doing rather than on the actions of their structures.
This independence from systems’ dynamics corresponds to the idea of autonomous
processes directly implemented in multi-agent systems.

Opposition with the notions of input/output and of perception for computer-
ized agents. The method, which consists in designing models as a juxtaposition
of systems which mutually ignore one another and which communicate indirectly
via structural coupling, must be translated into computer language. Usually, one
models an elementary autonomous system as an agent (Ferber, 1999), using an ob-
ject made of internal states, perceptions, behaviors and rules governing its dynam-
ics. Here, we consider object-oriented modeling as a natural programing paradigm
to build MAS (Odell, 2002; Hill, 1996). Communication with the environment and
with other systems is traditionally governed by perception systems, by sending
messages or by inputs/outputs. Perception and sending messages underlie the idea
that one system “knows” the other systems. This idea conflicts with the point of
view of structural coupling (figure 1). The same applies for synchronized com-
munication via inputs/outputs between two systems that correspond more closely
to the notion of command, causing a rupture in the independence of the dynam-
ics of the two systems (for example procedure call). The traditional point of view
therefore does not correspond to the application of structural coupling nor to the
autonomy principle chosen here.

Reifying interactions. In order to implement structural coupling, systems need
to be able to share their structures. The first consequence is the need to identify
that which constitutes the system’s structure. We considered a system to be the
association of a structure and a dynamics. That which corresponds to the structure
of an autonomous computer-based object is therefore the set of static data which
makes up the system and which characterizes its current state. We can then no
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longer use the notion of composition between a system and its structure, as part
of the structure can be composed of a number of other systems if it is involved
in structural coupling. At the level of the system itself, it is also impossible to
distinguish the structural elements which might be involved in structural coupling
from the elements which are unique to it, without infracting the autonomy principle.
From the point of view of software architecture, linking “systems” objects to their
structures can therefore no longer be a compositional link nor an object/attribute
relationship. All of the states of the system representing the structure must thus be
extracted from the system.

Schematically, a MAS is made up of interacting autonomous entities with behav-
iors4. These behaviors can be perceived as the processes governing the interactions
with the other agents or the environment. By means of numerous interactions, the
global system can display complex behavior. We have already discarded the no-
tion of perception. If we also remove the structural elements, all that remains to
the agents are the processes underlying completion of the interactions. It therefore
becomes natural to reify the interactions5. That is to say that rather than consider-
ing “autonomous individual” objects, we shall consider “autonomous interaction”
objects. We notice that Mathieu, Routier, and Secq (2003) have worked on the
RIO framework which focuses on the description of interaction protocols. Later
on, Kubera, Mathieu, and Picault (2008) even proposed an architecture where in-
teractions are reified regardless of agents: the goal is to enable reusability of MAS

and separation of data from processing. Thereby, they adress the issue of MAS for-
malization which could be complementary to our approach. Yet, even though their
point of vue on interactions is very close to ours, agents in their systems are still
invididuals, where we propose to go even further in the interaction reification by
fully deconstructing the individuals and focusing on structural coupling.

To summarize, we aim to construct a model as an assembly of active autonomous
objects modeling interactions (or phenomena) between the passive structural el-
ements which we refer to as constituents (figure 2). Interaction is therefore the
autonomous elementary unit of the multi-interaction system. The constituents are
the medium by which the interactions are linked. The couples interaction / set of
associated constituents form systems. These elementary systems are thus struc-
turally coupled to one another whilst the interactions act on the same constituents.
This point of view offers a way of resolving the input/output approach.

4 Of course, this definition of MAS is not complete, but in regards to the discussion, it is meaningful.
More definitions can be found for example in Wooldridge (2001)

5 At this level of thinking, we no longer consider an interaction as a non-instantaneous continual
phenomenon in time. We shall later see how the suggested solution enables the implementation of
this latter kind of interaction.
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Figure 2: On the left, the traditional method for modeling a system with “com-
ponent” nodes and “interaction” arcs. The right-hand diagram represents our ap-
proach, in which the arcs are transformed into nodes and vice versa.

It is also interesting to note that all theories studying complex systems lead us to
focus on the relationships between components (Morin, 1990), which gives us yet
another reason to clarify these interactions in order to give them equal importance
to that of theoretical models, in their implementation.

