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Analytical Exact Solutions of Heat Conduction Problems
for a Three-Phase Elliptical Composite

Ching Kong Chao1,2, Chin Kun Chen1 and Fu Mo Chen3

Abstract: Analytical exact solutions of a fundamental heat conduction problem
for a three-phase elliptical composite under a remote uniform heat flow are pro-
vided in this paper. The steady-state temperature and heat flux fields in each phase
of an elliptical composite are analyzed in detail. Investigations on the present heat
conduction problem are tedious due to the presence of material inhomogeneities
and geometric discontinuities. Based on the technique of conformal mapping and
the method of analytical continuation in conjunction with the alternating technique,
the general expressions of the temperature and heat flux are derived explicitly in a
closed form. Some numerical results of the temperature and heat flux distributions
are discussed in detail and provided in full-field configurations. The heat flux con-
centration factor around the geometric discontinuity is introduced to quantify the
amount of the local energy accumulation.

Keywords: conformal mapping, analytical continuation, alternating technique, a
three-phase elliptical composite.

Nomenclature

a1,a2 semimajor of the two confocal ellipses
b1,b2 semiminor of the two confocal ellipses
H heat flux intensity factor
h net heat flux
k heat conductivity
L1,L2 boundaries of the coated layer in the ζ -plane

l
√

a2
2−b2

2

Q resultant heat flow
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qx,qy components of heat flux in x and y direction
q remote uniform heat flow

R
√

a2+b2
a2−b2

S heat flux concentration factor
S1 the matrix in the ζ -plane
S2 the intermediate layer in the ζ -plane
S3 the inner inclusion in the ζ -plane
T temperature
U21 2k1(k1 + k2)−1

V21 (k1− k2)(k1 + k2)−1

z Cartesian coordinates

Greek symbols

Ω1 the matrix in the z-plane
Ω2 the intermediate layer in the z-plane
Ω3 the inner inclusion in the z-plane
Γ1,Γ2 boundaries of the coated layer in the z-plane
ζ polar coordinates
ρ1,ρ2 ρi = ai+bi

a2+b2
i = 1,2

θ(ζ ) complex potential function
θ0(z) τe−iλ z
θ0a(ζ ) lτe−iλ

2 Rζ

θ0b(ζ ) lτe−iλ

2
1

Rζ

τ remote uniform temperature gradient
λ an angle with respect to the positive x-axis
Φ(ζ ) θ ′ (ζ )

1 Introduction

The heat flux concentration around material discontinuities has been of series con-
cern in high-temperature composite materials. As a result of interesting usage of
composite materials in engineering applications, the development of heat conduc-
tion in dissimilar media has grown considerably in recent years. When the flow of
heat in a solid is disturbed by some discontinuity such a hole or a crack, the local
temperature gradient around the discontinuity is increased which may cause mate-
rial failure through crack propagation. Problems of this kind present considerable
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mathematical difficulty due to the presence of material inhomogeneity and geo-
metrical discontinuities. To date, few reported results of temperature distribution
or heat flux fields in dissimilar media have appeared in the open literature. A num-
ber of standard text books [Carslaw and Jaeger (1959); Ozisik (1993)] have devoted
a considerable portion of their contents to heat conduction problems in composite
structures. A number of studies dealing with flaw-induced thermal disturbance have
been published by [Florence and Goodier (1963); Olesiak and Sneddon (1960)].
[Tauchert and Akoz (1975)] solved the temperature fields of a two-dimensional
slab using complex conjugate quantities. [Mulholland and Gupta (1977)] inves-
tigated a three-dimensional body of arbitrary shape by using coordinate transfor-
mations to principal axes. [Chang (1977)] solved the heat conduction problem in
a three-dimensional configuration by conventional Fourier transformation. [Poon
(1979)] first surveyed the transformation of heat conduction problems in layered
composites from anisotropic to orthotropic. [Poon, Tsou and Chang (1979)] ex-
tended coordinate transformation of the anisotropic heat conduction problem to
isotropic one. [Zhang (1990)] developed a partition-matching technique to solve a
two-dimensional anisotropic strip with prescribed temperature on the boundary.

