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Modeling and Solution for Gas Penetration of Gas-Assisted
Injection Molding Based on Perturbation Method
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Abstract: Gas-assisted injection molding is an innovative process to manufac-
ture hollow polymeric products, in which gas penetration is the primary and key
problem. An analytical solution of the gas penetration interface is presented, based
on perturbation method. First, the governing equations and boundary conditions
are transformed to be dimensionless, where Capillary number Ca is introduced.
Then matching asymptotic expansion method is applied to solve these equations,
by using Ca and as perturbation parameters to get the inner and outer solutions,
respectively. By matching these two solutions, the analytical model of gas penetra-
tion is obtained.
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1 Introduction

Gas-assisted injection molding (GAIM) is an innovative process to manufacture
hollow polymeric products, which comprises a partial injection of polymer melt
into the mold cavity, followed by an injection of compressed gas. The gas pene-
trates into the polymer melt and forces it to fill the whole mold cavity. The pro-
cess has inherent advantages of producing less warpage tendency and better surface
quality with less polymer material and lower pressure and can be used to manufac-
ture large and thick parts or parts which have thick and thin sections [Avery (2000);
Parvez, Ong, and Lam (2002); Zheng, Yang, Yang, Chen, Li, and Shen (2008)].

However, because gas-assisted injection molding process involves dynamic inter-
action between two dramatically dissimilar materials flowing within cavities, the
product, tool and process designs for GAIM are quite complicated. Further, previ-
ous experience with conventional injection molding is no longer sufficient to deal

1 Corresponding author.
2 State Key Laboratory of Materials Processing and Mold Technology, Huazhong University of Sci-

ence and Technology,Wuhan, The People’s Republic of China



210 Copyright © 2009 Tech Science Press CMES, vol.46, no.3, pp.209-220, 2009

with this process, especially in designing the gas-channel network and optimizing
the processing window. So the modeling and simulation of the GAIM process are
needed urgently.

Gas penetration is the primary and key problem of gas-assisted injection mold-
ing, which makes melt flow more complex. Besides, in the filling simulation of
GAIM, the melt filling in the thin cavity is assumed as Hele-Shaw flow which
is similar to conventional injection molding, while the gas penetration interface
should be solved simultaneously and considered as boundary conditions [Marcilla,
Odjo-Omoniyi, Ruiz-Femenia, and García-Quesada (2006); Chen, Li, Zhou, Li,
He, and Tang, (2008)]. Chen et al. used heat transfer parameters to set the thick-
ness of the stagnant material behind the advancing gas front [Chen, Hsu, and Hsu
(1995)]. Yang et al. studied the effect of the gas-channel dimension on gas pen-
etration [Yang, Huang, and Liau (1996)]. Huzyak and Koellin studied isothermal
gas penetration of Newtonian melts in circular tubes by experiments [Huzyak, and
Koelling (1997)]. Chau presented a generalized Newtonian model to predict the
three-dimensional gas penetration phenomenon [Chau (2008)]. Li and Isayev put
forward a physical model for the gas/melt front based on interface kinematics and
dynamics [Li, and Isayev (2004)].

Although some investigations have focused on gas penetration of gas-assisted in-
jection molding, most existing studies are based on empirical and experimental
approaches. There is still lack of exact and reasonable analytical model that can
be adopted directly in analysis and simulation. In this paper, a mathematical model
governing the behavior of gas penetration is established, followed by a thorough so-
lution based on the matching asymptotic expansion method. In the deduction, the
governing equations and boundary conditions are transformed to be dimensionless
first. In the meantime, Capillary number Ca is introduced into the dimensionless
equations. Then matching asymptotic expansion method is applied to solve these
equations. Ca and Ca2/3 are used as perturbation parameters to get the inner and
outer solutions of gas penetration interface, respectively. By matching these two
solutions, the analytical model of gas penetration thickness ratio is obtained.

2 Modeling of the process

As shown in Fig. 1, gas-assisted injection molding involves the injection of a short
shot of polymer into the cavity. When gas is introduced into the molten material, it
takes the path of least resistance into areas of the part with low pressure and high
temperature. As the gas penetrates through the part, it cores out thick sections by
displacing the polymer melt. This polymer melt fills out the rest of the cavity. After
cooled down, the part is ejected by opening the mold.
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Figure 1: Schematic diagram for gas-assisted injection molding process: (a) short
shot of polymer; (b) gas penetration; (c) ejection after cooled down

During the stage of gas penetration, the gas bubble follows the “path of least resis-
tance”. To induce the gas bubble to proceed in the desired path, it is essential to
design gas channel, that is, a rib with thicker section of a part, as shown in Fig. 2. A
channel with thick section will usually be of lower pressure and higher temperature
than thinner areas.

 

Figure 2: Typical gas channel geometries

The gas penetration in the gas channel is the most important and complicated prob-
lem of GAIM. As shown in Fig. 3, four distinct flow regions can be identified in
gas penetration: the solid frozen layer of polymer close to the mold wall, the de-
forming viscous polymer melt, the penetration gas, and the unfilled cavity. These
four regions are confined by the melt and gas fronts. The melt flow front is identical
to that in conventional injection molding. The gas penetration and its interface are
responsible for transmitting the pressure required to move the viscous melt.

