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A New Method for Fredholm Integral Equations of 1D
Backward Heat Conduction Problems

Chein-Shan Liu1

Abstract: In this paper an analytical method for approximating the solution
of backward heat conduction problem is presented. The Fourier series expansion
technique is used to formulate a first-kind Fredholm integral equation for the tem-
perature field u(x, t) at any time t < T , when the data are specified at a final time T .
Then we consider a direct regularization, instead of the Tikhonov regularization,
by adding the term αu(x, t) to obtain a second-kind Fredholm integral equation.
The termwise separable property of kernel function allows us by transforming it to
a two-point boundary value problem, and thus a closed-form solution is derived.
The uniform convergence and error estimate of the regularized solution uα(x, t) are
proved and a strategy to select the regularization parameter is provided. When nu-
merical examples were tested, we find that the new method can retrieve the initial
data very excellently, even the final data are seriously noised.

Keywords: Backward heat conduction problem, Ill-posed problem, Two-point
boundary value problem, Fredholm integral equation, Fourier series, Regularized
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1 Backward heat conduction problems

We consider a homogeneous rod of length `, which is sufficiently slender so that
the temperature is uniformly distributed over the cross section of the rod at any time
t. The surface of the rod is insulated, and therefore there is no heat loss through
the lateral boundary. In many practical engineering application areas we may want
to recover all the past temperature distribution u(x, t), where t < T , of which the
temperature is assumed to be known at a given final time T . The problem we
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consider is

∂u
∂ t

=
∂ 2u
∂x2 , 0 < x < `, 0 < t < T, (1)

u(0, t) = 0, u(`, t) = 0, 0≤ t ≤ T, (2)

u(x,T ) = f (x), 0≤ x≤ `. (3)

This is the so-called a backward heat conduction problem (BHCP), which is known
to be highly ill-posed, namely, the solution does not depend continuously on the
input data u(x,T ). Really, the rapid decay of temperature with time results in a fast
fading memory of initial conditions. Therefore, the numerical recovery of initial
temperature from the data measured at a final time T > 0 is a rather difficult issue
due to the influence of noise and computational error.

It is well known that the approach of ill-posed problems by numerical method is
rather difficult [Han, Ingham and Yuan (1995); Mera, Elliott, Ingham and Lesnic
(2001); Jourhmane and Mera (2002); Mera, Elliott and Ingham (2002); Kirkup and
Wadsworth (2002); Chiwiacowsky and de Campos Velho (2003); Iijima (2004); Liu
(2004); Mera (2005); Liu, Chang and Chang (2006); Liu, Yeih and Atluri (2009)].
Mera (2005) has mentioned that the backward problem is impossible to solve using
classical numerical methods and requires special techniques to be employed.

One way to solve the ill-posed problem is to perturb it into a well-posed one. A
number of perturbing techniques have been proposed, including a biharmonic regu-
larization developed by Lattés and Lions (1969), a pseudo-parabolic regularization
proposed by Showalter and Ting (1970), and a hyperbolic regularization proposed
by Ames and Cobb (1997). It seems that Showalter (1983) first regularized the
above problem by considering a quasi-boundary-value approximation to the final
value problem, that is, to replace Eq. (3) by

αu(x,0)+u(x,T ) = f (x). (4)

The problems (1), (2) and (4) have been shown to be well-posed for each α > 0
by Clark and Oppenheimer (1994). Ames and Payne (1999) have discussed those
regularizations from the continuous dependence of solution on the regularization
parameter.

In this paper, after casting the backward heat conduction problem into a first-kind
Fredholm integral equation we propose a direct regularization technique to trans-
form it into a second-kind Fredholm integral equation, and using the kernel function
separating characteristic and eigenfunctions expansion technique we can derive a
closed-form solution of the second-kind Fredholm integral equation.
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The new method would provide us an analytical solution, and renders a more com-
pendious numerical implementation than other schemes to solve backward prob-
lems. The main motivation is placed on an effective solution of the BHCP, which
is one of the inverse problem, and is different from the sideways heat conduction
problem recently reviewed and calculated by Chang, Liu and Chang (2005). The
degree of the ill-posedness of BHCP is over other inverse heat conduction prob-
lems including the sideways heat conduction problem, which is dealed with the
reconstruction of unknown boundary conditions.

