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An Improved Petrov-Galerkin Spectral Collocation
Solution for Linear Stability of Circular Jet
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Abstract: A Fourier-Chebyshev Petrov-Galerkin spectral method is described for
computation of temporal linear stability in a circular jet. Basis functions presented
here are exponentially mapped Chebyshev functions. They satisfy the pole condi-
tion exactly at the origin, and can be used to expand vector functions efficiently by
using the solenoidal condition. The mathematical formulation is presented in detail
focusing on the analyticity of solenoidal vector field used for the approximation of
the flow. The scheme provides spectral accuracy in the present cases studied and
the numerical results are in agreement with former works.
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1 Introduction

Jets are important in many practical applications, e.g., related to combustion, propul-
sion, mixing and aeroacoustic. As one of the generic flow of fluid mechanics, jets
have been of scientific interest for over 100 years. The round jet results when fluid
is emitted, with a given initial momentum, out of a circular orifice into a large
space. At sufficiently high Reynolds numbers this jet will be turbulent. The stabil-
ity properties of the flow play a fundamental role in the transition to turbulence and
the formation of coherent vortex structures in a turbulent fluid (Rayleigh, 1880).

Frequently, the choice of independent variables is motivated by the symmetry of
circular jet, then cylindrical coordinates are likely most appropriate. However, the
choice of a particular set of independent variable might inadvertently introduce
mathematically allowable but physically unrealistic terms, e.g., singularities. The
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treatment of the geometrical singularity in cylindrical and spherical coordinates has
been a difficulty in the development of accurate finite difference and pseudospec-
tral schemes for many years (Schmid and Henningson, 2000; Drazin and Reid,
2004). The use of a spectral representation is often to be preferred for the accu-
rate solution of problems with simple geometry (Xie et al., 2008a, 2008b 2009a,
2009b). Lopez et al. (2002) derived a regularity conditions by using the proper-
ties at the axis of the functions chosen to expand velocity and pressure along the
radial direction. Pole conditions for Poisson-type equations in the physical space
were derived by Huang and Sloan (1993). But the time step restriction problem
that arises for advection problems due to the increased resolution near the coordi-
nate singularity can’t be avoided. One way to avoid the time step restriction is to
use a Fourier filter in the azimuthal direction as used by Fornberg (1995). Priymak
and Miyazakiy (1998) presented a robust numerical technique for incompressible
Navier Stokes equations in cylindrical coordinates. Lin and Atluri (2000, 2001)
proposed several upwinding Meshless Local Petrov-Galerkin (MLPG) schemes to
solve steady convection-diffusion problems in one and two dimensions. It shows
that the MLPG method is very promising to solve the convection-dominated flow
and fluid mechanics problems. Meseguer and Trefethen (2003) described a Fourier-
Chebyshev Petrov-Galerkin spectral method for high accuracy computation of lin-
earized dynamics flow in finite circular pipe in the light of Chapman’s analysis.
Bierbrauer & Zhu (2007) present three analytical solutions, the Bounded Creeping
Flow, Solenoidal and Conserved Solenoidal Solutions, which are both continuous,
incompressible, retain as much of the original mathematical formulation as possi-
ble and provide a physically reasonable initial velocity field. For hydrodynamic
stability problems, the linearized Navier-Stokes equations are a general eigenval-
ues equation, the conditioner of the matrix usually is an ill-conditioned system
arising from very-high order polynomial interpolations. Trefethen et al. (1993)
have highlighted the fact that, even when all eigenvalues of the linearized problem
indicated decay, there can be transient amplification and growth in energy owing
to the non-normality of the linearized operator. Liu & Atluri (2008, 2009) devel-
oped a highly accurate technique based on modified Trefftz method to deal with
the ill-posed linear problems. A link between these structures is discussed by van
Doorne & Westerweel (2009). Theoretical approaches to extract perturbations that
are efficient in triggering turbulence are presented by Biau & Bottaro (2009) and
Cohen et al. (2009), respectively.