It must also be noted that at this stage our proposition closely resembles black-
board architectures (Erman, Hayes-Roth, Lesser, and Reddy, 1980) and is compat-
ible with research conducted in the field of stigmergy (Grassé, 1959). However,
the semantics associated with autonomous processes differ from that which can
be observed in simulations (González, Cárdenas, Camacho, Franyuti, Rosas, and
Lagúnez-Otero, 2003), as the processes no longer model individuals, but phenom-
ena. Furthermore, we expand our method by giving below a specific scheduler for
executing these processes and by giving modeling organizational tools, which lead
us away from the idea of a simple blackboard.

2.4 Asynchronism: a key element for temporal multi-scale

We have discussed until now active objects that model interaction phenomena tak-
ing place between structural elements that are numerical substrate. Therefore, these
objects are active processes and they must be scheduled. In our case, each time a
process is activated, the effect of the correponding interaction is calculated for the
given time step and applied to the substrate. Choosing the scheduling method im-
plies making a strong assumption as it calls time into question for the dynamical
system simulation.
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Asynchronism. Two main methods of scheduling are available: synchronous6

and asynschronous7. In general the synchronous method is favored for numerical
simulations. For example, it is well suited to the traditional tools used for resolving
differential equations. However, the nature of the models that we are interested
in means that we must take into account coupling phenomena acting on different
time scales. The idea that we defend is that the scheduling of processes at dif-
ferent frequencies imposes heavy concessions on the hypothesis of synchronicity,
thus limiting its significance. Indeed the notion of cycle, essential in the case of
synchronous simulation, no longer holds when offsets and activation frequencies
are commonplace. Even if synchronization solutions exist on a case by case basis,
the synchronicity hypothesis makes the conception of a generic multi-scale method
based on structural coupling difficult, without aligning the frequency of each pro-
cess with the highest frequency, bringing everything down to the same level. We
therefore chose to raise this hypothesis in order to assume a more appropriate asyn-
chronous scheduling. At least three difficulties must be overcome in order to imple-
ment asynchronous scheduling: 1. sharing data; 2. defining the simulation current
time; and 3. validating the calculations.

“Weak” asynchronism. In order to enable the sharing of data while guarantee-
ing its consistency, the execution of a time step for a given interaction is seen as an
indivisible operation. Thus, two interactions cannot simultaneously act on the same
resource. We can therefore refer to this asynchronism as “weak”, where a “strong”
asynchronim would have interactions executed on a multi-threaded system. For
such a solution, traditional data sharing mechanisms (semaphores on structural con-
stituents) should be used, which is a possible extension of this proposition.

Observer’s time and global time. How should we determine the current global
time of the simulation? Indeed, each interaction constitutes part of the global
model. The current local time of an interaction goes from “t” to “t + period” at
each activation. For each process, its period beeing possibly different, current lo-
cal times of each interaction can differ at each instant. At a given moment, how
can one date the global state of the system’s structure? Rather than answering this
question, we shall instead consider the time from the point of view of the observer.

6 Synchronous: each process perceives the state of the system at instant t, calculates a modification
of this state and applies its modification at t+1. Thus, there is no causality between the execution
of processes within one cycle.

7 Asynchronous: each process perceives and modifies the current state of the system prior to the
following process being called. There is a causality between the successive calls even if simulation
time has not been modified.
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In virtual reality, the user is often modeled according to a particular model (avatar)
amongst other models: in our case, the user is an entity in structural coupling with
the system, which differs from the traditional approach, as the user is here reified
as an interaction rather than an individual. Concerning the user’s activation, in the
case of real time simulation, the user does not question the time which has elapsed:
the observer’s time is function of the real time (that of a clock). However, if the
constraint of real time is not applied, the user as a model must be scheduled in
the same way as any other process, which enables him/her to maintain a consistent
timestep. In conclusion, no process needs to know the current global time, not even
the user.

Asynchronous and Chaotic Iterations. Asynchronous scheduling introduces a
causal link between the activations of the processes which are supposed to inter-
vene at the same time (for example if they are of the same period and offset). The
order in which these processes are activated can introduce a bias into the simulation
if they are in competition for the same resources (Michel, Ferber, and Gutknecht,
2001; Kubera, Mathieu, and Picault, 2009). In order to overcome this problem, it is
possible to schedule these processes in a random manner, known as chaotic asyn-
chronous iteration. On average, no one interaction is favored over another. Thus,
the bias that may be generated, while a set of interactions are being executed, is
limited if there are a great number of steps in the simulation. The bias is even neg-
ligible and algorithms converge in the case of chaotic and asynchronous iterations
for the resolution of differential equations (Redou, Kerdélo, Le Gal, Rodin, Ab-
grall, and Tisseau, 2005). Thereafter, in physico-chemical biology, as most models
are based on differential equations, they are validated. Otherwise, in the case of
stochastic models, chaotic scheduling can be a source of random. Yet, in general,
the bias must be known and the results validated a posteriori, which is the case
in general for simulating complex systems (Sargent, 2004). And in any case, as
shown above, we have argued that chaotic asynchronous scheduling is required for
temporal multi-scale.