A similar second-kind Fredholm integral equation regularization method was first
used by Liu (2007a) to solve a direct problem of elastic torsion in an arbitrary plane
domain, where it was called a meshless regularized integral equation method. Liu
(2007b, 2007c) extended it to solve the Laplace direct problem in arbitrary plane
domains. Based on those good results and experiences, Liu (2009) used this new
method to treat the inverse Robin coefficient problem of Laplace equation. At
the same time, Liu, Chang and Chang (2009) used it to calculate the backward in
time advection-dispersion equation. On the other hand, basing on the Lie-group
shooting method [Liu (2006)], Chang, Liu and Chang (2007) solved the above one-
dimensional quasi-boundary value problem very well. Then Chang, Liu and Chang
(2009) extended their results to the multi-dimensional backward heat conduction
problems by using the Lie-group shooting method.

The remaining sections of this paper are arranged as follows. In Section 2 we derive
the second-kind Fredholm intergral equation by a direct regularization of the first-
kind Fredholm intergral equation. We point out its difference with the Tikhonov
regularization and the quasi-boundary regularization. In Section 3 we derive a two-
point boundary value problem, which can help us to derive a closed-form solution
of the second-kind Fredholm intergral equation in Section 4. In Section 5 we prove
the uniform convergence of the obtained regularized solution, as well as give an
error estimate. In Section 6 we demonstrate a selection principle of the regulariza-
tion parameter, and use some numerical examples to test the new method. Then,
we give some conclusions in Section 7.

2 The Fredholm integral equations

By utilizing the technique of separation of variables we are easy to write a formal
series expansion of u(x, t) satisfying Eqs. (1) and (2):

u(x, t) =
∞

∑
k=1

ake−(kπ/`)2t sin
kπx
`

, (5)

where ak are coefficients to be determined.
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By imposing the final time condition (3) on the above equation we can obtain

u(x,T ) =
∞

∑
k=1

ake−(kπ/`)2T sin
kπx
`

= f (x). (6)

Fixing any a t < T and applying the Fourier sine series on Eq. (5) one has

ak =
2e(kπ/`)2t

`

∫ `

0
sin

kπξ

`
u(ξ , t)dξ . (7)

When substituting Eq. (7) for ak into Eq. (6) and assuming that the order of sum-
mation and integral can be interchanged, the following integral equation can be
derived:

(KT−t
x u(·, t))(x) :=

∫ `

0
K(x,ξ ;T − t)u(ξ , t)dξ = f (x), (8)

where

K(x,ξ ; t) =
2
`

∞

∑
k=1

e−(kπ/`)2t sin
kπx
`

sin
kπξ

`
(9)

is a kernel function, and KT−t
x is an integral operator generated from K(x,ξ ;T − t).

Corresponding to the kernel K(x,ξ ; t), the operator is denoted by Kt
x.

In order to recover the temperature u(x, t) at any time t < T from a given data f (x)
at a final time T we have to solve the first-kind Fredholm integral equation (8).
This however is very difficult, since this integral equation is highly ill-posed [Liu
and Atluri (2009)].

Ames and Epperson (1997) have used a Tikhonov regularization technique to treat
Eq. (8) by the so-called normal equation:

(K?K+αI)u(x, ·) = K? f (x). (10)

Refer Eq. (2.23) of the above cited paper. Below we propose a direct regularization
of Eq. (8).

