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A New Method of Moments Solution Procedure to Solve
Electrically Large Electromagnetic Scattering Problems
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Abstract: In this work, we present a new method of moments solution procedure
for calculating acoustic/electromagnetic scattering and radiation by a metallic body
whose physical dimension is very large with respect to wavelength. The specially
computed basis functions and the testing procedure results in a block-diagonally-
dominant moment matrix where each block along the diagonal corresponds to a
portion of the structure. The new solution procedure results in considerable savings
in terms of computer storage and processing times. Although the procedure is
outlined in general mathematical terms, the numerical results are presented only
for electromagnetic scattering from two-dimensional bodies and compared with
the classical method of moments solution procedure. However, the procedure is
the same for three-dimensional bodies and scattering/radiation phenomenon.
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1 Introduction

In recent times, there has been a renewed interest to develop efficient numerical
methods to calculate the scattering/radiation patterns of large, complex structures
related to electromagnetic or acoustic wave phenomenon. The research is focused
on developing parallel processing algorithms for differential as well as integral
equation techniques viz. finite element and boundary element methods [Takei A.,
Yoshimura S., and Kanayama H., (2009)], [Nie Y.F., Chang S., Fan X.K., (2007)],
[Soares Jr. D, Vinagre M.D., (2008)], [Shaw A., Banerjee B., Roy D., (2008)],
[Chandrasekhar B. Rao S.M., (2008)]. However, it is well-known that the Bound-
ary Integral Equation (BIE) method (also known as the method of moments (MoM)
in electromagnetic literature [Harrington R. F. (1968)]) is the most efficient and
preferred numerical method for solving open-region electromagnetic/acoustic scat-
tering or radiation problems [Schuster G.T., Smith L.C (1985)], [Schuster G.T.
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(1985)], [Seybert A.F., Soenarko B., Rizzo F.J., Shippy D.J. (1985)], [Malbequi P.,
Candel S.M., Rignot E. (1987)], [Rao, S. M., Raju, P.K. (1989)], [Chandrasekhar.
B., Rao S. M. (2006)], [Chandrasekhar B. (2005)]. It is because, for this method,
the solution space is completely confined to the surface of the structure resulting in
the fewest possible unknowns. Another advantage of this method is the exact en-
forcement of the radiation condition. This eliminates any need for artificial, and of-
ten erroneous, absorbing boundary conditions. In contrast, the differential equation
based methods such as finite element method usually involves a grid terminating
condition using Perfectly matched layers [Lan Y.Y, Zhu J., (2007)] or some other
type of mesh-less schemes [Liu C.S., (2007)] and may be limited to a certain class
of problems only.

One disadvantage of BIE/MoM is, however, that it generates a dense system matrix
and the solution of such a system may be computationally expensive, especially
when solving problems involving geometrical structures whose physical dimen-
sions are very large with respect to the wavelength. Large problems quickly exceed
the amount of available memory, forcing one to either recompute the matrix ele-
ments multiple times or store the elements on disk, which results in prohibitively
large execution times. Even if the matrix can be stored entirely in the computer
memory, direct solutions, such as LU decomposition, may be impractical for large
matrices.

To overcome limitations imposed by expensive computer resources, the research
proceeded in developing a sparse moment matrix, utilizing iterative solution schemes,
and defining basis functions over larger sections of the geometry. A sparse mo-
ment matrix may be achieved in either of two ways: a) by defining a special set of
basis functions to represent the unknown quantity [Chandrasekhar B., Rao S. M.
(2008)]or b) by handling the influence of the kernel function in a novel way. The
usage of well-known wavelet-type basis functions to provide the required sparsity
belong to the former category [Steinberg B. Z.,Leviatan Y. (1993)] and the applica-
tion of the fast multipole method (FMM) belongs to the latter [Coifman R., Rokhlin
V., Wandzura S. (1993)], [Chew W.C., Song J.M., Cui T.J. (2004)]. There is also yet
another scheme, known as the impedance matrix localization scheme (IML) which
achieves modest sparsity for simple problems [Canning F. X. (1993)]. Notice that
the kernel function is, in general, a decaying function with respect to the distance
between the source and observation points. Thus, with increasing distances, the
influence of a given source becomes negligible at a sufficiently distant observation
point and may be actually set to zero. The IML scheme attempts to exploit this
fact. However, there is a certain degree of arbitrariness to this scheme and seems
to work for simple problems only. When defining basis functions over a larger por-
tion of the geometry, traditional methods have been valid only for canonical shapes.
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Current research in defining them for arbitrary bodies has focused on calculating
characteristic basis functions [Mittra R., Prakash V.V.S. (2004)] in order to reduce
the overall number of unknowns. It should also be mentioned here that there have
been attempts to combine both FEM and BEM methods to develop a more efficient
method but these methods appear to have been met with limited success [Soares Jr.
D (2008)].

