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Probabilistic Interval Response and Reliability Analysis of
Structures with A Mixture of Random and Interval

Properties
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Abstract: Static response and reliability of structures with a mixture of random
and interval parameters under uncertain loads are investigated in this paper. Struc-
tural stiffness matrix is a random interval matrix when some structural parameters
are modeled as random variables and others are considered as intervals. The struc-
tural displacement and stress responses are also random interval variables. From the
static finite element governing equations, the random interval structural responses
are obtained using the random interval perturbation method based on the first- and
second-order perturbations. The expressions for mean value and standard deviation
of random interval structural displacement and stress responses are developed by
the random interval moment method. The structural reliability is not a determinis-
tic value but an interval as the structural responses are random interval variables.
The lower and upper bounds of reliability index, probability of failure and relia-
bility of structural elements and systems are investigated using the combination of
the first-order reliability method and interval approach. Four examples are used to
demonstrate the validity and feasibility of the presented methods.

Keywords: random interval response; interval reliability; probabilistic interval
analysis; random interval moment method; random interval perturbation method

1 Introduction

Uncertainties exist in the analysis and design of many systems. Uncertain analy-
sis of many types of systems and structures have been addressed [Gao, Chen and
Ma (2003); Ma et al. (2006); Ma, Chen and Gao (2006); Jiang and Han (2007);
Jiang, Han and Liu (2007); Moens, De Munck and Vandepitte (2007); Gao, Zhang
and Dai (2008); Loeven and Bijl (2008); Panda and Manohar (2008); Tian and
Yang (2008)]. The properties of a real civil engineering structure are also usually

1 School of Civil and Environmental Engineering, The University of New South Wales, Sydney,
NSW 2052, Australia



152 Copyright © 2009 Tech Science Press CMES, vol.46, no.2, pp.151-189, 2009

different from those specified in design. Over the lifetime of a structure, the dam-
aging effects associated with attacks from aggressive environmental agents such
as a progressive deterioration of concrete and corrosion of steel usually lead to
significant variations of system parameters. As very powerful tools, probabilistic
methods have been widely used to predict the responses of structural systems with
uncertainty [Elishakoff, Ren and Shinozuka (1995); Zhang et al. (1996); Beck
and Melchers (2004); Val and Stewart (2005); Gao (2006); Gao and Kessissoglou
(2007); Stewart and Suo (2009)]. In probabilistic methods, uncertain parameters
are modeled as random variables/fields and uncertainties of loads are described by
random processes/variables. These methods can provide not only the mean value
but also the standard deviation and even the probability density for structural re-
sponses. Monte-Carlo simulation method [Hurtado and Barbat (1998); Radhika,
Panda and Manohar (2008); Spanos and Kontsos (2008); Figiel and Kaminski
(2009)], perturbation based stochastic finite element method [Elishakoff, Ren and
Shinozuka (1995); Zhang et al. (1996); Kaminski and Kleiber (2000); Kaminski
(2001); Kaminski (2007); Hua et al. (2008)], spectral stochastic finite element
method [Verhoosel, Gutierrez and Hulshoff (2006); Chen and Soares (2008); Galal
(2008); Ngah and Young (2007); Nouy (2008)] and other types of stochastic meth-
ods [Li and Chen (2004); Manjuprasad and Manohar (2007); Chen and Li (2007,
2009)] have been developed to analyse random structures. However, the probabilis-
tic methods are only applicable when information about an uncertain parameter in
the form of a preference probability function is available. The interval methods can
be used when the probability function is unavailable but the range of the uncertain
parameter is known. The response quantities of interest will also be intervals. In the
past decade, significant progresses in interval analyses of structures with bounded
parameters have been achieved. Interval static response [Qiu and Elishakoff (1998);
Chen and Yang (2000); Chen, Lian and Yang (2002); Gao (2007a)], natural fre-
quencies/eigenvalues [Chen, Lian and Yang (2003); Chen, Guo and Chen (2004);
Qiu, Wang and Friswell (2005); Gao (2007b)], dynamic response [Zhang, Ding and
Chen (2007); Qiu, Ma and Wang (2009); Wang and Qiu (2009)] and optimization
[Maiumder and Rao (2009a, 2009b)] of structures with interval parameters have
been investigated.