We assume that there exists a regularization parameter α , such that Eq. (8) can be
regularized by

αu(x, t)+
∫ `

0
K(x,ξ ;T − t)u(ξ , t)dξ = f (x), (11)

which is a second-kind Fredholm integral equation.
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Let t in Eq. (11) be zero,

αu(x,0)+
∫ `

0
K(x,ξ ;T )u(ξ ,0)dξ = f (x), (12)

and note that

u(x,T ) =
∫ `

0
K(x,ξ ;T )u(ξ ,0). (13)

From these two equations we obtain the quasi-boundary condition (4). Conversely,
Eq. (4) does not necessarily imply Eq. (11).

Taking x = η in Eq. (12) we have

αu(η ,0)+
∫ `

0
K(η ,ξ ;T )u(ξ ,0)dξ = f (η), (14)

and applying the operator Kt
x on the above equation and noting that

(Kt
xu(·,0))(x) =

∫ `

0
K(x,η ; t)u(η ,0)dη = u(x, t),

(Kt
xKT

ηu(·,0))(x) = (KT
x Kt

ηu(·,0))(x),

we obtain

αu(x, t)+
∫ `

0
K(x,ξ ;T )u(ξ , t)dξ = F(x, t) =

∫ `

0
K(x,ξ ; t) f (ξ ). (15)

This equation has been derived by Ames, Clark, Epperson and Oppenheimer (1998),
and the numerical implementation has been carried out. It is also a second-kind
Fredholm integral equation but is different from Eq. (11). It can be seen that our
regularized equation (11) is simpler than the above equation and also than Eq. (10).
Eq. (11) is our starting point.

3 Two-point boundary value problem

We assume that the kernel function in Eq. (11) can be approximated by m terms
with

K(x,ξ ;T − t) =
2
`

m

∑
k=1

e−(kπ/`)2(T−t) sin
kπx
`

sin
kπξ

`
, (16)

because of T − t > 0, and the higher terms decaying very fast with k increasing.
The above kernel is termwise separable, which is also called the degenerate kernel
or the Pincherle-Goursat kernel [Tricomi (1985)].
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By the inspection of Eq. (16) we have

K(x,ξ ;T − t) = P(x;T − t) ·Q(ξ ), (17)

where P and Q are m-vectors given by

P :=
2
`


e−(π/`)2(T−t) sin πx

`

e−(2π/`)2(T−t) sin 2πx
`

...
e−(mπ/`)2(T−t) sin mπx

`

 , Q :=


sin πξ

`

sin 2πξ

`
...

sin mπξ

`

 , (18)

and the dot between P and Q denotes the inner product, which is sometimes written
as PTQ, where the superscript T signifies the transpose.

With the aid of Eq. (17), Eq. (11) can be decomposed as

αu(x, t)+
∫ x

0
PT(x)Q(ξ )u(ξ , t)dξ +

∫ `

x
PT(x)Q(ξ )u(ξ , t)dξ = f (x), (19)

where we omit the parameter T − t in P for clearity.

Let us define

u1(x) :=
∫ x

0
Q(ξ )u(ξ , t)dξ , (20)

u2(x) :=
∫ x

`
Q(ξ )u(ξ , t)dξ , (21)

and Eq. (19) can be expressed as

αu(x, t)+PT(x)[u1(x)−u2(x)] = f (x). (22)

If u1 and u2 can be solved we can calculate u(x, t).
Taking the differential of Eqs. (20) and (21) with respect to x we obtain

u′1(x) = Q(x)u(x, t), (23)

u′2(x) = Q(x)u(x, t). (24)

Inserting Eq. (22) for u(x, t) into the above two equations we obtain

αu′1(x) = Q(x)PT(x)[u2(x)−u1(x)]+ f (x)Q(x), u1(0) = 0, (25)

αu′2(x) = Q(x)PT(x)[u2(x)−u1(x)]+ f (x)Q(x), u2(`) = 0, (26)

where the last two boundary conditions follow from Eqs. (20) and (21) readily. The
above two equations constitute a two-point boundary value problem.
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4 A closed-form solution