Recently, MLPG methods mainly are used in the bounded domain for fluid me-
chanics problems. Shan et al. (2008) used local MLPG method to solve 3D in-
compressible viscous flows with curved boundary. Sellountos and Sequeira de-
veloped a hybrid multi-region MLPG velocity-vortices scheme for the 2D Navier
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stokes equations. To improve the accuracy and stability of MLPG methods, Mo-
hammadi (2008) and Orsini et al. (2008) proposed a meshless radial basis function
techniques, and Sellountos & Sequeira (2009) applied the radial basis function net-
works to transient viscous flows. To construct a basis function set for unbounded
domains, it is necessary to assume the asymptotic behavior of the approximated
functions for large radius r. One way to treat this class of functions is the do-
main truncation method which imposes artificial boundary conditions at sufficiently
large radius. The method can be made more efficient if additional mappings are
used, so that standard spectral basis functions such as Chebyshev polynomial can
be used. Grosch and Orszag (1977) investigated the exponential and algebraic map-
ping methods and found by numerical experiments that the algebraic mapping gives
a better result than the exponential mapping. Boyd (1999) supported their result by
examining the asymptotic behavior of the expansion coefficients of model functions
by the method of steepest descent.

In the present work, an efficient spectral Petrov-Galerkin scheme for the numerical
approximation of hydrodynamic stability equation in a circular jet is presented. The
radial basis function and weight function has been improved based on the previous
work (Xie et al. 2008a), The infinite domain is transformed into a finite unit disk
domain by exponential mappings. The discrete formulation of the disk with Cheby-
shev spectral method proposed by Fornberg (1995) is adopted. Rational physical
basis and test basis functions in a bounded domain are used for expansion in the
radial direction of polar coordinates. The numerical method is validated against the
results available in the literature.

2 The mathematical formulation

To derive the linearized equations of round jet, we start with the impressible dimen-
sionless Navier-Stokes equations, these equations in cylindrical polar coordinates
become:
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These equations are non-dimensionalised with respect to length scale L∗, velocity
scale U∗, and Reynolds number is Re = L∗U∗/v. The length scale and velocity scale
is usually based on the jet core velocity and momentum thickness.

Our concern in this paper is the linearized problem in which only infinitesimal
perturbations from the laminar flow are considered, Let

ur = Ur +u′r; uθ = Uθ +u′θ ; uz = Uz +u′z; p = P+ p′ (6)

and the perturbation can be expressed as superposition of complex Fourier modes
of the form:
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where ur(r), uθ (r), uz(r) and p(r) are the amplitudes of the corresponding dis-
turbances; n is the azimuthal mode of the disturbance; k is the axial wavenumber
of disturbance; c (or β=kc) is the wave amplification factor. Then the linearized
Navier-Stokes equations become:
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where D=d/dr. The Eqs.(8)-(11) are of singular Sturm-Liouville equation and have
regular singularities atr= 0.

3 Coordinate transform

We investigate the utility of mappings to solve the linear stability problems of round
jet numerically in infinite regions. In this paper we use the formulation proposed
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by Fornberg (1995). The idea is to take x∈[-1, 1] instead of x∈[0, 1]. To expand
this class of functions, we consider the exponential mapping:

x =
1− e−r/L

1+ e−r/L
; r ∈ (−∞,∞) or r/L = ln

1+ x
1− x

; x ∈ (−1,1) (12)

where L> 0 is the map parameter. The exponential map gives a good resolution
near r =0, and it is especially useful in the treatment of geometrical singularity for
cylindrical coordinates. The exponential map (xversus r) with various L is plotted
in Figure 1. The larger the parameter L, the map gives a better solution as r→ ∞.

Then the distribution of velocity of round jet is

Uz =
1

(1+ r2)2 =
1

(1+L2 ln2(1+ x)/(1− x))2
; x ∈ (−1,1) (13)

The exponential map is especially convenient because it yield simple expressions
for derivations. The derivatives with respect to r become:

∂u
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The axial component velocity profiles of the round jet and its derivation for vari-
ous values Lis shown in Figure 2 and 3. The larger L values, the more steeper the
profiles curve near the axis. The result is that a grid is highly clustered near the
origin, if the solution is smooth there. It may be wasteful in numerically computa-
tion. Thus a smaller L is needed to save the cost of computation. According to the
analysis above, there is a constraint in the choice of the map parameter L (Xie &
Lin, 2008b), and the problem is discussed and solved in Section 5.3.

We use Chebyshev series to represented the scalar function u(r), then

u(x) =
N

∑
n=0

anT2n(x); T2n(cosθ) = cos2nθ (15)

The set of T2n(x) for fixed integer n is complete and orthogonal with respect to
weight function w = 1/

√
1− x2. And the details of the application of Chebyshev

series to the numerical solution of ordinary and partial differential equations are
given by Boyd (1999).