Structural reliability analysis plays an important role in the analysis and design of
structures because the structural designer must verify, within a prescribed safety
level, the serviceability and ultimate conditions. The evaluation of the failure prob-
ability taking into account the uncertainties in structural parameters and excita-
tions is a basic problem in structural reliability analyses. The first-order reliabil-
ity method (FORM) is considered to be one of the most reliable computational
methods. Over the past three decades, numerous studies have contributed to the
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development of reliability methods based on FORM [Zhao and Ono (1999); Main-
con (2000); Yang, Gang and Cheng (2006); Puatatsananon and Saouma (2006);
Low and Tang (2007)]. Consequently, FORM becomes a basic method for analy-
sis of structural reliability. Second-order reliability theory [Zhao and Ono (1999);
Zhao, Ono and Kato (2002)], higher order moment method [Zhao and Lu (2007)]
and response surface method [Bucher and Bourgund (1990); Guan and Melchers
(2001); Gomes and Awruch (2004); Kaymaz and McMahon (2005); Gavin and Yau
(2008)], Monte-Carlo simulation method [Papadrakakis, Papadopoulos and La-
garos (1996); Melchers and Ahammed (2004); Puatatsananon and Saouma (2006)]
and other methods have been also used for reliability analysis. In most structural
reliability analysis, uncertainties of structural parameters and loads are represented
by probabilistic information. Static and dynamic responses of structures are ran-
dom variables, and the structural random vibration responses are random processes.
Thus, the failure probability and reliability index are deterministic values. How-
ever, structural reliability becomes an interval number having the lower and upper
bounds if both random variables and interval variables are included in the struc-
tural system or the mean values and standard deviations of structural responses are
intervals. Recently, a few of researchers have conducted research on probabilistic
interval reliability analysis. Guo and Du (2009) investigated the reliability sensi-
tivity analysis of a system with both random and interval variables. Qiu, Yang and
Elishakoff (2008) studied the interval reliability of structural systems assuming the
numerical characteristics of static stress and resistance are interval variables.

In a structural system, some structural parameters/loads can be modeled as random
variables, but some of them are best considered as interval variables. In this paper,
the random interval moment method and random interval perturbation method are
presented to predicate the static displacement and stress responses of structures
with a mixture of random and interval parameters subjected to random/interval
loads. The structural probabilistic interval reliability is investigated using the com-
bination of the FORM and interval analysis.

2 Random interval arithmetic

Let X(R) be the set of all real random variables on a probability space (Ω,A,P), xR

is a random variable of X(R). R denotes the set of all real numbers. µx (or x̄) and
σx are the mean (deterministic) value and standard deviation of xR, respectively.
yI = [y,y] =

{
t, y≤ t ≤ y

∣∣y,y ∈ R
}

is an interval variable of I(R) which denotes
the set of all the closed real intervals. y and y are the lower and upper bounds of
interval variable yI , respectively. Interval variable yIcan also be written as

yI = yc +∆yI; ∆yI = [−∆y,+∆y]; yc =
y+ y

2
; ∆y =

y− y

2
(1)
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where yc, ∆y and ∆yI are the midpoint (deterministic) value, maximum width and
uncertain interval of yI , respectively.

A real number α is equivalent to an interval [α,α]. Such an interval is said to be
degenerate [Hansen (1992)]. If we apply this concept to a random variable, xR can
be expressed as an interval

[
xR,xR

]
, which is a degenerate random interval. The real

number α can also be considered as a degenerate random variable, its mean value
equals to α and its variance and standard deviation are equal to zero. Therefore,
interval variable yI = [y,y] can also be considered as a degenerate random interval.
Let+,−,∗and ÷denote the basic operations of addition, subtraction, multiplication
and division, respectively. By extending known interval arithmetic manipulations
[Hansen (1992)], we define the corresponding operations between the random vari-
able xR =

[
xR,xR

]
and interval variable yI = [y,y] as

xR + yI = yI + xR = [xR + y,xR + y] (2)

xR− yI = [xR− y,xR− y] (3)

yI− xR = [y− xR,y− xR] (4)

xR · yI = yI · xR = [xR · y,xR · y] (5)

xR÷ yI = xR · 1
yI = xR ·

[
1
y
,
1
y

]
=

[
xR

y
,
xR

y

] (
0 /∈ yI,

1
y
≤ 1

y

)
(6)

yI÷ xR = [y,y] · 1
xR =

[
y

xR ,
y
xR

]
(0 /∈ xR) (7)

If 0 ∈ yI , the lower and upper bounds of yI can be restricted to finite values such as
y ≤ 0 ≤ y and y < y. Following to the interval arithmetic rules given in reference
[Hansen (1992)], the corresponding expressions for xR÷ yIcan also be easily de-
veloped. In Eq.(6), 1

y ≤
1
y is assumed and the expressions can be easily derived for

other cases.

If both of xR and yI are random variables or interval variables, the random interval
arithmetic given above is also applicable. Eqs. (2) to (7) then become simple
operations for random variables and interval arithmetic for interval variables. Let
◦ denotes any one of the basic operations, that is, ◦ ∈ {+,−,∗,÷}. We consider
zRI = xR ◦ yIor zRI = yI ◦ xR as a random interval variable because the uncertainty
of zRI consists of probabilistic and interval information introduced by the random
variable xR and interval variable yI simultaneously. A method for calculating the
mean value and variance of a random interval variable is presented in section 3 as
the numerical characteristics of random variables are useful in most of engineering
applications.
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3 Random interval moment method

Here, we propose an approach called “random interval moment method” to calcu-
late the mean value and variance of a general random interval variable. Without
loss of generality, random interval variable ZRI is the function of multiple ran-
dom and interval variables, which are respectively represented by random vector
~XR = (xR

1 ,xR
2 , · · · ,xR

n ) and interval vector ~Y I = (yI
1,y

I
2, · · · ,yI

m). The deterministic

values of ~XR and~Y I are ~̄X = (x̄1, x̄2, · · · , x̄n) and~Y c = (yc
1,y

c
2, · · · ,yc

m), respectively.