In this section we will find a closed-form solution of u(x, t). From Eqs. (23) and
(24) it can be seen that u′1 = u′2, which means that

u1 = u2 + c, (27)

where c is a constant vector to be determined. By using the final condition in
Eq. (26) we find that

u1(`) = u2(`)+ c = c. (28)

Substituting Eq. (27) into Eq. (25) we have

αu′1(x) =−Q(x)PT(x)c+ f (x)Q(x), u1(0) = 0. (29)

Integrating and using the initial condition leads to

u1(x) =
−1
α

∫ x

0
Q(ξ )PT(ξ )dξ c+

1
α

∫ x

0
f (ξ )Q(ξ )dξ . (30)

Taking x = ` in the above equation and imposing the condition (28) one obtains a
governing equation for c:(

αIm +
∫ `

0
Q(ξ )PT(ξ )dξ

)
c =

∫ `

0
f (ξ )Q(ξ )dξ . (31)

It is straightforward to write

c =
(

αIm +
∫ `

0
Q(ξ )PT(ξ )dξ

)−1 ∫ `

0
f (ξ )Q(ξ )dξ . (32)

On the other hand, from Eqs. (22) and (27) we have

αu(x, t) = f (x)−P(x) · c. (33)

Inserting Eq. (32) into the above equation we obtain

αu(x, t) = f (x)−P(x) ·
(

αIm +
∫ `

0
Q(ξ )PT(ξ )dξ

)−1 ∫ `

0
f (ξ )Q(ξ )dξ . (34)

Due to the orthogonality of∫ `

0
sin

jπξ

`
sin

kπξ

`
dξ =

`

2
δ jk, (35)
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where δ jk is the Kronecker delta, the m×m matrix can be written as∫ `

0
Q(ξ )PT(ξ )dξ = diag

[
e−(π/`)2(T−t),e−(2π/`)2(T−t), . . . ,e−(mπ/`)2(T−t)

]
, (36)

where diag means that the m×m matrix is a diagonal matrix.

Inserting Eq. (36) into Eq. (34) we thus obtain

u(x, t) =
1
α

f (x)− 1
α

PT(x)

·diag
[

1
α + e−(π/`)2(T−t)

,
1

α + e−(2π/`)2(T−t)
, . . . ,

1
α + e−(mπ/`)2(T−t)

]
·
∫ `

0
f (ξ )Q(ξ )dξ . (37)

While we use Eq. (18) for P and Q, we can get

u(x, t) =
1
α

f (x)− 2
α`

∞

∑
k=1

e−(kπ/`)2(T−t)

α + e−(kπ/`)2(T−t)

∫ `

0
sin

kπx
`

sin
kπξ

`
f (ξ )dξ , (38)

where the summation upper bound m is now replaced by ∞, because our argument
is independent of m.

At this moment it is impossible to take the limit of α = 0 in Eq. (38). In order to
get a formula where the limit of α → 0 can be carried out, we let t = 0 in Eq. (38)
to obtain an initial condition:

u(x,0) =
1
α

f (x)− 2
α`

∞

∑
k=1

e−(kπ/`)2T

α + e−(kπ/`)2T

∫ `

0
sin

kπx
`

sin
kπξ

`
f (ξ )dξ . (39)

For a given f (x), through some integrals one may employ the above equation to
calculate u(x,0).
If u(x,0) is available we can calculate u(x, t) at any time t < T by

uα(x, t) =
∞

∑
k=1

ake−(kπ/`)2t sin
kπx
`

, (40)

where

ak =
2
`

∫ `

0
sin

kπξ

`
u(ξ ,0)dξ . (41)

Inserting Eq. (39) into the above equation and utilizing the orthogonality equation
(35) it is verified that

ak =
2

`[α + e−(kπ/`)2T ]

∫ `

0
sin

kπξ

`
f (ξ )dξ . (42)
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Eqs. (40) and (42) constitute an analytical solution of the BHCP. In order to dis-
tinct it from the exact solution u(x, t) we use the symbol uα(x, t) to denote that the
solution is obtained from a regularization method, which is named a regularized
solution.