Penetration is a common phenomenon in engineering [Ma, Zhang, Lian, and Zhou
(2009); Wang, Zhang, Gao, and Wang (2007)]. The gas penetration interface is a
very complicated problem, with features of non-linearity, variable coefficients, and
complex boundary conditions. It is difficult to obtain exact analytical solution for
this interface. In recent years, as an approximate approach, the perturbation method
has undergone rapid developments and achieved exciting advancements [Lee, Lu,
and Liu (2008); Lu, and Zhu (2007)]. In this paper, the matching asymptotic ex-
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pansion method [Marin (2008); Sarkar, and Sonti (2007)] is used to solve the gas
penetration interface, which is a kind of parametric perturbation methods. Its basic
idea is to use more than one asymptotic expansion for the problem. Each expansion
is effective in partial areas and adjacent areas have overlapping regions. Therefore,
these expansions would accord with each other through matching in the overlap-
ping regions.

 

Figure 3: Schematic notation for flow regions and their interface in the gas pene-
tration, where (1) the solid frozen layer of polymer, (2) the penetration gas, (3) the
deforming viscous polymer melt, (4) the unfilled cavity; (I) the polymer melt front,
(II) the gas front

3 Solution of the gas penetration

The melt filling is assumed as Hele-Shaw flow. Because the viscosity of polymer
melt is sufficiently high, the inertia and transients can be neglected. As shown in
Fig. 4(a), suppose the gas penetrates into the melt in x direction with the penetration
thickness ratio being β . And ~n = nx~i + ny~j + nz~k and~t = tx~i + ty~j + tz~k represent
the inner normal and tangent vector, respectively. The governing equations and
boundary conditions in the gas penetration interface can be simplified as
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+
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P−2η [
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n2
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R
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where U is the gas penetration velocity in x direction, P0, T , R are the pressure
of the gas, the melt surface tension coefficient and the curvature radius of the gas
penetration interface respectively.

 

Figure 4: Illustrative for: (a) gas penetration in the channel; (b) the outer coordinate
system; (c) the inner coordinate system

3.1 Outer solution

An outer coordinate system for the gas-melt interface is set up as Fig. 4(b), and
the dimensionless variables in this system are defined by x̂ = x−Ut

b , ẑ = z
b , R̂ = R

b ,
û = u−U

U , ŵ = w
U , and P̂ = P−P0

T/b .

Based on the above variables, dimensionless transforms of Eqs. (1) and (2) result
in
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where Ca = ηU/T is Capillary number. For convenience, the superscripts of the
variables are removed.
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Suppose that the gas penetration interface is denoted by z = h(x), and hence dz
dx =

dh
dx = tz

tx
=−nx

nz
. Combining with boundary conditions, it follows that

P =−Ca[2
∂u
∂x

+
dh
dx

(
∂u
∂ z

+
∂w
∂x

)]+
d2h
dx2 [1+(

dh
dx

)2]−3/2 (5)

Adopting Ca as perturbation parameter, considering governing equations and bound-
ary conditions while Ca→ 0 with the perturbation theory, the approximation func-
tion of h in the outer coordinate system can be obtained as

−1 =
d2h0

dx2 [1+(
dh0

dx
)2]−3/2 (6)

By further inference, it results in

h0(x) =
√

1− (x+1)2 (7)

Eq. (7) is the outer solution of the gas penetration interface.

3.2 Inner solution

The point of intersection between the mold wall and the gas perturbation interface
determined by outer solution is the inconsistent region of the outer solution. This
point is selected as origin to set up the inner coordinate system (as shown in Fig.
4(c)). In this inner coordinate system, the variables are magnified by δ with δ =
Cam. In order to ensure that the magnified equations are in balance and as simple
as possible, m prefers to be 2/3 and

d̄ =
1−β

δ
, x̄ =

x+1

δ 1/2
, z̄ =

z−1
δ

, h̄ =
h−1

δ
,

ū = u, w̄ =
w

δ 1/2
, P̄ = P

(8)

Substituting Eq. (8) into Eqs. (3) and (4), the resulting governing equations and
boundary conditions in inner coordinate system can be write as

∂ ū
∂ x̄

+
∂ w̄
∂ z̄

= 0 (9a)

∂ P̄
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∂ 2ū
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= δ
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∂ z̄2 (9c)
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Considering Eqs. (9) and (10) while δ → 0 with the perturbation theory, the ap-
proximation function of h̄ in the inner coordinate system can be obtained as

∂ 3h̄0

∂ x̄3 =
−3(h̄0 + d̄)

(h̄0)3
(11)

Employ fourth-order Runge-Kutta method to solve the asymptotic expansion of Eq.
(11) [Lee, and Liu (2009); Liu, and Atluri (2009)], resulting in

h̄0(x̄)≈ A2×32/3(x̄+ x̄0)2

d̄
+A1×31/3(x̄+ x̄0)+A0× d̄ +O(

1
x̄
) (12)

where A2 =−0.3215, A1 =−0.096, A0 =−2.9.