The Taylor series to the first-order of the random interval variable ZRI = f (~XR,~Y I)
about (~̄X ,~Y c) is expressed as

ZRI1 = f (~XR,~Y I) = f (~̄X ,~Y I)+
n

∑
i=1

{
∂ f

∂xR
i

∣∣∣∣
~̄X ,~Y I

}
· (xR

i − x̄i)+R

= f (~̄X ,~Y c)+
m

∑
j=1

 ∂ f

∂yI
j

∣∣∣∣∣
~̄X ,~Y c

 ·∆yI
j

+
n

∑
i=1

 ∂ f

∂xR
i

∣∣∣∣
~̄X ,~Y c

+
m

∑
j=1

 ∂ 2 f

∂xR
i ∂yI

j

∣∣∣∣∣
~̄X ,~Y c

 ·∆yI
j

 · (xR
i − x̄i)+R

(8)

where R is the remainder term.

From Eq.(8), the mean value and variance of random interval variable ZRI1 based
on the first-order Taylor expansion can be obtained as

µZRI1 = E(ZRI1) = f (~̄X ,~Y c)+
m

∑
j=1

 ∂ f

∂yI
j

∣∣∣∣∣
~̄X ,~Y c

∆yI
j (9)

σ
2
ZRI1 =E

(
ZRI1−E(ZRI1)

) 2
=

n

∑
i=1

n

∑
k=1

 ∂ f

∂xR
i

∣∣∣∣
~̄X ,~Y c

+
m

∑
j=1

 ∂ 2 f

∂xR
i ∂yI

j

∣∣∣∣∣
~̄X ,~Y c

∆yI
j

 ∂ f

∂xR
k

∣∣∣∣
~̄X ,~Y c

+
m

∑
j=1

 ∂ 2 f

∂xR
k ∂yI

j

∣∣∣∣∣
~̄X ,~Y c

∆yI
j

Cov(xR
i ,xR

k )

(10)

where µ(•) and σ2
(•) are the mean value and variance of variable (•), respectively.

E(•) is the expectation operator.

The Taylor series to the second-order of the random interval variable ZRI about
(~̄X ,~Y c) and its mean value and variance are given in Appendix A.
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4 Random interval response using random interval perturbation method

The finite element equilibrium equations of a structural system in displacement
format is

[K] {U} = { f} (11)

where [K] is the global stiffness matrix, {U} is the unknown displacement vector
and { f} is the load vector.

Let random vector~aR = (aR
1 ,aR

2 , · · · ,aR
n ) represent all random variables of the struc-

tural system whereas ~bI = (bI
1,b

I
2, · · · ,bI

m) represent all interval variables. The
structural stiffness matrix [K] and load vector { f} are functions of ~aR and~bI . Ob-
viously structural displacement vector {U} is also functions of ~aR and~bI . Thus,
the static equilibrium Eq.(11) can be written as[
K(~aR,~bI)

] {
U(~aR,~bI)

}
=
{

f (~aR,~bI)
}

(12)

Using the Taylor expansion, the structural stiffness matrix and load vector can be
expressed as

[
K(~aR,~bI)

]
=
[
K(~̄a,~bc)

]
+

m

∑
j=1

∂

[
K(~̄a,~bc)

]
∂bI

j
∆bI

j

+
n

∑
i=1

∂

[
K(~̄a,~bc)

]
∂aR

i
+

m

∑
j=1

∂ 2
[
K(~̄a,~bc)

]
∂aR

i ∂bI
j

∆bI
j

(aR
i − āi

)

+
1
2

n

∑
i=1

n

∑
l=1

∂ 2
[
K(~̄a,~bc)

]
∂aR

i ∂aR
l

+
m

∑
j=1

∂ 3
[
K(~̄a,~bc)

]
∂aR

i ∂aR
l ∂bI

j
∆bI

j


(aR

i − āi)(aR
l − āl)+R

(13)

{
f (~aR,~bI)

}
=
{

f (~̄a,~bc)
}

+
m

∑
j=1

∂

{
f (~̄a,~bc)

}
∂bI

j
∆bI

j

+
n

∑
i=1

∂

{
f (~̄a,~bc)

}
∂aR

i
+

m

∑
j=1

∂ 2
{

f (~̄a,~bc)
}

∂aR
i ∂bI

j
∆bI

j

(aR
i − āi

)

+
1
2

n

∑
i=1

n

∑
l=1

∂ 2
{

f (~̄a,~bc)
}

∂aR
i ∂aR

l

+
m

∑
j=1

∂ 3
{

f (~̄a,~bc)
}

∂aR
i ∂aR

l ∂bI
j

∆bI
j


(aR

i − āi)(aR
l − āl)+R

(14)
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where ~̄a = (ā1, ā2, · · · , ān) and~bc = (bc
1,b

c
2, · · · ,bc

m).
Neglecting the remainder term, the random interval matrix can be rewritten as[
K(~aR,~bI)