The work of [Yan, Sheikh and Beck (1993)] studied two-layered isotropic bodies
with homogeneous form of the conduction equation and the Green function solution
is used to incorporate the effects of the internal heat source and non-homogeneous
boundary conditions. They obtained the series solutions for three-dimensional tem-
perature distribution by Fourier transformation, Laplace transformation and eigen-
value methods. Consequently, it is more difficult to obtain general analytic so-
lutions satisfying all the boundary conditions for multi-layered heat conduction
problem because of the continuity of temperature and heat flux on the interface.
The work of [Tan, Shiah and Lin (2009)] studied stress analysis of 3D generally
anisotropic elastic solids using the boundary element method.

Most of the existing studies have focused on multilayered material systems [Marin
(2009)]. On the other hand, many practical problems are calling for the study of
the effects of the coated layers on thermal mismatch induced the local tempera-
ture gradient in the inclusion/matrix systems. An example of current interest is
the interconnect lines in large scale integrated circuits, where excessive tempera-
ture gradient caused by thermal mismatch between the interconnect lines and the
surrounding materials are identified as the major force for voiding and failure. To
reduce excessive temperature gradient within the interconnect lines, it would seem
that one could apply a coated layer, with appropriate thermal property, between the
line and the surrounding materials.

In the present work, we treat the generalized 2D problem of a three-phase ellipti-
cal composite subjected to a remote uniform heat flow. The analysis is based on
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the technique of conformal mapping and the method of analytical continuation in
conjunction with the alternating technique. The general expressions of the temper-
ature and heat flux in each layer of an elliptical composite are derived explicitly
in a series form. The whole contents consist of five sections. Following this brief
introduction, basic equations concerning the thermal problems are summarized in
Section 2. Then, the temperature and heat flux are presented in Section 3. In
Section 4, some numerical results are carried out to investigate the effect of ma-
terial inhomogeneities and geometric discontinuities on the temperature and heat
flux. The special case with a line crack embedded in an infinite medium is also
discussed. Finally, the conclusions on the current work are drawn in Section 5.

2 Problem Statement

Consider a three-phase elliptical composite subjected to a remote uniform heat flow
(see Fig. 1). Let Ω1 denote the matrix, Ω2 denote the intermediate layer and Ω3
denote the inner inclusion, respectively. The boundaries of the intermediate layer
are two confocal ellipses Γ1, Γ2 with a1, a2 and b1, b2 being the semimajor and
semiminor, respectively. For convenience of calculation, we introduce the follow-
ing mapping function

z = m(ζ ) =
l
2

[
Rζ +

1
Rζ

]
, Rζ =

z
l

{
1+
[

1− (
l
z
)2
]1/2

}
(1)

where

R =
√

a2 +b2

a2−b2

and

l =
√

a2
2−b2

2

This mapping function maps the confocal ellipses Γ1, Γ2 in the z-plane onto the
concentric circles L1, L2 in the ζ - plane with radii ρ1, ρ2 (see Fig. 2) defined by

ρi =
ai +bi

a2 +b2
i = 1,2

It also transforms the segment from −(a2
2−b2

2)
1
2 to (a2

2−b2
2)

1
2 in the z-plane onto

the circle L3 of radius 1/R in the ζ - plane.
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Figure 1: A three-phase elliptical composite subjected to a remote uniform heat
flow
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Figure 2: Conformal mapping from z - plane to ζ - plane

For a two-dimensional heat conduction problem, the resultant heat flow Q and the
temperature T can be expressed in terms of a single complex potential θ(ζ ) as

Q =
∫

(qxdy−qydx) =− kIm[θ(ζ )] (2)

T = Re[θ(ζ )] (3)

where Re and Im denote the real part and imaginary part of the bracketed expres-
sion, respectively. The quantities qx, qy in Eq. (2) are the components of heat flux
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in x and y direction, respectively, and k stands for the heat conductivity. Once the
heat conduction problem is solved, the temperature function θ(ζ ) is determined.