In this work, we have developed a domain decomposition technique that can reduce
the necessary storage as well as provide a block-diagonally-dominant moment ma-
trix that can be used in a quickly converging iterative procedure. First, the struc-
ture is divided up into smaller substructures. Next, using the classical sub-domain
functions, we create entire domain basis functions spanning the given substructure.
These entire domain functions are designed to produce null fields at strategically
placed locations along the structure. Using these null fields, we can effectively
eliminate the near-field interactions between each group and thereby replace the
largest elements in the system matrix with zeros. The result is a block-diagonally-
dominant matrix, which will converge very quickly within an iterative procedure.
The numerical procedure is further explained in the following sections.

2 Numerical Solution Procedure

We begin with a standard MoM formulation using sub-domain basis functions.
Then, we divide the complete set of basis functions into various disjoint groups.
These groups may be decided by the geometry of the problem. For example, for
an antenna array, each array element may be a group in the system. Otherwise,
we may simply group elements which are physically close to one another. The
functions within each group are then reordered if necessary so that these groups ef-
fectively partition the system matrix where each group will correspond to one block
along the diagonal. Once the groups have been formed, we select a "source" group
and then begin the zeroing process. We choose test points (points where we would
like to produce nulls) corresponding to those elements in the MoM matrix which
are the largest. Consequently, for any group that forms an immediate neighbor to
the source group, we include all test points in that group. If test points on non-
adjacent groups are desired, they may be chosen sparsely since their corresponding
matrix elements are much smaller in magnitude. Once the test points have been
chosen, we form a new set of basis functions to replace those in the source group.
Each new basis function is a linear combination, with unknown weights, of a sub-
domain function from the source group as well as the functions corresponding to
the testing locations. Note that although we refer to locations where null fields will
be produced as "testing" locations, the sub-domain functions included in this linear
combination are actually the expansion functions for the unknown source quantity
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such as the induced current or acoustic source distribution for electromagnetic or
acoustic problems, respectively. To solve for these unknown weights for a source
group of size K, we form K linear systems:

Zt1t1 Zt1t2 · · · Zt1tn
Zt2t1 Zt2t2

...
. . .

Ztnt1 Ztntn




α1, j
...

αn, j

=−


Zt1s j

...

Ztns j

 (1)

where j = 1, . . . ,K and there are n testing locations.

Since there are n equations and n unknowns, this system can be solved exactly.
Note, we only need to invert this matrix once for each source group. If we let fi for
i = 1, . . . ,K be the original sub-domain functions, then we effectively create a new
set of functions gi using the following relationship:

gs1

gs2
...

gsK

=


fs1

fs2
...

fsK

+


α1,1 α2,1 · · · αn,1

α1,2 α2,2
...

. . .
α1,K αn,K




ft1
ft2
...
ftn

 (2)

We then repeat the process for each of the source groups. Within the columns asso-
ciated with each source group, the new system matrix Z̃, formed by a source basis
change to the newly formed functions, will have zeros for the rows corresponding
to the testing locations. Since all the significant non-diagonal elements have been
eliminated, the new matrix will be block-diagonally-dominant and will be suitable
for iterative techniques.