]
=
[
K(~̄a,~bc)

]
+∆1

[
K(~aR,~bI)

]
+∆2

[
K(~aR,~bI)

]
= Kd +∆1K +∆2K

(15)

where

∆1K =
m

∑
j=1

∂

[
K(~̄a,~bc)

]
∂bI

j
∆bI

j +
n

∑
i=1

∂

[
K(~̄a,~bc)

]
∂aR

i
+

m

∑
j=1

∂ 2
[
K(~̄a,~bc)

]
∂aR

i ∂bI
j

∆bI
j

(aR
i − āi

)
=

m

∑
j=1

K′bI
j
∆bI

j +
n

∑
i=1

{
K′aR

i
+

m

∑
j=1

K′′aR
i bI

j
∆bI

j

}(
aR

i − āi
)

(16)

∆2K =
1
2

n

∑
i=1

n

∑
l=1

∂ 2
[
K(~̄a,~bc)

]
∂aR

i ∂aR
l

+
m

∑
j=1

∂ 3
[
K(~̄a,~bc)

]
∂aR

i ∂aR
l ∂bI

j
∆bI

j

(aR
i − āi)(aR

l − āl)

=
1
2

n

∑
i=1

n

∑
l=1

{
K′′aR

i aR
l
+

m

∑
j=1

K′′′aR
i aR

l bI
j
∆bI

j

}
(aR

i − āi)(aR
l − āl) (17)

Similarly the load vector can also be expressed as{
f (~aR,~bI)

}
=
{

f (~̄a,~bc)
}

+∆1

{
f (~aR,~bI)

}
+∆2

{
f (~aR,~bI)

}
= fd +∆1 f +∆2 f

(18)

where

∆1

{
f (~aR,~bI)

}
=

m

∑
j=1

∂

{
f (~̄a,~bc)

}
∂bI

j
∆bI

j

+
n

∑
i=1

∂

{
f (~̄a,~bc)

}
∂aR

i
+

m

∑
j=1

∂ 2
{

f (~̄a,~bc)
}

∂aR
i ∂bI

j
∆bI

j

(aR
i − āi

)
=

m

∑
j=1

f ′bI
j
∆bI

j +
n

∑
i=1

{
f ′aR

i
+

m

∑
j=1

f ′′aR
i bI

j
∆bI

j

}(
aR

i − āi
)

(19)
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∆2 f =
1
2

n

∑
i=1

n

∑
l=1

∂ 2
{

f (~̄a,~bc)
}

∂aR
i ∂aR

l

+
m

∑
j=1

∂ 3
{

f (~̄a,~bc)
}

∂aR
i ∂aR

l ∂bI
j

∆bI
j

(aR
i − āi)(aR

l − āl)

=
1
2

n

∑
i=1

n

∑
l=1

{
f ′′aR

i aR
l
+

m

∑
j=1

f ′′′aR
i aR

l bI
j
∆bI

j

}
(aR

i − āi)(aR
l − āl) (20)

Using the perturbation theory, we can get the following governing equation for
static displacement response of the structure

(Kd +∆1K +∆2K) (Ud +∆1U +∆2U) = fd +∆1 f +∆2 f (21)

where

Ud = K−1
d fd (22)

∆1U =K−1
d (∆1 f −∆1KUd)

=K−1
d

(
∆1 f −∆1KK−1

d fd
) (23)

∆2U =K−1
d (∆2 f −∆1K∆1U−∆2KUd)

=K−1
d

(
∆2 f −∆1KK−1

d

(
∆1 f −∆1KK−1

d fd
)
−∆2KK−1

d fd
) (24)

The random interval structural displacement based on the first-order perturbation
can be obtained as

URI1 = Ud +∆1U (25)

Substituting Eqs.(16), (19), (22) and (23) into Eq.(25) yields

URI1 = K−1
d fd +K−1

d

{
m

∑
j=1

f ′bI
j
∆bI

j +
n

∑
i=1

{
f ′aR

i
+

m

∑
j=1

f ′′aR
i bI

j
∆bI

j

}(
aR

i − āi
)

−

{
m

∑
j=1

K′bI
j
∆bI

j +
n

∑
i=1

{
K′aR

i
+

m

∑
j=1

K′′aR
i bI

j
∆bI

j

}(
aR

i − āi
)}

K−1
d fd

}

= K−1
d fd +K−1

d

(
m

∑
j=1

f ′bI
j
∆bI

j−
m

∑
j=1

K′bI
j
∆bI

jK
−1
d fd

)

+
n

∑
i=1

{
K−1

d

{
f ′aR

i
+

m

∑
j=1

f ′′aR
i bI

j
∆bI

j

}
−K−1

d

{
K′aR

i
+

m

∑
j=1

K′′aR
i bI

j
∆bI

j

}
K−1

d fd

}(
aR

i − āi
)

(26)
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Using the random interval moment method, the mean value and variance of the
random interval structural displacements based on the first-order perturbation can
be obtained as