The complex function for an infinite homogeneous medium subjected to a remote
uniform heat flow with the temperature gradient τ = −q/k directed at an angle λ

with respect to the positive x1- axis can be trivially given as

θ0(ζ ) = τe−iλ
ζ (4)

With the aid of the mapping function (1), the homogeneous solution in the ζ−plane
can be rewritten as

θ0(ζ ) =
lτe−iλ

2
(Rζ +

1
Rζ

)

The above eq. can be split into two parts

θ0(ζ ) = θ0a(ζ )+θ0b(ζ )

where the function θ0a(ζ ) holomorphic in the region |ζ | ≤ ρ1 and the function
θ0b(ζ ) holomorphic in the region |ζ | ≥ ρ1 are respectively defined as

θ0a(ζ ) =
lτe−iλ

2
Rζ

and

θ0b(ζ ) =
lτe−iλ

2
1

Rζ

3 Temperature Field

To satisfy the continuity conditions of each interface, the temperature function of
each medium can be assumed as

θ(ζ ) =



∞

∑
n=1

θ 1
bn(ζ )+θ0(ζ ) ζ ∈ S1

∞

∑
n=1

θ 2
an(ζ )+θ 2

bn(ζ ) ζ ∈ S2

∞

∑
n=1

θ 3
an(ζ )+θ 3

bn(ζ ) ζ ∈ S3

(5)

where θ 1
bn(ζ ) and θ 2

an(ζ ) are respectively holomorphic in the regions |ζ | ≥ ρ1 and
|ζ | ≤ ρ1, θ 2

bn(ζ ) and θ 3
an(ζ ) are respectively holomorphic in the regions |ζ | ≥ ρ2
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and |ζ | ≤ ρ2 and θ 3
bn(ζ ) is holomorphic in the region |ζ | ≥ 1

R , which can be ex-
pressed in terms of θ0(ζ ) by the procedure as follows.

Step 1: Analytical continuation across L1

First, we introduce two complex functions θ 1
b1(ζ ) and θ 2

a1(ζ ) respectively holomor-
phic in |ζ | ≥ ρ1 and |ζ | ≤ ρ1 to satisfy the continuity conditions of the temperature
and heat flux across the interface L1 that

θ
1
b1(σ)+θ0a(σ)+θ0b(σ)+θ 1

b1(σ)+θ0a(σ)+θ0b(σ) = θ
2
a1(σ)+θ 2

a1(σ) σ ∈ L1

(6)

k1

[
θ

1
b1(σ)+θ0a(σ)+θ0b(σ)−θ 1

b1(σ)−θ0a(σ)−θ0b(σ)
]

= k2

[
θ

2
a1(σ)−θ 2

a1(σ)
]

σ ∈ L1 (7)

By the standard analytical continuation argument, we haveθ0a(ζ )+θ0b(
ρ2

1
ζ

)+θ 1
b1(

ρ2
1

ζ
)−θ 2

a1(ζ ) = 0 |ζ | ≤ ρ1

θ 1
b1(ζ )+θ0a(

ρ2
1

ζ
)+θ0b(ζ )−θ 2

a1(
ρ2

1
ζ

) = 0 |ζ | ≥ ρ1
(8)

andk1θ0a(ζ )− k1θ0b(
ρ2

1
ζ

)− k1θ 1
b1(

ρ2
1

ζ
)− k2θ 2

a1(ζ ) = 0 |ζ | ≤ ρ1

k1θ0a(
ρ2

1
ζ

)− k1θ0b(ζ )− k1θ 1
b1(ζ )− k2θ 2

a1(
ρ2

1
ζ

) = 0 |ζ | ≥ ρ1
(9)

Solve Eqs. (8) and (9) to yield

θ
2
a1(ζ ) = U21θ0a(ζ ) (10)

θ
1
b1(ζ ) = V21θ0a(

ρ2
1

ζ
)−θ0b(ζ ) (11)

where

U21 = 2k1(k1 + k2)−1

V21 = (k1− k2)(k1 + k2)−1.