5 Two main results

In the previous section we have derived a regularized solution uα(x, t) of Eqs. (1)-
(3) under the regularized format (11) with a regularization parameter α > 0.

We can prove the following main result.

Theorem 1: If the final data f (x) is bounded in the interval x ∈ [0, `], then for any
α > 0 and T > t0 > 0 the regularized solution uα(x, t) converges uniformly for all
t ≥ t0 and x ∈ [0, `].

Proof: Since α > 0, and f (x) is bounded, say | f (x)| ≤ C?, x ∈ [0, `], for some
C? > 0, from Eq. (42) we have

|ak|=
2

`[α + e−(kπ/`)2T ]

∣∣∣∣∫ `

0
sin

kπξ

`
f (ξ )dξ

∣∣∣∣≤ 2
`α

∫ `

0
| f (ξ )|dξ ≤ 2C?

α
=: C, (43)

where C is a positive constant. Thus, for any t ≥ t0 > 0 we have∣∣∣∣ake−(kπ/`)2t sin
kπx
`

∣∣∣∣≤Ce−(kπ/`)2t0 . (44)

Through the ratio test it is obvious that the series e−(kπ/`)2t0 converges. Hence, by
the Weierstrass M-test, the series in Eq. (40) converges uniformly with respect to x
and t whenever t ≥ t0 and x ∈ [0, `]. This ends the proof. �

Taking α = 0 in Eq. (42) and inserting it into Eq. (40) we have a formal exact
solution of Eqs. (1)-(3):

u(x, t) =
∞

∑
k=1

a?
ke−(kπ/`)2(t−T ) sin

kπx
`

, (45)

where

a?
k =

2
`

∫ `

0
sin

kπξ

`
f (ξ )dξ . (46)

The above solution might be divergent, unless the final data f (x) satisfies the fol-
lowing condition:

∞

∑
k=1

e2(kπ/`)2T
(∫ `

0
sin

kπξ

`
f (ξ )dξ

)2

< ∞. (47)
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The above inequality is available by applying the Parseval equality on the Fourier
sine series of u(x,0) ∈ L2(0, `):

u(x,0) =
∞

∑
k=1

a?
ke(kπ/`)2T sin

kπx
`

, (48)

which is obtained from Eq. (45) by inserting t = 0.

About u(x, t) and uα(x, t) we can prove the following result.

Theorem 2: If the final data f (x) satisfies condition (47) and there exists an ε ∈
(0,1), such that moreover,

4
∞

∑
k=1

e2(kπ/`)2(1+ε)T
(∫ `

0
sin

kπξ

`
f (ξ )dξ

)2

:= M2(ε) < ∞, (49)

then for any α > 0 and t ≥ 0 the regularized solution uα(x, t) satisfies the following
error estimation:

‖uα(x, t)−u(x, t)‖L2(0,`) ≤ α
εM(ε). (50)

Proof: From Eqs. (40), (42), (45) and (46) it follows that

u(x, t)−uα(x, t) =
∞

∑
k=1

bke(kπ/`)2(T−t) sin
kπx
`

, (51)

where

bk =
2α

`(α + e−(kπ/`)2T )

∫ `

0
sin

kπξ

`
f (ξ )dξ . (52)

Therefore, for any ε ∈ (0,1) we have the following estimation:

‖u(x, t)−uα(x, t)‖2
L2(0,`)

≤ 4α
2

∞

∑
k=1

e2(kπ/`)2(T−t)[(α + e−(kπ/`)2T ))ε(α + e−(kπ/`)2T ))1−ε ]−2

·
(∫ `

0
sin

kπξ

`
f (ξ )dξ

)2

≤ 4α
2

∞

∑
k=1

e2(kπ/`)2(T−t)[e2(kπ/`)2T )]ε [α1−ε ]−2
(∫ `

0
sin

kπξ

`
f (ξ )dξ

)2

= 4α
2ε

∞

∑
k=1

e2(kπ/`)2((1+ε)T−t)
(∫ `

0
sin

kπξ

`
f (ξ )dξ

)2

≤ 4α
2ε

∞

∑
k=1

e2(kπ/`)2(1+ε)T
(∫ `

0
sin

kπξ

`
f (ξ )dξ

)2

= α
2εM2(ε). (53)
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Therefore, we complete the proof. �

The above two theorems are crucial to identify that the proposed regularization is
workable. Although the problem we consider is ill-posed, we have assumed that
the exact solution is existent in order to cast the error estimate in a manner that is
typical in partial differential equation approximations.

6 Selection of regularization parameter and numerical examples

Up to this point however we not yet specify how to select the regularization param-
eter α . Suppose that f (x) ∈ L2(0, `) satisfying condition (47) and that f (x) having
a Fourier sine series expansion:

f (x) =
∞

∑
k=1

a?
k sin

kπx
`

, (54)

where

a?
k =

2
`

∫ `

0
sin

kπξ

`
f (ξ )dξ . (55)

Substituting Eq. (54) into Eq. (39) we obtain

uα(x,0) =
∞

∑
k=1

e−(kπ/`)2T

α + e−(kπ/`)2T
a?

ke(kπ/`)2T sin
kπx
`

, (56)

where we note that

e−(kπ/`)2T

α + e−(kπ/`)2T
=

1
1+αe(kπ/`)2T

.

For a better numerical solution we require that

αe(kπ/`)2T = α0� 1.

Otherwise, the term e−(kπ/`)2T /[α +e−(kπ/`)2T ] in Eq. (56) will be very small when
k and/or T are large, which may lead to a large numerical error. Thus we get an
approximation

e−(kπ/`)2T

α + e−(kπ/`)2T
=

1
1+α0

= 1−α0 +α
2
0 −α

3
0 + . . . .

When the terms with order higher than one are truncated we obtain a good approx-
imation of u(x,0) by

uα0(x,0) = (1−α0)
∞

∑
k=1

a?
ke(kπ/`)2T sin

kπx
`

. (57)

The existence of the above series is guaranteed by condition (47). The regulariza-
tion parameter α0 is a small number.
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6.1 Example 1

In order to compare our numerical results with those obtained by Lesnic, Elliott and
Ingham (1998), Mera, Elliott, Ingham and Lesnic (2001), Mera, Elliott and Ingham
(2002) and Mera (2005), let us first consider a one-dimensional benchmark BHCP:

ut = uxx, 0 < x < 1, 0 < t < T, (58)

with the boundary conditions

u(0, t) = u(1, t) = 0, (59)

and the final time condition

u(x,T ) = sin(πx)exp(−π
2T ). (60)

The data to be retrieved are given by

ue(x, t) = sin(πx)exp(−π
2t), T > t ≥ 0. (61)

For this problem we let ` = 1, and substitute Eq. (60) for f (x) into Eq. (38) to
obtain

u(x, t) =
exp−(π2T )

α + exp[−π2(T − t)]
sin(πx). (62)

It is very interesting that u is identical to ue when α = 0. Taking t = 0 we recover
the initial condition to be

u(x,0) =
exp(−π2T )

α + exp(−π2T )
sin(πx). (63)

In Fig. 1 we show the numerical errors when compared with the exact one sin(πx)
for different regularization parameters of α = 10−10,10−12 with a fixed T = 1.
Upon comparing with the numerical results computed by Mera (2005) with the
method of fundamental solution (MFS) together with the Tikhonov regularization
technique (see Figure 5 of the above cited paper), we can say that the new method
is much accurate than MFS. In Fig. 2 we just show the numerical error with a very
large T = 5 with α = e−60, where the data u(x,T ) is very small about in the order
of 10−21.5.
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Figure 1: For Example 1 we comparing numerical and exact initial data retrieved
from final data at T = 1, and plotting the numerical error.