µURI1 = K−1
d fd +K−1

d

(
m

∑
j=1

f ′bI
j
∆bI

j−
m

∑
j=1

K′bI
j
∆bI

jK
−1
d fd

)
(27)

σ
2
URI1 =

n

∑
i=1

{
K−1

d

{
f ′aR

i
+

m

∑
j=1

f ′′aR
i bI

j
∆bI

j

}
−K−1

d

{
K′aR

i
+

m

∑
j=1

K′′aR
i bI

j
∆bI

j

}
K−1

d fd

}2

σ
2
aR

i

+
n

∑
i(6=k)=1

n

∑
k(6=i)=1

{
K−1

d

{
f ′aR

i
+

m

∑
j=1

f ′′aR
i bI

j
∆bI

j

}
−K−1

d

{
K′aR

i
+

m

∑
j=1

K′′aR
i bI

j
∆bI

j

}
K−1

d fd

}

·

{
K−1

d

{
f ′aR

k
+

m

∑
j=1

f ′′aR
k bI

j
∆bI

j

}
−K−1

d

{
K′aR

k
+

m

∑
j=1

K′′aR
k bI

j
∆bI

j

}
K−1

d fd

}
Cov(aR

i ,aR
k )

(28)

The random interval structural displacement based on the second-order perturba-
tion URI2 and its mean value and variance are given in Appendix B.

For analysis of structures with uncertainty, the first and second-order moments
(mean value, variance and covariance) of the random system parameters are much
more important than higher-order statistics. Furthermore, in most of engineering
problems, only the first and second-order moments of responses are of interest. In
this paper, only the mean value and variance (or standard deviation) of random
interval structural responses are investigated.

The lower and upper bounds of the mean value and variance of the displacements
can be computed by using optimization methods. For example, the lower and upper
bounds of the mean value of the displacements based on the first-order perturbation
can be expressed in the following optimization form

µURI1 = min

{
K−1

d fd +K−1
d

(
m

∑
j=1

f ′bI
j
∆bI

j−
m

∑
j=1

K′bI
j
∆bI

jK
−1
d fd

)}
(29)

µURI1 = max

{
K−1

d fd +K−1
d

(
m

∑
j=1

f ′bI
j
∆bI

j−
m

∑
j=1

K′bI
j
∆bI

jK
−1
d fd

)}
(30)

Using the relationship between the node displacement and element stress, the stress

response of the ith element in the truss structure
{

σi(~aR,~bI)
}

can be expressed as{
σi(~aR,~bI)

}
=
[
D(~aR,~bI)

]{
Ui(~aR,~bI)

}
(31)
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where
{

Ui(~aR,~bI)
}

is the displacement of the nodal points of the ith element and[
D(~aR,~bI)

]
is the elastic matrix.

The mean value and variance of the random interval stress response can be obtained
using the random interval moment method after the random interval displacements
are obtained. To demonstrate how to calculate the numerical characteristic of the
random interval stress response, the mathematical expressions for statistical date of
structural static stress are developed using the firs-order perturbation displacements

only. The Taylor series of the random interval matrix
[
D(~aR,~bI)

]
can be expressed

as

[
D(~aR,~bI)

]
=
[
D(~̄aR,~bc)

]
+

m

∑
j=1

∂

[
D(~̄a,~bc)

]
∂bI

j
∆bI

j

+
n

∑
i=1

∂

[
D(~̄a,~bc)

]
∂aR

i
+

m

∑
j=1

∂ 2
[
D(~̄a,~bc)

]
∂aR

i ∂bI
j

∆bI
j

(aR
i − āi

)
+R

= Dd +
m

∑
j=1

D′bI
j
∆bI

j +
n

∑
i=1

{
D′aR

i
+

m

∑
j=1

D′′aR
i bI

j
∆bI

j

}(
aR

i − āi
)
+R (32)

Substituting Eqs.(27) and (32) into Eq.(31) and neglecting the higher order terms,
we have

σ
RI1 =

(
Dd +

m

∑
j=1

D′bI
j
∆bI

j

)
K−1

d

(
fd +

m

∑
j=1

f ′bI
j
∆bI

j−
m

∑
j=1

K′bI
j
∆bI

jK
−1
d fd

)

+
n

∑
i=1

{(
Dd +

m

∑
j=1

D′bI
j
∆bI

j

)

·

{
K−1

d

{
f ′aR

i
+

m

∑
j=1

f ′′aR
i bI

j
∆bI

j

}
−K−1

d

{
K′aR

i
+

m

∑
j=1

K′′aR
i bI

j
∆bI

j

}
K−1

d fd

}

+

{
D′aR

i
+

m

∑
j=1

D′′aR
i bI

j
∆bI

j

}
K−1

d

(
fd +

m

∑
j=1

f ′bI
j
∆bI

j−
m

∑
j=1

K′bI
j
∆bI

jK
−1
d fd

)}(
aR

i − āi
)

(33)