Furthermore, if we construct an initial guess that is close to the actual solution, the
iterative process will converge more quickly. To do this, we simply invert the new
self-blocks for each source group. Equivalently, we set all non-diagonal blocks to
zero and solve the following system:

Z̃G1 0 · · · 0
0 Z̃G2
...

. . .
0 Z̃GM




ĨG1

...
ĨGM

=


VG1

...
VGM

 (3)

where M is the number of groups for the structure.

Solving Eq. (3) will give a good approximation to the unknown quantity which
can be used as an initial guess to an iterative procedure, such as the Jacobi or
Gauss-Seidel algorithms in block form, to achieve the exact solution. Since the
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new system matrix Z̃ is highly block-diagonally-dominant and the initial guess is a
good approximation, an iterative solver will converge very quickly, mostly in one
or two iterations, as demonstrated in the numerical results section.

2.1 A simple example

We will illustrate the method with a simple example. In the example, there are two
2D strips, each with three pulse functions as shown in Fig. 1. We form two groups
of functions G1 = { f1, f2, f3} and G2 = { f4, f5, f6}.
The conventional MoM system matrix is given by:

Z =



 Z1,1 Z1,2 Z1,3

Z2,1 Z2,2 Z2,3

Z3,1 Z3,2 Z3,3

  Z1,4 Z1,5 Z1,6

Z2,4 Z2,5 Z2,6

Z3,4 Z3,5 Z3,6


 Z4,1 Z4,2 Z4,3

Z5,1 Z5,2 Z5,3

Z6,1 Z6,2 Z6,3

  Z4,4 Z4,5 Z4,6

Z5,4 Z5,5 Z5,6

Z6,4 Z6,5 Z6,6




=

[
[ZG1G1 ] [ZG1G2 ]
[ZG2G1 ] [ZG2G2 ]

]
(4)

where ZGiG j is the partition consisting of all the subdomain MoM matrix elements
with sources from group G j and test points on group Gi. In order for Z to be block-
diagonally dominant, the elements in ZG1G1 and ZG2G2 should be much larger in
magnitude than the elements in ZG1G2 and ZG2G1 . To eliminate ZG2G1 , we form 3
new basis functions on group 1, which we will refer to as a source group.

Figure 1: Pulse basis as defined for the example problem.
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The three new basis functions are given by the following:

g1 = f1 +α1 f4 +β1 f5 + γ1 f6

g2 = f2 +α2 f4 +β2 f5 + γ2 f6 (5)

g3 = f3 +α3 f4 +β3 f5 + γ3 f6

The weights αi,βi, and γi are chosen such that their net effect is to produce nulls
at every point on the second strip (Here we refer to group 2 as the test group). For
example, we form g1 using the following criteria:

Z4,1 +α1Z4,4 +β1Z4,5 + γ1Z4,6 = 0

Z5,1 +α1Z5,4 +β1Z5,5 + γ1Z5,6 = 0 (6)

Z6,1 +α1Z6,4 +β1Z6,5 + γ1Z6,6 = 0

This implies that α1

β1

γ1

=−

 Z4,4 Z4,5 Z4,6

Z5,4 Z5,5 Z5,6

Z6,4 Z6,5 Z6,6

−1 Z4,1

Z5,1

Z6,1

 (7)

Solving Eq. (7), we obtain α1, β1, and γ1 and generate the new basis function g1.
In a similar fashion, we form g2 and g3. Note that the inverse matrix is the same
for g1, g2, and g3 so that an inverse is taken only once per group. Likewise, we
replace f4, f5, and f6 with new functions g4, g5, and g6 to produce nulls on the first
strip thereby eliminating ZG1G2 . We form a new system matrix Z̃ by a source basis
change to the newly formed g′is. In this case, the elements in Z̃ are simply linear
combinations of the original elements of Z. For example, if we wish to generate
Z̃2,1, we compute

Z̃2,1 = Z2,1 +α1Z2,4 +β1Z2,5 + γ1Z2,6 (8)

We are left with a system matrix for the new basis functions:

Z̃ =
[

Z̃G1G1 0
0 Z̃G2G2

]
(9)

where the off-diagonal blocks are zero by design. In this example, the system may
be solved by simply inverting the sub-blocks Z̃G1G1 and Z̃G2G2 . In a problem where
there are many more groups, it is not necessary to produce nulls on each element of
every test group. Only the test points meeting a nearest neighbor criteria must have
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nulls since their corresponding matrix elements are large in magnitude. Test points
in the other groups may be chosen more sparsely if any are chosen at all. The
only requirement is that the group blocks corresponding to the group self terms
dominate the remaining terms in their respective block-columns. Since Z̃ can be
made highly block-diagonally-dominant, the system will converge quickly when
used in an iterative solver.

3 Memory Requirements

There are a few points to note. First, if we only use one iteration for the solver,
then the matrix generation and iteration scheme can be streamlined in such a way
that the matrix elements are computed only once and then discarded. If the matrix
is too large to store in system memory, another approach is to generate one block-
row of Z̃ at a time while proceeding through the iterative algorithm. This has the
extra computational load of filling the matrix once per iteration. However, if only
a few iterations are used, then this method is still much more economical than a
full LU decomposition. Also, when generating the coefficients for each group, a
matrix inversion is required. If there are n test points, then this matrix will be an
n× n matrix. Thus, the maximum storage necessary is equal to the requirements
for the group coefficients plus the largest of the following three quantities in terms
of memory usage:

a) The largest ZGi given in Eq. (3).

b) The largest matrix inverted for calculating group coefficients.

c) If multiple iterations are necessary, the largest block-row in Z̃.

Note that each one of the quantities requires far less storage than the full system
matrix.

4 Analysis of Operations

There are four computationally significant steps to the algorithm.

1. Inverting each matrix in (1)

2. Inverting the group matrices in (3)

3. Creating Z̃

4. The iterative solution
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The cost of steps 1 and 2 depends on the number of testing points as well as the
number of groups. If we assume all the group sizes are equal and we let K be the
number of basis functions per group and M be the total number of groups, then
we have N = KM where N is the total number of basis functions for the structure.
For efficiency, step 2 requires that each group matrix be smaller than the system
matrix requiring K� N. The number of test points is determined by the number of
groups in the near field range of a source group. This will typically consist of only
a few groups. Since all the group sizes are small with respect to N, inverting an
individual matrix in step 1 will therefore not be computationally significant unless
it is performed too many times. In order to prevent this, we should also force the
number of groups to be as small as possible giving us M�N. Although the optimal
choice of K and M will vary from problem to problem (and actually appears to be
very flexible), K = M =

√
N will satisfy the above requirements and seems to be a

good rule of thumb since
√

N� N for large bodies.

The number of operations will then be as follows. Inverting each matrix in (1)
is O(K3). Inverting each group matrix in (3) is also O(K3). The most expensive
operation is creating Z̃. Since this can be viewed as a source basis change, we
can write Z̃ = ZR where each column of R has the coefficients for a new source
basis in Z̃. However, R is a sparse matrix and since the group sizes are small
with respect to the total number of unknowns, creating Z̃ is an O(N2) operation.
Finally, although the iterative method may vary, here we have used the Gauss-
Seidel algorithm, which is computationally insignificant for just a few iterations.

5 Numerical Results

The following two-dimensional examples using both Transverse Magnetic (TM)
and Transverse Electric (TE) polarization show the effectiveness of the technique.
All closed body solutions utilize the combined-field formulation while open bodies
use the electric field formulation for each polarization. Also, both codes use pulse
functions for both the source basis and test basis. Finally, the block form of the
Gauss-Seidel iterative solver has been used.

Consider a square cylinder with 50λ sides illuminated by a plane wave as shown in
Fig. 2. The total contour length for this case is 200λ . Figs. 3 and 4 show the real
and imaginary currents for faces 1 and 2 for the TM case. Figs. 5 and 6 show the
real and imaginary currents for faces 1 and 2 for the TE case. The amplitude of the
incident magnetic field Ho is 1 Amp/m. The angle of incidence for both cases is 350

with respect to x-axis. The contour of the cylinder is divided into 2000 divisions
using a 10 divisions per wavelength criterion. Furthermore, the basis functions are
collected into 40 groups with 50 basis functions per group. For each source group,
the testing is carried out on the two adjacent groups. The initial guess, obtained by
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computing currents using only the individual groups, is refined with one iteration
of the Gauss-Seidel procedure. The currents are shown to be in agreement with the
standard MoM solution.