Step 2: Analytical continuation across the interface L2
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Next, we introduce two functions θ 3
a1(ζ ) and θ 2

b1(ζ ) respectively holomorphic in
|ζ | ≤ ρ2 and |ζ | ≥ ρ2 to satisfy the continuity conditions across L2.

θ
2
a1(σ)+θ

2
b1(σ)+θ 2

a1(σ)+θ 2
b1(σ) = θ

3
a1(σ)+θ 3

a1(σ) σ ∈ L2 (12)

k2

[
θ

2
a1(σ)+θ

2
b1(σ)−θ 2

a1(σ)−θ 2
b1(σ)

]
= k3

[
θ

3
a1(σ)−θ 3

a1(σ)
]

σ ∈ L2 (13)

By the analytical continuation method, the solution is found to be

θ
3
a1(ζ ) = U32θ

2
a1(ζ ) (14)

θ
2
b1(z) = V32θ 2

a1(
ρ2

2
ζ

)

Step 3: Analytical continuation across L3

Since the points σ = 1
R eiθ and σ̄ = 1

R e−iθ correspond to the same points of the
segment from −(a2

2−b2
2)

1
2 to (a2

2−b2
2)

1
2 in the z-plane. The following condition

θ
3(σ) = θ

3(σ̄) (15)

must be satisfied.

The function θ 3
b1(ζ ) holomorphic in |ζ | ≥ 1

R is introduced to satisfy this condition
by letting

θ
3
1 (ζ ) = θ

3
a1(ζ )+θ

3
b1(ζ ) (16)

Substitution of Eq. (17) into Eq. (16) yields

θ
3
a1(σ)+θ

3
b1(σ) = θ

3
a1(σ)+θ

3
b1(σ) σ ∈ L3 (17)

By the analytical continuation method, the solution is found to be

θ
3
b1(ζ ) = θ

3
a1(

1
R2ζ

) (18)

Step 4. Analytical continuation across L1

Since the term θ 2
b1(ζ ) obtained in step 2 can not satisfy the continuity conditions

at L1, two additional functions θ 2
2a(ζ ) and θ 1

2b(ζ ) respectively holomorphic in
|ζ | ≥ ρ1 and |ζ | ≤ ρ1 are introduced to satisfy the continuity conditions across
the interface L1 that

θ
1
b2(σ)+θ 1

b2(σ) = θ
2
b1(σ)+θ 2

b1(σ)+θ
2
a2(σ)+θ 2

a2(σ) σ ∈ L1 (19)
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k1

[
θ

1
b2(σ)+θ 1

b2(σ)
]

= k2

[
θ

2
b1(σ)−θ 2

b1(σ)+θ
2
a2(σ)−θ 2

a2(σ)
]

(20)

By the same method, we have

θ
2
2a(ζ ) = V12θ 2

b1(
ρ2

1
ζ

) (21)

θ
1
b2(ζ ) = U12θ

2
b1(ζ ) (22)

Step 5. Repetitions of steps 2, 3 and 4

The method of analytical continuation is repeatedly performed across each interface
to achieve the unknown functions θ 3

a2(ζ ), θ 3
b2(ζ ), θ 1

bn(ζ ), θ 2
an(ζ ), θ 2

bn(ζ ), θ 3
an(ζ ),

and θ 3
bn(ζ ) (n = 3,4,5, ...). Consequently, one can express all the functions in terms

of θ0(ζ ) as follows

θ 1
b1(ζ ) = V21θ0a(

ρ2
1

ζ
)−θ0b(ζ )

θ 2
b1(ζ ) = V32U21θ0a(

ρ2
2

ζ
)

θ 3
b1(ζ ) = U32U21θ0a( 1

R2ζ
)

θ 2
a1(ζ ) = U21θ0a(ζ )

θ 3
a1(ζ ) = U32U21θ0a(ζ )