6.2 Example 2

In order to compare our numerical results with those obtained by Ames, Clark,
Epperson and Oppenheimer (1998), and Ames and Epperson (1997), let us consider
the same problem as in Example 1 but with the final time data to be

f (x) = e−τπ2
sinπx+ e−4τπ2

sin4πx+ e−2−9τπ2
sin3πx. (64)

Substituting the above f (x) into Eq. (55) and then into Eq. (57) we obtain a regu-
larized initial data:

uα0(x,0) = (1−α0)
[
e(T−τ)π2

sinπx+ e4(T−τ)π2
sin4πx+ e−2+9(T−τ)π2

sin3πx
]
.

(65)
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Figure 2: For Example 1 we plotting the numerical error of initial data retrieved
from final data at T = 5.

Therefore, by Eqs. (40) and (41) we obtain a regularized solution:

uα0(x, t)

= (1−α0)
[
e(T−τ−t)π2

sinπx+ e4(T−τ−t)π2
sin4πx+ e−2+9(T−τ−t)π2

sin3πx
]
.

(66)

It is different from the exact solution by a factor 1−α0 only.

For the comparison purpose we take τ = T − t0 and t = t0 to obtain

uα0(x, t0) = (1−α0)
[
sinπx+ sin4πx+ e−2 sin3πx

]
, (67)

which is also equal to the exact one in addition the factor 1−α0.

In Fig. 3 we compare the exact solution with the regularized solution under α0 =
10−10. It can be seen that the numerical error is in the order of α0 = 10−10. In
Table 1 we compare our results with that calculated by Ames, Clark, Epperson and
Oppenheimer (1998), denoted as ACEO, and that by Ames and Epperson (1997),
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denoted as AE. The parameters used in these calculations are T = 1/8 and t0 =
1/32. In all compared data the present results are very good.
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Figure 3: For Example 2 we comparing numerical and exact data at t = t0 retrieved
from final data at T = 1/8, and plotting the numerical error.

6.3 Example 3

Let us consider the one-dimensional BHCP:

ut = uxx, 0 < x < 1, 0 < t < T, (68)

with the boundary conditions

u(0, t) = u(1, t) = 0, (69)
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Table 1: Errors of Example 2; α0 = h2.

h−1 ACEO AE Present paper
8 0.500437E+00 0.685975E+00 0.281688E-01

16 0.277570E+00 0.616086E+00 0.704220E-02
32 0.130830E+00 0.444974E+00 0.176055E-02
64 0.935625E-01 0.224220E+00 0.440138E-03
128 0.770219E-01 0.115449E+00 0.110034E-03
256 0.482003E-01 0.969024E-01 0.275086E-04
512 0.193557E-01 0.943557E-01 0.687715E-05
1024 0.570397E-02 0.901759E-01 0.171929E-05
2048 0.149270E-02 0.768532E-01 0.429821E-06

and the initial condition

u(x,0) =
{

2x, 0≤ x≤ 0.5,
2(1− x), 0.5≤ x≤ 1.

(70)

The exact solution is given by

u(x, t) =
∞

∑
k=0

8
π2(2k +1)2 cos

(2k +1)π(2x−1)
2

exp[−π
2(2k +1)2t]. (71)

The backward numerical solution is subjected to the final condition at time T :

f (x) = u(x,T ) =
∞

∑
k=0

8
π2(2k +1)2 cos

(2k +1)π(2x−1)
2

exp[−π
2(2k+1)2T ]. (72)

The difficulty of this problem is originated from that we use a smooth final data to
retrieve a non-smooth initial data. In the literature, this one-dimensional BHCP is
called a triangular test [Muniz, de Campos Velho and Ramos (1999); Muniz, Ramos
and de Campos Velho (2000); Chiwiacowsky and de Campos Velho (2003)].