At this stage, we defined our models as multi-interaction models. These interac-
tions are autonomous objects structurally coupled by means of the passive compo-
nents which represent the ongoing state of the system. Finally these interactions are
scheduled in a chaotic and asynchronous manner in order for them to be activated
over different time scales. So far, we have not commented on the apparition or the
destruction of interactions over time. This is the issue we shall now address.
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2.5 Implementing complex dynamics

Phenomenon. The modeled system takes the form of a network of interactions
possessing a specific topology. If, during simulation, the conditions for producing
a new interaction are reunited, it must be introduced into the network. An inter-
action is a specific manifestation of a phenomenon. We can reify this notion of
phenomenon in an object with the conditions and means for producing a new in-
teraction. Thus, using phenomena, our multi-interaction system can dynamically
enrich itself during the simulation. The conditions and means for destroying an
autonomous interaction are left to the interaction itself.

Organization. Simulating complex systems can require the use of a huge number
of interactions. In order to make models intelligible, model designers can call
upon the notion of organization, which we propose to integrate to our framework.
The notion of biological organization was introduced to virtual reality by Querrec,
Bataille, Rodin, Abgrall, and Tisseau (2005), who inserted this notion within the
context of systemic biology. Although this is one of the fundamental notions for the
study of biology, it is difficult to find a widely accepted definition. That is why it
must be defined broadly, to enable the model designer to adapt according to his/her
epistemic orientations.

If there is one widely accepted idea, it is that an organization is more of a set
of relationships between individuals than a set of individuals, which fits perfectly
with the reification of interactions. An organization is therefore defined by a set of
phenomena and associated interactions which concern part of the structure of the
system as a whole (figure 3 illustrates the implementation of structural coupling
with this definition of organization). The definition of the structural set on which
the organization is based results from an arbitrary and subjective choice on the part
of the model designer. Depending on the evolution of the system, this organization
can change. For example, if a new component appears in the simulation and this
component possesses the characteristics required to be inserted into the organiza-
tion’s structure8, a mechanism must be available to stand in for the model designer
and to update the topology of the organization. As the division of a model into
organizations is the result of a subjective act9, it is impossible to define a general
method for managing the modification dynamics of this division. It is possible,
however, to limit the conditions and the means of altering the structural topology
of the organization to the organization itself (see section 3.2).

8 During exocytosis, for example, “protein” components are transferred from the “cell” organization
to the “surroundings” organizations.

9 We do not aim, here to identify the origins of organization, but simply to organize the models.
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Figure 3: Two organizations, A and B, in structural coupling. The structure of
organization A is the set of components {C1,C2,C3,C4} and B {C3,C4,C5,C6}.
The set {C3,C4} is A and B’s structural coupling.

Various agent-based organizational models exist. One can first cite OMNI (Vázquez-
Salceda, Dignum, and Dignum, 2005), which is a framework that allows the de-
scription of both global organization requirements and autonomous individual a-
gents: the question here is thus to enable the description of knowledge and con-
straints on the organizations and to have within them agents that follow such con-
straints while still being autonomous. In the same set of ideas, MOISE+ (Hubner,
Sichman, and Boissier, 2007) enables the description of organizations within a plat-
form that ensures agents will follow the organizational constraints. The point of
view is organizational centered and a mechanism for dynamic reorganization, is-
sued by agents, is supported. Those propositions, while focusing on the notion of
organization, do not adress our issues: we do not want to express global constraints
which are often inaccessible in the case of complex systems; our goal is on the
contrary to build incrementally the complex model by describing it locally.

Autonomous systems. We started out with the idea that a system was a pair: dy-
namic/structure. We then went on to consider that the pair reified interaction/asso-
ciated constituents is an elementary autonomous system. If we consider an or-
ganization as a set of interactions with the means and conditions required for the
evolution of its topology, we can consider the organization/associated constituents
couple as a higher-order system. The state of the system, the processes of interac-
tion, phenomenon and modification of the organization’s structure depend on one
another recursively. The system holds the conditions and the means for its own
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production. Finally, it is linked by structural coupling to other systems with com-
mon structural elements (constituents). Here we refer to autonomous systems as
they are understood by Varela. From now on it is possible to organize numerical
models by juxtaposing autonomous systems. This multi interaction system (MIS)
paradigm therefore combines our two initial perceptions of autonomy: interactions
are agent-like autonomous processes and the composite models constructed using
these interactions are also autonomous.