(23)

and

θ 1
bn(ζ ) = U12θ 2

b(n−1)(ζ )

θ 2
bn(ζ ) = V32V12θ 2

b(n−1)(
ρ2

1
ρ2

2
ζ )+U23θ 3

a(n−1)(
1

R2ζ
)

θ 3
bn(ζ ) = V23θ 3

a(n−1)(
1

R4ρ2
2 ζ

)+U32V12θ 2
b(n−1)(R

2ρ2
1 ζ )

θ 2
an(ζ ) = V12θ 2

b(n−1)(
ρ2

1
ζ

)

θ 3
an(ζ ) = V23θ 3

a(n−1)(
1

R2ρ2
2
ζ )+U32V12θ 2

b(n−1)(
ρ2

1
ζ

)

(24)

for n≥ 2.

When the inner inclusion vanishes, Eq. (24) reduces to an exact solutions of heat
conduction problems for an infinite elastic solid with a coated elliptic hole as

θ(ζ ) =


U12U21eiλ lRτ

1−V12(
ρ2
ρ1

)2
ρ2

2
2ζ

+ V21eiλ lRτ

2
ρ2

1
ζ

+ e−iλ lRτζ

2 ζ ∈ S1

U21e−iλ lRτ

1−V12(
ρ2
ρ1

)2
ζ

2 + U21eiλ lRτ

1−V12(
ρ2
ρ1

)2
ρ2

2
2ζ

ζ ∈ S2
(25)

Differentiation of Eq. (25) with z yields

Φ(ζ ) = θ
′(ζ ) =


τe−iλ R2ζ 2

R2ζ 2−1 −
τV21eiλ R2ρ2

1
R2ζ 2−1 −

τU12U21eiλ R2

1−V12(
ρ2
ρ1

)2
ρ2

2
R2ζ 2−1 ζ ∈ S1

τU21e−iλ R2ζ 2

1−V12(
ρ2
ρ1

)2
1

R2ζ 2−1 −
τU21eiλ R2

1−V12(
ρ2
ρ1

)2
ρ2

2
R2ζ 2−1 ζ ∈ S2

(26)
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In order to examine the local thermal energy intensification, we introduce the heat
flux concentration factor S defined by

S =
h
q

(27)

where h is the net heat flux given by

h =
√

(qx)2
j +(qy)2

j = k j

√
Φ j(z)Φ j(z) ( j = 1,2) (28)

For the special case of a hole embedded in an infinite plate without the presence of
a coated layer, the temperature in Eq. (23) and the temperature gradient in Eq. (24)
can be obtained by letting k1 = k2 as

θ(ζ ) =
eiλ lRτ

2ζ
+

e−iλ lRτζ

2
(29)

and

Φ(ζ ) =
τR2e−iλ

R2ζ 2−1
(ζ 2− e2iλ ) (30)

which are the same as the results given by [Chao and Shen (1998)].

An elliptic hole problem can be degenerated to a line crack problem if one let b
approaches 0 in Eq. (28) which leads to

Φ(ζ ) =
τ(e−iλ ζ 2− eiλ )

ζ 2−1
(31)

In the vicinity of the crack tip, the temperature gradient in Eq. (31) becomes

Φ(z) =−iaτ sinλ lim
z→±a

1√
z2−a2

(32)

In view of Eq. (32), the temperature gradient possesses the characteristic inverse
square-root singularity in terms of the radial distance, ρ , from the tips of the crack.
Due to this singular behavior, the heat flux intensity factor is then introduced to
quantify the thermal energy intensification in the vicinity of the crack tip which is
defined as [Chao and Chang (1992)]

H = lim
ρ→0

√
2ρh (33)

Substituting Eq. (28) and Eq. (32) into Eq. (33), the heat flux intensity factor H at
crack tip z = a2 (or z =−a2) is found to be

H =
√

aqsinλ (34)

It is interesting to see that the heat flux intensity factor H is a function of sinλ when
the crack surface is insulated from the heat flux.
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4 Results and discussion

The full field exact solutions of the temperature and temperature gradient for a
three-phase elliptical composite are provided in the present study. In the following
discussion, some numerical results are given to illustrate the full field temperature
distribution as well as the heat flux concentration factor.