Then the linearized Navier-Stokes equations become:
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Figure 1: Variation of r versus x for the exponential map with
various L
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Figure 2: Distribution of axial component velocity of round jet
with various values L



An Improved Petrov-Galerkin Spectral Collocation Solution 277

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

   x  

dU
z/

dx

 

 
L=1
L=2
L=3
L=4

 

Figure 3: The differential of axial velocity component of round jet
with various L
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Figure 4: Numerically computed eigenvalues in the complex plane
for n = 1 and k = 0.45 with Re = 30, 40, 50
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where D∗ = (1− x2)(∂u/∂x)/2L, r = L ln(1+ x)/(1− x).
Then the boundary conditions for first azimuthal (n = 1) mode become:

ur(0)+uθ (0) = Duz(0) = Dp(0) = 0; ur(1) = uθ (1) = uz(1) = p(1) = 0 (20)

4 Solenoidal Petrov-Galerkin discretisation

In order to have spectral accuracy in the numerical approximation of the eigen-
values problem, analyticity of the vector fields is required in the interval [0, 1].
Transformations to polar coordinates are singular at r=0, making necessary a spe-
cial treatment of our solution functions in a neighborhood of the origin. According
to the regularity analysis of Priymak & Miyazaki (1998), the solenoidal basis for
the approximation of the perturbation vector field takes the form:

u = ei(kz+nθ−kct)
M
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where um belongs to the physical or trial space and wm is a solenoidal vector field
belongs to the test or projection space. Then the physical or trial basis is:
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In order to take the advantage of orthogonality properties of Chebyshev polynomi-
als, the test functions should be built up suitably. In essence, the projection fields
are going to have the same structure as the trial fields but the functions will be mod-
ified by the Chebyshev weight (1-x2)−1/2. However, the resulting matrices would
be dense. Whereas they can be made to be bounded if the projection velocity fields
as follows:
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for various azimuthal mode n, except that if k= 0, the third component of w(2)
m is

replaced by rhm(x). It should be noted that the formats of the projection velocity
fields in this paper was different from the previous results of Xie and Lin (2008b),
and this formats is more universal.

The Petrov-Galerkin projection scheme is carried out by substituting the spectral
approximation in equations and projecting over the dual space. This procedure
leads to a discretized generalized eigenvalues problem, and the coefficient a(1,2)

m

govern the temporal behavior of the perturbation.

AX = λBX (24)

where λ =−ikc, the matrixes, A, B and X represent as follows respectively.
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where ` stands for the linear operator of linear stability equations

`[·] = 1
Re

∆[·]−uB ·∇[·]− [·] ·∇uB (25)

where uB are the basic flow velocity vector (0, 0, Uz). The pressure term should be
formally included in the operator `, but it is cancelled when projecting it over w,
that is (w, p)=0.

The generalized eigenvalues problem in Eq.(24) can be computed exactly by Gauss-
Chebyshev-Lobatto quadrature formulas. In the present study, the temporal insta-
bility of round jet is considered. Hence, k and n is real quantity while c = cr + ici

is generally complex. The disturbances will grow with time if ci >0 and will decay
ci <0 in Eq.(7). The neutral disturbances are then characterized by ci =0.

5 Results and discussion

In stability analysis the most important eigenvalues is the one that is the most unsta-
ble or least stable. For the present framework, this corresponds to the eigenvalues
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with the least imaginary part. In particular, the flow will be temporal unstable if the
imaginary part of the complex amplification is positive. The results in the present
section have been obtained by parametrically varying the Reynolds number and
frequency for an azimuthal wave number n of 1. This mode represents the most
important components of circular jet flow. Although n is necessarily an integer, k
can be any real number.

5.1 Eigenvalues

The efficiency of Petrov-Galerkin spectral method has been discussed by Meseguer
& Trefethen (2003) and Lin & Atluri (2000, 2001), and the eigenvalues are com-
puted numerically based on Chebyshev polynomial formulas. Figure 4 shows some
of the right most eigenvalues in the complex plane for n= 1 and k = 0.45 with Re =
30, 37.6, 50. The distribution of the eigenvalues of circular jet is different from that
of pipe flow. Although both the linearized Navier-Stokes equations are the same, an
investigation of linear stability equation around the parabolic profile shows that it is
linearly stable for all Reynolds number (Eckhardt, 2009). For circular jet velocity
profile, it is unstable for small Reynolds number. And the critical Reynolds number
is about 37.6, but the value of critical number is affected by some other parameters,
such as the order of Chebyshev polynomial, M; exponential map parameter, L; and
axial wavenumber, k, etc.