Thereafter, why didn’t we use an existing agent meta model, autonomous systems
being classically implemented using agents? For such a discussion let’s consider
three existing agent simulation platforms which are based on different agent con-
ceptual models and different methods for building models of complex systems.
First, CORMAS (Bousquet, Bakam, Proton, and Page, 1998) is a simulation plat-
form focusing on exploited renewable resources. This platform’s conceptual frame-
work, which is essentially cellular automata based, is by definition limited to a cell-
based and discretized description of systems and is also not compatible with our
interaction-based approach. On the opposite, Repast (North, Tatara, Collier, and
Ozik, 2007), based on SWARM (Minar, Burkhart, Langton, and Askenazi, 1996), is
much more “generic” as the goal is to propose a multi-agent platform and toolkit.
Because of this, the platform is not so much based on a precise framework. At
last, MASCARET (Buche, Querrec, De Loor, and Chevaillier, 2004) is a simulation
platform for developing virtual environments for training. Therefore, it addresses
specifically social participatory simulations with social actors and pedagological
agents, which is not our purpose.

From an epsitemologic point of view, we highlight again the fact that the biological
autonomy principle used here stems from Varela’s research in theoretical biology:
models are operationally closed systems in structural coupling. The expansion of
this area of research has given rise to a new cognitive science paradigm: enaction-
ism (Varela, Thompson, and Rosch, 1992). We tried to articulate our proposition
of autonomous processes –interactions– in the perspective of this paradigm, be-
cause we believe it favors modularity and incremental, thus interactive, modeling.
It is in consequence a powerful means for enabling multi-modeling and temporal
multi-scale. Thereafter, we argue that the method of cognition of our autonomous
processes is closer, in perspective, to “enactive” agents10, even though we do not
address such issue in this article. Yet the classical agent approach is somehow in
paradigmatic conflict with the underlying paradigms that structure our meta-model.
In consequence, existing agent meta models are not relevant here. Furthermore, as
discussed in section 2.2, the aim of this article is to unify Varela’s vision of bio-

10 Such agents would be our organizations and the sets phenomenon/interactions would be a type of
behavior of such agents.



312 Copyright © 2009 Tech Science Press CMES, vol.47, no.3, pp.299-329, 2009

logical autonomy with the autonomy principle for computerized entities in order to
influence the way numerical models are built.

3 Meta model: RéISCOP

This section describes the object-oriented meta-model based on the paradigmatic
framework described in the previous section. The proposition implements the
Reification of Interactions and the four following concepts: Structure, Constituant,
Organization and Phenomena (RéISCOP).

3.1 Interaction, Structure and Constituent classes

The starting point for the meta model is the reification of interactions (see figure 4),
an operation during which the notion of individual is broken down. The abstract
Interaction class gives authority to active objects which each conduct actions of
a particular relationship between “individuals” in the simulated system. Whilst we
make maximum use of this point of view, everything which is involved in carrying
out the dynamics of the simulation shifts from “individuals” to Interactions and
thus, individuals become passive. In the end, they are a collection of variables —
the numerical substrate — on which the interactions act. The Constituent class
enables the representation of the state of these variables. The singleton Structure
is therefore made up of the set of passive Constituent objects, thus defining the
current state of the whole system at instant t. The active Interaction objects are
organized in a chaotic and asynchronous manner.

3.2 The Organization class

First of all, the Organization class is designed as a container for constituents (its
structural set) and is composed of interactions between these constituents. This
container is also made up of phenomena (described below), enabling the creation
of possible new interactions. The system as a whole is therefore interpreted as a
layout of organizations which cause the global state of the system to evolve. In
order to organize the models as a hierarchy, the organization object can contain
sub-organizations. The significance of this approach is to be able to break down
the functional, rather than the structural part (Structure being a singleton).

The default rule is that the structural set of a mother organization is composed of its
own structural elements as well as the structural elements of its daughter organiza-
tions. Thus, the phenomena defined at the level of the mother class are also applied
to the structures of the daughter classes. It therefore becomes possible to organize a
global system according to multiple levels, each constructing one another (from the
organelles, to the cells, to the tissues, to the organs and to the organisms...). Finally,
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Figure 4: Diagram of the RéISCOP generic model.

hierarchical organization is only one of a number of possibilities. For example, the
choice of a middle-out approach11 would surely settle for simple juxtaposition,
which is not a problem for this model. The model designer is free to arrange the
organizations as s/he pleases using methods from the Organization class such as
add/deleteConstituent(), add/deletePhenomenon() and add/deleteOrga-
nization().