4.1 Isothermal Contour

A detailed understanding of the temperature distribution is essential for examining
the global stability of the thermal system. Referring to Fig. 1, the heat flow due to
a uniform heat flux with the temperature gradient τ =−q/k directed at an angle λ

with respect to the positive x-axis is obstructed by the presence of a three-phase el-
liptical composite. All the isothermal contours possess the unit q/πk1 which would
reflect the combined effects of geometric configurations and thermal properties of
the material media. In the following discussions, the assumptions of a2/a1 = 0.8,
a2/b2 = 5, k1/k3 = 1, a2 = a, b2 = b and λ = 900 are considered. Figures 3-5
indicate the effect on the temperature contours across the interface between dis-
similar materials by varying the heat conductivity of the intermediate layer for a
three-phase composite with a/b = 5. It is shown that, when the heat conductiv-
ity of the matrix dominates over that of the intermediate layer, the gradient of the
constant temperature contours for the intermediate layer is larger than that of the
matrix. Figures 6-8 illustrate the temperature contours for a three-phase composite
hole with a/b = 10. It is seen that the heat flow which travels in the direction of the
constant temperature contours tends to change its direction around the tips of the
elliptical boundary. This phenomenon becomes more pronounced when the aspect
ratio a/b becomes larger and larger.

4.2 Heat Flux Concentration Factor

The heat flux concentration factor S, defined by Eq. (27), is introduced to measure
the thermal energy intensification in the vicinity of the tips of the elliptic boundary.
The larger heat flux concentration factor would cause excessive thermal stresses,
resulting in material failure through crack propagation. According to Eq. (25), the
heat flux concentration factor is found to be dependent on the material properties
and geometric configurations. Referring to Figure 9, the local thermal intensifi-
cation increases with increasing the aspect ratio a/b. For a given geometric con-
figuration, the heat flux concentration factor decreases with increasing of the ratio
k2/k1. This implies that the system with an intermediate layer having a larger heat
conductivity becomes more stable in reducing the thermal energy intensification.
In order to demonstrate the accuracy of the present approach, the results based on
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Figure 3: Isothermal contours for a/b =
5, k2/k1 = k2/k3 = 0.1, λ = 900
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Figure 4: Isothermal contours for a/b =
5, k2/k1 = k2/k3 = 1, λ = 900
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Figure 5: Isothermal contours for a/b =
5, k2/k1 = k2/k3 = 10, λ = 900
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Figure 6: Isothermal contours for a/b =
10, k2/k1 = k2/k3 = 0.1, λ = 900

the present theory are compared to those based on the finite element method. Fig-
ure 10 shows that the heat flux concentration factor based on the present proposed
method agrees very well with the results based on the finite element method.

5 Conclusion

The analytical exact solutions of a steady-state heat conduction problem of a three-
phase elliptical composite are provided in this paper. Based on the method of con-
formal mapping and the method of analytical continuation in conjunction with the
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Figure 7: Isothermal contours for a/b =
10, k2/k1 = k2/k3 = 1, λ = 900

-2 -1 0 1 2
-2

-1

0

1

2

x/a

y/
a

 

Figure 8: Isothermal contours for a/b =
10, k2/k1 = k2/k3 = 10, λ = 900
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Figure 9: Heat flux concentration factor versus the ratio k2/k1 with λ = 900 and
k3 = 0

alternating technique, the temperature and heat flux fields are obtained explicitly in
a close form. It is found that the intermediate layer has a strong effect on the ther-
mal energy intensification of the present problem. The present proposed method
can be also extended to solve the corresponding elliptical inclusion problem with
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Figure 10: Comparison of heat flux concentration factor between analytical solu-
tions and the results based on the finite element method

any number of layer.
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