The mean value and variance of σRI1 are obtained as

µσRI1 =

(
Dd +

m

∑
j=1

D′bI
j
∆bI

j

)
K−1

d

(
fd +

m

∑
j=1

f ′bI
j
∆bI

j−
m

∑
j=1

K′bI
j
∆bI

jK
−1
d fd

)
(34)
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σ
2
σRI1 =

n

∑
i=1

C(aR
i ,∆~bI)2

σ
2
aR

i
+

n

∑
i(6=k)=1

n

∑
k(6=i)=1

C(aR
i ,∆~bI)C(aR

k ,∆~bI)Cov(aR
i ,aR

k ) (35)

Where

C(aR
i ,∆~bI) =

(
Dd +

m

∑
j=1

D′bI
j
∆bI

j

)

·

{
K−1

d

{
f ′aR

i
+

m

∑
j=1

f ′′aR
i bI

j
∆bI
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i bI

j
∆bI

j

}
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d fd

}

+

{
D′aR

i
+
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∑
j=1

D′′aR
i bI

j
∆bI
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}
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d

(
fd +

m

∑
j=1

f ′bI
j
∆bI

j−
m

∑
j=1

K′bI
j
∆bI

jK
−1
d fd

)
(36)

Furthermore, the lower and upper bounds of µσRI1 are computed by

µσRI1 = min

{(
Dd +

m

∑
j=1

D′bI
j
∆bI

j

)
K−1

d

(
fd +

m

∑
j=1

f ′bI
j
∆bI

j−
m

∑
j=1

K′bI
j
∆bI

jK
−1
d fd

)}
(37)

µσRI1 = max

{(
Dd +
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∑
j=1

D′bI
j
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)
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d

(
fd +

m

∑
j=1

f ′bI
j
∆bI

j−
m

∑
j=1

K′bI
j
∆bI

jK
−1
d fd

)}
(38)

The lower and upper bounds of the standard deviation of the stress response are
given by

σσRI1 = min

{{
n

∑
i=1

C(aR
i ,∆~bI)2

σ
2
aR

i

+
n

∑
i(6=k)=1

n

∑
k(6=i)=1

C(aR
i ,∆~bI)C(aR

k ,∆~bI)Cov(aR
i ,aR

k )

}1/2
 (39)
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2
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+
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∑
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∑
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i ,∆~bI)C(aR

k ,∆~bI)Cov(aR
i ,aR

k )

}1/2
 (40)
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5 Probabilistic interval reliability

Structural reliability analysis is to estimate the probability of exceeding the struc-
tural limit states imposed on structural components. The structural reliability prob-
lem is defined by the integral

Pf =
∫

g(X)≤0
fX(X)dX (41)

where Pf is the probability of failure, X is the vector of random variables, fX(X) is
the joint probability density function, and g(X) is the limit state function such that
g(X)≤ 0 defines the failure domain.

The integration of Eq.(41) is highly complex since it involves multiple integrals in
addition to the joint probability density functions of the random variables. There
is rarely a closed-form expression to Eq.(41). The first-order reliability method is
widely used to evaluate the integral in Eq.(41). This method can be divided into
three steps to approximate the probability integral [Guo and Du (2009)]: (1) trans-
forming orginal random variables X into standard normal random variables, (2)
searching for the most probable point of failure, and (3) calculating the probability
of failure.

5.1 Reliability analysis of elements/components

The limit state function of the ith element of a structure is defined as

gi(W ) = Ri−σi (42)

where Ri and σi are the resistance (strength) and stress response of the ith element.
Using the first-order reliability method, the element (component) reliability can be
expressed as

Pfi = φ(−βi) (43)

where φ is the standard normal cumulative distribution function. βi is the reliability
index and can be calculated by

βi =
µRi−µσi√
σ2

Ri
+σ2

σi

(44)

where µRi and µσi are the mean values of Ri and σi, σRi and σσi are standard devi-
ations of Ri and σi, respectively.

The reliability index of the ith element βi is an interval variable because the struc-
tural stress response σi is a random interval variable and µσi and σσi are interval
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variables, even if µRi and σRi and deterministic values. Let us assume that µRi and
σRi are also interval variables, the lower and upper bounds of the interval reliability
index β I

i can be obtained as

βi =
µRi−µσi√

(σRi)2 +(σσi)2
(45)

βi =
µRi−µσi√

(σRi)2 +(σσi)2
(46)

The upper and lower bounds of the failure probability can be computed by

Pfi = φ(−βi) = φ(−
µRi−µσi√

(σRi)2 +(σσi)2
) = 1−φ(

µRi−µσi√
(σRi)2 +(σσi)2

) (47)

Pfi = φ(−βi) = φ(−
µRi−µσi√

(σRi)2 +(σσi)2
) = 1−φ(

µRi−µσi√
(σRi)2 +(σσi)2

) (48)

The midpoint and maximum width of the failure probability can be easily obtained
as

Pc
fi

=
Pfi +Pfi

2
, ∆Pfi =

Pfi−Pfi

2
(49)

As Pri = 1−Pfidenote the reliability (probability of survival) of the ith element, the
lower bound (worst possible value) and upper bound (best possible value) of the
reliability can be expressed as