Each class of the meta model possesses the means necessary to update the system at
each intervening modification (dynamically or not) in the applicative model, which
goes some way towards autonomy and modularity.

Finally, taking into account the autonomy principle, the update mechanism of the
structural set on which the organization is based is isolated from the organization
itself, and therefore implemented in the classes deriving from it. This is how we
explain the association of the Organization class with the Structure singleton.
The structural set’s support algorithm is similar to that referred to below for phe-
nomena (section 3.3). Management of topology via active waiting is to be avoided
whereas a more passive, event-based system is more efficient. In order to do this,
the organization subscribes itself to the Structure singleton and requests the re-
ception of an event upon each creation of a certain type of constituent. But in
general very few organizations have variable topology and when that does occur,
the event-based mechanism suffices.

11 The middle-out method, advocated by the S. Brenner Nobel prize Bock and Goode (1998) goes
beyond the top-down and bottom-up oppositions, rather suggesting that systems modeling should
be determined by the level of the available data.
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3.3 The Phenomenon class

The Phenomenon class contains the interactions’ rules of production. One instance
of Phenomenon makes up one instance of Organization. As a result, the phe-
nomenon concerns all of the constituents associated with the organization. Its role
is to detect the creation conditions of new interactions and, if need be, to instantiate
them12.

The task of detecting the conditions for an interaction to appear is potentially costly
in terms of calculation. Indeed, the ideal solution would be for each phenomenon to
continually examine the structure’s state. Unfortunately, the size of the considered
simulations means that active waiting is not possible for all phenomena. Yet, all
phenomena do not require the same detection mechanism. Such a choice of mech-
anism depends on the nature of the phenomena, which can encapsulate different
mechanisms:

• active waiting. This is the least appropriate solution in terms of effective-
ness. A phenomenon is an active object which, whenever called on to act,
verifies the organization’s entire structure;

• event-based passive waiting on structural topology. The phenomenon re-
acts to modifications to the organization’s structural topology, that is to say,
at each time a constituent is added or deleted;

• mixed waiting. a “mixture” of the two previous procedures. The phe-
nomenon builds up a list of the constituents that might interest it, and pro-
ceeds through active waiting on these few objects. The list is thus updated
chronologically as the topology changes;

• event-based passive waiting on the constituents. The phenomenon is part
of a mechanism of events for detecting alterations in the state of the con-
stituents which interest it.

Any combination of these mechanisms is possible. However, event-based mech-
anisms are favored13, as they are less costly in terms of calculation time. They
must nevertheless be used with precaution so as not to shortcut the autonomous
nature of the processes by misusing callbacks. These have to remain local opti-
mizations of the computational model, which do not impose restrictions on the rest

12 It is possible to process the case of instantaneous interactions by replacing the instantiation of one
interaction by the call of the function corresponding to the one action to be carried out, subject to
appropriate scheduling.

13 It must be noted that in all of the applications designed up to now, we have always managed to
avoid the active waiting solution.
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of the application. The use of phenomena thus facilitates the conservation of strong
modularity.

3.4 Autonomous systems

Simulated systems are made up of Structure singletons and all of the organiza-
tions previously presented. It is possible to distinguish the sub-units created by
each organization. The couple created by an organization and the structural whole
to which it is associated thus makes up a sub-system. The same goes for the couple
interaction/set of associated constituents. In thinking of the organization as a tree,
the interactions would be its leaves. Organizations have all of interaction proper-
ties. Organizations can finally be defined as complex high-level interactions made
up of other interactions. This point of view, associated with the idea of hierar-
chical composition between organizations enables variations of scale in describing
phenomena.

Finally, the operational roles of interactions (modifying the state of the world),
phenomena (creating interactions) and organization (managing topology) mutually
influence one another. They are able to equip specific sub-systems associated to
each organization with the means and conditions necessary to generate and to carry
out its own processes. A system such as this displays the property of operational
closure which Varela associates with the notion of autonomy (Varela, 1979). Using
the approach put forward here, a model can be established through the juxtaposition
of structurally coupled autonomous systems.

In summary, this section defines a meta model from five basic classes: Organiza-
tion, Phenomena, Interaction, Structure and Constituent. It provides
a modeling framework which is:

1. multi-model: by reifying interactions as autonomous entities, as each inter-
action can translate phenomena of entirely different natures, using various
modeling tools (theoretical and computational).