5.2 The choice of the order of Chebyshev polynomial

The wave amplifications (ci) of round jet for M ranging from 40 to 100 are shown
in Figure 5. It shows that the wave amplification of jet at M =80 is almost the same
trend as that of M =100. So much it can be concluded that M =100 is far away
enough for the accuracy of wave amplifications. Hence, the order of Chebyshev
polynomial is defined at M =100 in the present study.

5.3 The effect of map parameter L

From the analysis in section 3, there is constraint in the choice of exponential map
parameter L. In order to get better solution as r→ ∞, the larger L is needed. While
for the sake of the computational cost, the smaller L is demanded. The effect of
map parameter L on amplification as functions of k and Re is plotted in Figure 6
and 7. It shows that the largest amplification for various k and Re is taken place
under the conditions that L is about 3. We adopted the map parameter values with
L =3 for the main calculation; this value represents the best compromise between
the competing demands of the accuracy and the cost of computation.
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Figure 5: The effect of the Chebyshev polynomial order
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Figure 6: The effect of Lon the amplification factor with various k
at Re = 37.6
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Figure 7: The effect of Lon amplification factor with various Re
for fixed k =0.46
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Figure 8: Amplification factor as a function of k and Re
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5.4 Phase velocity and amplification under supercritical conditions

The amplification factor and the phase velocity and as a function of wavenumber (k)
and Reynolds number (Re) for n= 1 mode are shown in Figure 8 and 9. The phase
velocity gradually approaches the inviscid solution as Re Increases. For the n =1
mode the phase velocity increases monotonically with frequency. The amplifica-
tion factor does not behave in such a regular manner and an unusual phenomenon
occurs. With the increase in the Reynolds number, the peak value of amplification
factor has also increased, but the corresponding wavenumber decreases.

5.5 The critical Reynolds number

To obtain the critical Reynolds number, the amplification factor for some values of
Re close to the critical Reynolds number is plot in Figure 10. The critical Reynolds
number is the point where the curveci(k) becomes tangent to the ci= 0 line. And
in k-Re plane the neutral curve (ci= 0 line) separates the space into two zones: one
is stable and the other is unstable, which is shown in Figure 11 and 12. From the
graph the critical Reynolds number is found to be Re = 37.64, and the corresponding
wave number is k = 0.469 for n =1 mode, under the conditions, the amplification
factor is ci= -1.981736025416046e-006, and the phase velocity is cr = -0.253, the
distributions of corresponding perturbation velocities are shown in Figure 13. The
present result is also compared with some of the other values reported by previous
researchers in Table 1.

Table 1: Comparison of critical Reynolds number for n =1 mode

Reference Re k λr

Morris (1976) 37.64 0.44 0.1
Lessen & Singh (1973) 37.9 0.3989 0.08

Salgado & Sandham (2007) 37.8 0.417 0.09
Kulkarni & Agarwal (2007) 37.68 0.4505 0.104

Xie & Lin (2008b) 37.6829 0.459 0.103
present 37.64 0.469 0.119

6 Conclusion

The incompressible linear stability equation of round jet in cylindrical polar co-
ordinates with Petrov-Galerkin spectral method is presented. To construct a basis
function set for unbounded domains, it is necessary to assume the asymptotic be-
havior of the approximated functions for large r. For linear stability of round jet
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Figure 9: Phase velocity as a function of k and Re
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Figure 10: Amplification factor as a function of Re and k
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Figure 11: The neutral curve in k-Re plane based on numerically
computed critical ci
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Figure 13: The distributions of the perturbation velocities under the critical condi-
tions (Re = 37.64, k = 0.469)

the exponential mappings is favorable. Problems posed in polar coordinates can be
solved efficiently by spectral methods. To weaken the coordinate singularity at r=0,
one approach is to take x∈[-1, 1] instead of x∈[0, 1]. The numerical simulation was
performed by a Matlab code. The critical Reynolds number is also computed and
shown to be in good agreement with those reported in the literature.
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