Pri = 1−Pfi = φ(βi) = φ(
µRi−µσi√

(σRi)2 +(σσi)2
) (50)

Pri = 1−Pfi = φ(βi) = φ(
µRi−µσi√

(σRi)2 +(σσi)2
) (51)

The midpoint and maximum width of the reliability are

Pc
ri

=
Pri +Pri

2
, ∆Pri =

Pri−Pri

2
(52)
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5.2 Reliability analysis of structures

Suppose that there are ne elements in the structure under consideration. If the
structure is considered as a series system, the reliability of this structure is

Pr = 1−Pf =
ne

∏
i=1

(1−Pfi) =
ne

∏
i=1

Pri (53)

The lower and upper bound of the structural reliability (series system) can be ex-
pressed as

Pr =
ne

∏
i=1

Pri , Pr =
ne

∏
i=1

Pri (54)

If the structure is considered as a parallel system, the reliability of this structure is
given by

Pr = 1−Pf = 1−
ne

∏
i=1

(1−Pri) (55)

The lower and upper bound of the structural reliability (parallel system) can be
expressed as

Pr = 1−
ne

∏
i=1

(1−Pri), Pr = 1−
ne

∏
i=1

(1−Pri) (56)

The midpoint and maximum width of the structural reliability are

Pc
r =

Pr +Pr

2
, ∆Pr =

Pr−Pr

2
(57)

It should be noted that most engineering structures are hybrid parallel and series
systems. Thus, all failure modes of a structure should be identified before calculat-
ing the system reliability.

6 Illustrative examples

6.1 Tension of a bar

Consider a simple example of a fixed-free bar with Young’s modulus E, cross-
sectional area A, length L and subjected to a tension force F at the free end. The
static finite element equation is reduced as the following simple linear equation

[K]{U}=
EA
L

U = F (58)
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where U is the extension at the forced edge.

Let us now assume that cross-sectional area is an interval variable AI = [A,A] =
Ac + ∆AI . Young’s modulus, length and applied force are considered as normal
random variables and are independent of each other. The extension of the bar is
now a random interval variable.

ERAI

LR URI = FR (59)

The computational expressions for the mean value and variance of random interval
extension URI based on the first- and second-order random interval perturbation
method are given in Appendix C.

In this example, the values of interval and random variables are taken as µE =
7.0× 1010N/m2, σE = 1.4× 109N/m2; Ac = 5.0× 10−5m2, ∆A = 1.0× 10−6m2;
µL = 1.5× 103mm, σL = 30mm; and µF = 3kN, σF = 60N, respectively. The
computational results of the mean value and variance of the random interval ex-
tension obtained by the fist-order random interval perturbation method (FRI) and
second-order random interval perturbation method (SRI), and the combination of
the algebra synthesis method and interval operations (ASM, see Appendices C and
D) are given in Table 1. In order to investigate the accuracy of the random interval
perturbation method, the relative error (RE) between the results (RE1=

∣∣FRI−ASM
ASM

∣∣
and RE2=

∣∣SRI−ASM
ASM

∣∣) are also given in this table.

In general, computational results obtained by the FRI and SRI are in good agree-
ment with those computed by the ASM. The results calculated by the SRI are closer
to those computed by ASM, which indicates that the accuracy of the second-order
random interval perturbation method is higher. However, the second-order random
interval perturbation method requires more computational work.

Table 1: Expectation and variance of bar’s extension

FRI SRI ASM RE1 RE2
Lower bound of expecta-
tion (mm)

1.2599 1.2610 1.2610 0.087% 0.003%

Upper bound of expecta-
tion (mm)

1.3114 1.3124 1.3124 0.076% 0.005%

Lower bound of variance
(10−4 mm2)

19.3126 19.0861 19.0761 1.239% 0.005%

Upper bound of variance
(10−4 mm2)

20.3705 20.6592 20.6652 1.426% 0.002%
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6.2 Static response of a frame

To demonstrate the efficiency of the approach presented in this paper for static anal-
ysis of complex structures, a planar frame shown in Figure 1 is used as an example.
Suppose that there are no preload stresses in all elements. The deterministic values
of structural parameters for all members are Young’s modulus E = 2.1×1011N/m2

and second moment of area J = 8.0× 10−4m4. A load acts on the node 18 along
the negative Y-direction with the deterministic value f = 5×104(N).
Consider that the Young’s modulus are interval variables, second moment of areas
and load are random variables. The values of structural parameters and load are
taken as E I = [2.05, 2.16]×1011N/m2, σJ = 3.2×10−5m4, σF = 500N. The com-
putational results of the mean value and standard deviation of the random interval
displacement of node 10 in Y-direction are given in Table 2. The mean value and
standard deviation of the stress response of element 9 are given in Table 3. In the
following, the first-order random interval perturbation method (FRI) is employed
to calculate the structural responses. To investigate the accuracy of the FRI, results
obtained by using a hybrid simulation method (HSM) are also given in Tables 2
and 3. The hybrid simulation method is the combination of direct simulations for
an interval variable and Monte-Carlo simulations for random variables. In each of
hybrid simulations, a value within the interval of the Young’s modulus is selected.
The mean and standard deviation of the structural responses can then be obtained
by using 10000 Monte-Carlo simulations considering the randomness of the sec-
ond moment of areas and load. Changing the value of the Young’s modulus from
its lower bound to upper bound with a very small increment (0.0001×1011N/m2),
large numbers of mean values and standard deviations of structural responses can
be obtained. The lower and upper bounds of the mean value and standard deviation
of structural responses are identified.