2. multi-time-scale: implemented by the use of the real-time scheduling prin-
ciple based on asynchronous and chaotic iterations.

3. modular: The arrangement of organizations representing structurally cou-
pled autonomous systems.

In the following section, we shall present a number of examples demonstrating how
this abstract model can be specialized in order to model complex systems. This will
go some way to clarifying how this architecture might be implemented.
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4 Results

Firstly, we shall quickly describe an implementation of the RéISCOP meta model.
Then, we shall describe how the RéISCOP model branches out a first time to design
generic tools for numerical modeling using three examples of chemical, mechan-
ical and cellular phenomena. This illustrates how RéISCOP handles differential
systems and how it supports multi-modeling. We shall then go on to show how it is
possible to again adapt these tools in order to obtain concrete in virtuo experimental
models stemming from thematic domains.

4.1 RéISCOP

RéISCOP is a library that implements the meta model described in the article. Fig-
ure 5 shows a UML diagram that sums up the RéISCOP toolbox. The classes im-
plementing the meta model use the ARéVI (virtual reality workshop) library. The
RéISCOP library also contains a certain number of classes derived from the meta
model which model the phenomena presented in the following subsections. Fi-
nally, in order to create different applications, the RéISCOP classes can be used or
specialized.

4.2 Resolving differential systems : example of chemistry phenomena

Modeling of differential systems like reaction diffusion systems is a major fea-
ture in the field of biological modeling. Thus, simulation of chemical phenom-
ena using the RéISCOP model is necessary. To show how one can manage the
modeling of such phenomena, let’s consider the chemical reactions in play during
spates of hematological coagulation and its modeling using RéISCOP. Based on
Kerdélo, Abgrall, Parenthoën, and Tisseau (2002), the idea is that each chemical
reaction corresponds to an autonomous process which carries out the kinetics of
a particular reaction by acting on the concentrations representing molecule pop-
ulations. By rendering the chemical interactions autonomous, this method oper-
ates the change in point of view of reifying interactions. The Reaction, Species
and ReactionPhenomenon classes thus derive from Interaction, Constituent
and Phenomenon, respectively. The Diffusion class, which also stems from
Interaction, enables the simulation of diffusion phenomena. It therefore be-
comes possible to define an organization called ChemicalOrganization, which
models the chemical environment subjected to reaction-diffusion phenomena (see
figure 6).

The chemical models14 defined by the Reaction interactions translate ordinary dif-

14 In order to simplify the definition of biochemical networks, it is possible to use the SBML model
(Systems Biology Markup Language) Hucka (Finney).
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Figure 5: UML class diagram from the RéISCOP application
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Figure 6: The ChemicalOrganization is made up of Reactor sub-organizations
which are the site of chemical reactions. Diffusion interactions ensure the trans-
port of materials from one reactor to another. The Compartment constituents repre-
sent the volume of each reactor and the Species constituents represent the quantity
of reactants within that volume.

ferential equations (ODE). But, these systems are routinely processed using the tra-
ditional tools of ODE numerical resolution (Asher and Petzold, 1997) which adapt
well to synchronous resolutions. Yet, chaotic asynchronous scheduling has been
validated by Redou, Desmeulles, Abgrall, Rodin, and Tisseau (2007) who demon-
strates the convergence of algorithms implemented by means of Reaction and
Diffusion interactions.

This first case of application shows how the principle of reifying interactions al-
lows us to integrate macroscopic knowledge on populations (concentrations of
molecules) whilst retaining a bottom up approach. In this way, the online modi-
fication of certain settings or limited conditions, and the destruction or addition of
new reactions pose no particular difficulties as they simply destroy or create new
instances of Interaction without modifying the rest of the model.
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4.3 Multi modeling

We have shown how we handle the classical modeling of differential systems. Yet,
RéISCOP can also handle multi modeling : let’s consider the construction of a
second order model (a cell) and its structural coupling with other types of models
(mechanical and chemical).

Cellular organization. The cell model is at a “higher” level of modeling (see
figure 7). Being able to define a cell model, within the same framework that models
chemical reactions, shows us that it is possible for multiple levels of organization
to coexist. First of all, we consider the cell as a second-order system made up of
chemical sub-systems, which is a good start as it is often the only chemical nature
addressed in the literature. For the cell to chemically interact with the environment,
it must be structurally coupled with it. This implies that the Cell organization
must maintain its structural topology so as to include the chemical elements of its
nearby environment. For example, in interrogating the Structure singleton it is
possible to obtain a list of Compartment constituents and the Species present in
close proximity to the organization. In order to do so, the Cell organization must
be made up of a position state. Thus the cell’s system can be coupled with a
discrete chemical environment such as that described previously.