Eq. (12) is the inner solution of the gas penetration interface.

3.3 Matching

According to the matching asymptotic expansion theory, the inner solution when
x̄→−∞ might match the outer solution when x→−1. This match is satisfied in
any coordinate system, and here the outer coordinate system is selected. Inverse
transformation to the inner solution according to Eq. (8) results in

h0(x)≈1+
A2×32/3(x+1)2

d̄
+δ

1/2(
2×A2×32/3x̄0

d̄
+A1×31/3)(x+1)

+δ (
A2×32/3x̄2

0

d̄
+A1×31/3x̄0 +A0× d̄)+ · · · · · ·

(13)

While x→−1, the outer solution Eq. (7) can be expanded as

h0(x)≈ 1− 1
2
(x+1)2 +O((x+1)4) (14)

Eqs. (13) and (14) must match each other. Because (x + 1)n series are linearly
independent of each other, the coefficients of (x + 1)nof the two solutions should
be equivalent. Therefore, d̄can be obtained as

d̄ =−2A2×32/3 = 1.3375 (15)
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Consequently, the gas penetration thickness ratio in steady penetration region is
calculated by

β = 1−δ d̄ = 1−1.3375Ca2/3 (16)

3.4 Correction

Eq. (16) is the deduced gas penetration thickness ratio calculating model. And
yet this calculation will lead to serious deviation when Ca becomes larger. The
reason is the following two: (a) perturbation method has close approximation only
round the perturbation point. Perturbation parameter Ca has been confined by Ca→
0 and Ca2/3 → 0 in the deduction process, as a result the deduced solution only
suits for little value of Ca; (b) higher-order items of the asymptotic expansion of
the gas penetration interface solution have been neglected, which would lower the
accuracy. In order to make the educed model applicable to a larger range of Ca, a
reasonable correction is necessary.

Suppose that the correction function of gas penetration in outer coordinate system
is expressed by

h(x)≈ β −Dekx (17)

where D, k are constants needed to be obtained.

According to the no slip condition at the mold wall, the velocity and pressure can
be defined by

u(x,z)≈−1+ ekx f1(z)+O(e2kx) (18a)

w(x,z)≈ ekx f2(z)+O(e2kx) (18b)

P(x,z)≈Caekx f3(z)+O(e2kx) (18c)

where f1, f2, f3are functions to be solved.

Apply Eqs. (17) and (18) to the governing and boundary conditions equations,
and make f2 expressed as an assembly of trigonometric functions. With that, the
simultaneous equations with respect to all educible constants can be obtained. And
these constants will be calculated by solving these equations.

4 Verification

The experiment carried out by GE Corporate Research and Development [Poslin-
ski, Oehler, and Stokes, (1995)] is employed for verification. This experiment stud-
ied the gas penetration in transparent tubes in different conditions so as to inves-
tigate the factors affecting the penetration. A schematic diagram of the apparatus
used in the experiment is shown in Fig. 5.
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Experiments were performed using 26-cm-long disposable tubes of different inner
radii: 3.83-mm radius plastic pipettes, and rigid PVC tubing with radii of 2.95,
4.76 and 6.32 mm. The pipettes and PVC tubes were marked with a graded scale to
facilitate location of the gas and melt fronts. A video camera speed of 30 frames/s
was used to record the gas and melt fronts during the penetration. The thickness
of the cured skin was measured by using a nondestructive Hall-effect approach,
having an accuracy of ±0.01 mm. Two translucent liquids, RTV-108 and RTV 118
(both from General Electric), were used in experiments.

 

Figure 5: Schematic diagram of the experimental apparatus, where (1) air supply,
(2) control valve, (3) pressurized gauge, (4) manometer, (5) control valve, (6) pres-
sure transducer, (7) digital readout, (8) transparent tube assembly, (9) video camera

The experimental and calculated data of the skin melt thickness ratio are compared
in Fig. 6. The initial calculation of the skin melt thickness ratio is d = 1.3375Ca2/3,
and this initial value is corrected by the temporal governing equations and boundary
conditions. From Fig. 6, it can be seen that:

(a) all the curve lines show that Capillary number is the key factor determining
the skin melt thickness ratio, and Capillary number synthesizes the influence
of the gas penetration velocity, viscosity and surface tension of the melt, and
other processing parameters;

(b) the three curve lines reflect that the skin melt thickness ratio increases with
Capillary number largening;

(c) while the Capillary number is less than 10−2, the initial calculation without
correction agrees well with the experiment result, but it will lead to large errors
when the Capillary number exceeds 10−2;
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(d) after correction, the calculation is closer to the experiment in a wider range,
sufficient for the engineering design.

 
Figure 6: The skin melt thickness ratio versus the Capillary number

5 Conclusion

The modeling and solution of gas penetration in gas-assisted injection molding is
presented in this paper. By applying the matching asymptotic expansion method,
an approximated analytical model for gas penetration is deduced. The comparisons
with experiments show that the initial calculation agrees well with the experimental
result for small Capillary number, and the calculation after correction is closer to
the experiment in a wider range.
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