For the next example, consider a highly complex shaped contour with concavity
as shown in Fig. 7. The total circumference is 100λ . The incident wave is at 450

with respect to x-axis with Ho = 1. There are 25 groups with 40 sub-domain basis
functions in each group. Figs. 8 and 9 show the real and imaginary currents for TM
and TE cases, respectively. The numerical results, after one iteration, are compared
with standard MoM solution and show good agreement for each case.

Next, we consider a large two-dimensional strip array. Each element is 2λ length
and there are 100 collinear elements in the array spaced 0.1λ apart. Each element
is a group with 20 segments per group resulting in 100 groups. Testing for a given
source group is done on the two adjacent elements. If the element is at either end
of the array, then testing is done only on the single adjacent element. The incident
wave is normal to the array and has magnitude Ho = 1. Figs. 10 (a) and (b) show
the bistatic radar cross section with respect to the azimuthal angle for both TM and
TE cases, respectively. The results are compared with conventional MoM solution
and good agreement is evident in each case.

Finally, we show the real-time results for a 700λ circumference two-dimensional
circular cylinder using the new procedure and compare with the conventional MoM
method. The scattering case is solved for a 600 MHz incident wave at 1800 with
respect to x-axis with Ho = 1 and TM polarization. The cross section of the cylin-
der is divided into 7000 edges using a 10 divisions per wavelength criterion. For
the conventional MoM solution, the matrix fill and execution times are 12 minutes
and 189 minutes, respectively. For the new procedure, 7000 unknowns are divided
into 70 groups of 100 unknowns each. In the following table, we provide the com-
putational time for each step involved. The processor for the test machine is a 2.4
GHz Pentium 4.

1 Matrix fill 12 minutes 20 seconds
2 Construction of new basis 16.1 seconds
3 Construction of new system matrix 15.7 seconds
4 Iterative solution (single iteration) 15.8 seconds
5 New method total solution time (Add 1,2,3, and 4) 13 minutes 8 seconds
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Figure 2: Cross section of the 50λ square cylinder.

Figure 3: Currents in the shadow region (Face#1) for square cylinder with 50λ

sides with TM incident wave Ho=1 at 350. (a) Real part and (b) Imaginary part.

Figure 4: Currents in the lit region (Face #2) for square cylinder with 50λ sides
with TM incident wave Ho=1 at 350. (a) Real part and (b) Imaginary part.
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Figure 5: Currents in the shadow region (Face #1) for square cylinder with 50λ

sides with TE incident wave Ho=1 at 350. (a) Real part and (b) Imaginary part.

Figure 6: Currents in the lit region (Face #2) for square cylinder with 50λ sides
with TE incident wave Ho=1 at 350. (a) Real part and (b) Imaginary part.

Figure 7: Object with complex shape and concavity.
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Figure 8: Currents for object with concavity with 100λ total circumference and
TM incident wave with Ho=1 at 450. (a) Real part and (b) Imaginary part.

Figure 9: Currents for object with concavity with 100λ total circumference and TE
incident wave with Ho=1 at 450. (a) Real part and (b) Imaginary part.

6 Conclusion

The method was shown to drastically reduce the necessary computation as well as
storage requirements for 2D MoM codes. Furthermore, the procedure is very sim-
ple and can be easily included with existing MoM codes. Further research includes
extending the method to arbitrary conductors in three dimensions as well creating a
parallel version of the code. Also, it may be worthwhile to experiment with various
iterative solution techniques as well as initial guesses in order to fully optimize the
overall process.
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Figure 10: RCS for 2D strip array with 100 2λ elements. The incident wave is
normal to the array and Ho=1. (a) TM case and (b) TE case.
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