Mechanical organization. Rather than giving the cell a simple position con-
stituent, it instead is preferable to give it a physical existence in the three dimen-
sional universe. Therefore, we define a new type of constituent, the Body3D. A
body is a three dimensional shape associated with a position, a reference mark and
a mass. Through their bodies, the cells can therefore interact within a mechanical
organization (see figure 8).

The mechanical organization retains its structural topology by adhering to the struc-
ture in order to receive an event upon the creation of each body. The mechanism
therefore guarantees that all of the bodies in the virtual world are part of the orga-
nization. When the two encompassing spheres are close together, a Collision-
Phenomenon creates an appropriate collision interaction. A mechanical collision
interaction aims to repel two bodies if it senses that they are in contact. By the
same principle, it is possible to establish adhesion (between bodies), or migration
interactions (between a body and an “milieu” compartment). It therefore becomes
possible to examine the role of spatial interactions in 3D, which is essential for con-
ducting complex biological systems dynamics. It must be noted that, in general,
processes linked to the mechanical aspects of the model require lower activation
frequencies than for chemistry.
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Figure 7: Illustration of Cell organization made up of Reactor sub-organizations
modeling the cell’s different compartments and organelles. Interactions are chemi-
cal reactions and the cell is in structural coupling with a chemical environment.



In virtuo Experiments Based on the Multi-Interaction System 321

Constituent Interaction organization

mechanical organization

body3D A

body3D B

body3D C

cell A cell C

cell B

collision AB
collision BC

collision CA

Figure 8: Mechanical organization makes the constituents of Body3D interact which
could, for example, belong to Cell organizations.

4.4 Virtual Reality

RéISCOP has been used to describe models from various biological fields, i.e. hema-
tology, oncology, dermatology or neurobiology. Two interdisciplinary modeling
applications specifically address the perspective of the “virtuoscope” tool.

Firstly, the “in virtuo dermis” application takes place in the context of a scientific
collaboration with doctors and biologists (Desmeulles, Rodin, and Misery, 2005).
Through a model of allergic urticaria, the object of study is the interaction between
the large complex systems of the human body: the skin, the vascular system, the
nervous system and the immune system. The aim here is not to describe the biolog-
ical model in detail. We can nonetheless specify that the application implements a
model of one millimeter cubed of dermis. The model is arranged as a juxtaposition
of autonomous systems simulating a discrete chemical environment, mechanical
phenomena, mast cells, nerve fiber and a capillary. Figure 9 shows snapshots taken
while experimenting the model15 :

• 9.a) Using the syringe, a certain quantity of the allergen is injected into the
environment;

• 9.b) The allergen activates the mast cells (color changes) which then release
histamine into the environment, which activates the capillary’s receptors;

• 9.c) The histamine activates the nerve fiber (which also changes color), it
again releases a certain number of mediators which increase the activation of
the mast cells which in turn again release more histamine;

15 A film of this experiment can be found at www.cerv.fr/en/activites/EBV.php.
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Figure 9: Snapshots of a simple in virtuo experiment with the application “dermis
in virtuo”.

• 9.d) As the permeability of the capillary increases, plasma flows into the
tissue, which leads to a deformation of the basement membrane, thus forming
an edema.

As shown above, it is possible to experiment interactively the model and observe the
consequences without having predetermined these modifications. This application
goes some way towards a full implementation of the “virtuoscope”. Notice that in
this example, we can observe the evolution of 400 organizations, 1,500 phenomena,
10,000 constituents and 40,000 interactions in real-time on a standard PC.

The second example of the meta model’s application is the “EndoSim project”
(Bourhis and Rodin, 2007). The aim is to model and simulate the vasorelaxation of
arteries (that is to say muscular relaxation and adaptation of the size of the blood
vessel according to both blood flow and various biochemical mediators present in
the blood), focusing on the role of endothelial cells (see figure 10). As well as the
biological aspect, this project aims to study the distribution of applications, in or-
der to increase the size of the simulated models. Thus, the distribution is based on
the RéISCOP models’ organizations. It has been actually tested on a cluster of six
standard PCs. Each PC is responsible for a simulated section of arteriole which has
been sectioned off spatially. The whole simulation, with its 130 endothelial cells is
conducted in real-time.