For this problem we let ` = 1 and insert Eq. (72) for f (x) into Eq. (42) to obtain

ak = [α + e−(kπ)2T ]
∞

∑
m=0

8(−1)mδk,(2m+1)

π2(2m+1)2 e−[(2m+1)π]2T . (73)

Inserting it into Eq. (40) we obtain

uα(x, t) =
∞

∑
k=1

1
[α + e−(kπ)2T ]

∞

∑
m=0

8(−1)mδk,(2m+1)

π2(2m+1)2 e−[(2m+1)π]2T e−(kπ)2t sinkπx. (74)
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Interchanging the order of summation and using the δ property we have

uα(x, t) =
∞

∑
m=0

8(−1)m

π2(2m+1)2
e−[(2m+1)π]2T

[α + e−[(2m+1)π]2T ]
e−[(2m+1)π]2t sin(2m+1)πx. (75)

It gives

uα(x,0) =
∞

∑
m=0

8(−1)m

π2(2m+1)2
e−[(2m+1)π]2T

[α + e−[(2m+1)π]2T ]
sin(2m+1)πx. (76)

The term

e−[(2m+1)π]2T

[α + e−[(2m+1)π]2T ]
= 1−α0

is already derived at the beginning of this section. Hence, we have

uα(x,0) = (1−α0)
∞

∑
m=0

8(−1)m

π2(2m+1)2 sin(2m+1)πx. (77)

Therefore, we use this solution to compare that in Eq. (70). In practice, the datum
is obtained by taking the sum of the first one thousand terms, which guarantees the
convergence of the series. From Fig. 4 it can be seen that the numerical error is
very small even at the coner point.

Muniz, de Campos Velho and Ramos (1999), and Muniz, Ramos and de Campos
Velho (2000) have calculated this example by different regularization techniques.
They have shown that the explicit inversion method does not give satisfactory re-
sults even with a small terminal time with T = 0.008 [Muniz, de Campos Velho
and Ramos (1999)]. Muniz, Ramos and de Campos Velho (2000) have calculated
the initial data with a terminal time T = 0.01 by the Tikhonov regularization, max-
imum entropy principle and truncated singular value decomposition, and good re-
sults were obtained as shown in Figures 4 and 5 of the above cited paper. However,
with the current method under a very large T = 1, the maximum error occurring at
x = 0.5 is only 0.00020244. The result is also better than that calculated by Liu,
Chang and Chang (2006), where they used T = 0.01 to obtain a maximum error
0.0619522.

In the case when the input final measured data are contaminated by random noise,
we are concerned with the stability of our method, which is investigated by adding
the different levels of random noise on the final data. We use the function RAN-
DOM_NUMBER given in Fortran to generate the noisy data R(i), where R(i) are
random numbers in [−1,1]. Then the given final data are multiplied by (1+ sR(i)).
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Figure 4: For Example 3 we comparing exact initial data and numerical initial data
under different noise levels on the final data at T = 1, and plotting the numerical
errors.

The numerical results with T = 1 were compared with the numerical result with-
out considering random noise in Fig. 4. It can be seen that the noise levels with
s = 0.0001 and s = 0.01 disturb the numerical solutions deviating from the exact
solution very small. The maximum error as shown is also in the order of 10−3 even
for a larger disturbance with s = 0.01.

7 Conclusions

In this paper we have transformed the 1D backward heat conduction problem into a
problem to solve a second-kind Fredholm integral equation through a direct regular-
ization technique. By using the Fourier series expansion technique and a termwise
separable property of kernel function, an analytical solution for approximating the
exact solution is presented. The influence of regularization parameter on the per-
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turbed solution is clear, which led well to a better selection of the regularization
parameter to avoid the inducing of a large numerical error. The uniform conver-
gence and error estimate of the regularized solution were provided. They demon-
strated that the new regularized technique is although simple but is applicable to
the backward heat conduction problems. The numerical examples have shown that
the new method could retrieve all initial data very excellently, even the final data is
very small or noised by large disturbance, and even the initial data to be retrieved
are not smooth.
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