In virtuo Experiments Based on the Multi-Interaction System 323

Figure 10: 3D view of a segment of a small artery (with red corpuscles, endothelial
cells and muscular cells).

5 Conclusions

We propose in this article to implement the “virtuoscope” and enable the construc-
tion and “in virtuo” experiment of models of complex systems through the meta
model RéISCOP which is based on the multi interaction paradigmatic framework.

The article first recalls what the “virtuoscope” is (§1). Then, it exhibits the paradig-
matic framework that introduces the multi interaction concepts and point of view
(§2). The starting point of this framework is the unification of the biological au-
tonomy (§2.2) introduced by Varela with the autonomy principle for the build-
ing of virtual reality numerical models (§2.1). Such point of view leads to the
concept of structural coupling wich enables the reification of interactions (§2.3).
Those fundamental concepts make possible the building of modular heterogeneous
models: models are reusable and multi-modeling can be achieved. Furthermore, a
chaotic asynchronous scheduler (§2.4) enables the temporal multi-scale modeling.
At last, the specification of the concepts of phenomenon and organization within
the multi interaction framework enables the implementation of complex dynamics
(§2.5) with autonomous models.

Thereafter, we formalize the multi interaction framework into the RéISCOP meta
model (§3). We describe the five classes Interaction, Constituent, Structure
(§3.1), Organization (§3.2) and Phenomenon (§3.3). With such classes, it is
possible to build operationnally autonomous systems, as they are empowered with
the conditions and means for their own production and destruction (§3.4).

Finally, we have implemented the meta model in the RéISCOP virtual reality mod-
eling platform (§4.1), which has given way to various applications and experimen-
tations. The first application (§4.2) shows that RéISCOP can integrate knowledge
on populations, i.e. handle differential systems and thus classical models. Fur-
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Figure 11: The figure shows how the meta model sits on top of concepts coming
from the fields of computer science, cognitive sciences and biology. Thereafter, it
shows the consistency of the multi interaction paradigmatic framework.

thermore, a mathematical validation demonstrates the convergence of the results.
The second application (§4.3) shows that RéISCOP easily enables multi-modeling
through the cell example. It also illustrates the modularity of this approach. At
last, we exhibit two virtual reality research projects (§4.4) that were built in con-
frontation with the field of biology. They especially highlight how RéISCOP may
implement the “virtuoscope”.

The various results show that the meta model RéISCOP enables domain experts and
computer scientists to formulate together models of various phenomena. The dif-
ferent points of view of the different research fields are thus consistently formulated
within the same modeling framework. Indeed, our proposition is consistent from
an epistemological point of view. As shown in figure 11 the involved paradigms
can be understood as an evolution of the initial Varela’s works through different
fields.

Futhermore, we have shown how modeling, simulation and software engineering
are imbricated to allow in virtuo experiment. One of the means to achieve this
is to maintain the semantic of the models accessible at all times. This approach
is anchored in the will to enrich the classical numerical modeling and simulation
tools by considering a computer as more than a mathematical solver. It is an original
aspect of the interdisciplinary practice of modeling and simulation.

The modeling pratice considers different levels of description (Fitzgerald, Goldbeck-
Wood, Kung, Petersen, Subramanian, Wescott, and Source, 2008) : quantum scale,
molecular scale, mesoscale... Interfacing those different levels is a quite chalenging
question ( see Chirputkar, Qian, and Source (2008) for an example of such a work).
We have reported that our proposition has been designed to handle heterogenous
models from a software engineering point of view (§3.4). Those sub-models might
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encapsulate algorithms that model different levels of description, and communi-
cate via a structural coupling through the constituents. For a multi level purpose,
constituents can be enriched to be accessed at different levels of description by the
interactions. However, the meta model doesn’t provide a magical solution to per-
form the multi level modeling that remains in most cases, theoretically and compu-
tationally impossible. RéISCOP can help to operationalize multi level models, but
doesn’t replace mathematical investigations. That is why the term "multi scale" has
to be used carefully.

In perspective, how thematicians can experiment their models questions our abil-
ity to build an adapted user interface. Yet, such a perspective, opening on the
fields of cognitive ergonomy and interface engineering, requires more experimen-
tal data and studies with thematicians. Indeed, interdisciplinary applications enable
feedbacks that are necessary for enriching the experimental validation of the RéIS-
COP approach. At last, having operationally autonomous models enables the study
of conceptually autonomous systems. Thus, we can envisage theoretical studies
regarding autopoietic systems from a biological point of view or even regarding
enactive systems from the cognitive sciences point of view.
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