Table 2: Random interval displacement of node 10 in Y-direction

FRI HSM Relative error
Lower bound of mean
value (mm)

1.7429 1.7438 0.0516%

Upper bound of mean value
(mm)

1.8278 1.8289 0.0601%

Lower bound of standard
deviation (×10−2mm)

7.1966 7.1902 0.0890%

Upper bound of standard
deviation (×10−2mm)

7.5264 7.5408 0.191%
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Table 3: Random interval stress of element 9
FRI HSM Relative error

Lower bound of mean value (MPa) 59.5270 59.5945 0.113%
Upper bound of mean value (MPa) 65.4737 65.5479 0.113%

Lower bound of standard deviation (MPa) 2.4616 2.4571 0.183%
Upper bound of standard deviation (MPa) 2.6924 2.7026 0.377%

From Tables 2 and 3, it can be observed that the results computed by the FRI are
also in good agreement with the hybrid simulation results. The accuracy of the
structural responses obtained by the FRI is acceptable although this method cannot
give conservative results as the higher terms are neglected.
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Figure 1: 28-beam structure (unit: mm).

Here, we introduce the coefficient of variation νxRfor random variable xR and the
interval change ratio ∆yF for interval variable yI as follows

νxR =
σxR

x̄
, ∆yF =

∆y
yc (60)

The dispersal degree of a random variable or an interval variable can be better
reflected by the coefficient of variation or interval change ratio.

To investigate the differences between the effects of random and interval variables
on structural responses, the values of coefficient of variation of random variables
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and interval change ratio of interval variables are varied from zero to 0.2. If DD
denotes the dispersal degree of uncertain variables, then its value will vary from
zero to 0.2. The lower and upper bounds on the mean value and standard deviation
of the random interval displacement of node 14 in Y-direction are given in Figures
2 and 3, respectively.

Figures 2(b) and (c) show that the random variables do not affect the mean value of
the random interval structural response. In other words, the mean value of structural
response is not an interval but a deterministic value if structural parameters and
loads are random variables. However, the mean value of structural response is an
interval if the structural has interval parameters or loads as shown in Figures 2(a)
and (d). The interval width of structural response depends on the dispersal degree
of the interval parameter.

Figure 3(a) shows that the standard deviation (or variance) of structural response is
zero if the structure has only interval variables. Structural response is an interval
variable (not a random interval variable) if all structural parameters and loads are
interval variables. The standard deviation of structural response is also a determin-
istic value (number) not an interval variable if structural parameters and loads are
random variables, and its values depend on the randomness of random structural
parameters/loads as shown in Figs. 3(b) and 3(c). The standard deviation of struc-
tural response will be a random interval variable if the structural have a mixture of
random and interval parameters/loads, and its interval width is dependent on both
the dispersal degrees of random and interval variables as shown in Fig. 3(d).

6.3 Static response of a truss structure

In this example, the Young’s modulus of all elements of the truss structure shown
in Figure 4 and the load P are considered as a random variable and an interval vari-
able, respectively. The cross-sectional area and length of all elements are determin-
istic values andA = 8.0×10−5m2. The values of interval and random variables are
taken as µE = 2.0×1011N/m2, σE = 0.5×1010N/m2; and Pc = 10kN,∆P = 300N,
respectively. The second-order random interval perturbation method (SRI) is em-
ployed to calculate the structural responses. The lower bound, midpoint, upper
bound and interval change ratio of the mean value and standard deviation of the
random interval displacement of node 12 in Y-direction are given in Table 4. The
results obtained by using the hybrid simulation method (HSM) are also given in
this Table.

Table 4 shows that the results calculated by the SRI are very close to the hybrid
simulation results. The accuracy of the structural responses obtained by the SRI
is quite good. In engineering applications, the SRI could be used to predict the
structural random interval responses for important structures although this method
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Figure 2: Mean value of displacement of node 14 in Y-direction (unit: mm).

requires more computational effort.

6.4 Reliability of a cantilever truss structure

Consider a 14 bar 2D statically determinate truss structure as shown in Fig. 5. The
Young’s modulus and cross-sectional areas for all elements are same. Their de-
terministic values are E = 2.1× 1011N/m2 and A = 6.0× 10−4m4. A load acts
on the node 9 along the negative Y-direction with the deterministic value f =
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Figure 3: Standard deviation of displacement of node 14 in Y-direction (unit: mm).

2.4× 104(N). Young’s modulus are interval variables. Cross-sectional areas and
load are considered as random variables. The mean value and standard devia-
tion of resistance (strength) Ri are given in Table 5. The first-order random in-
terval perturbation method are employed to calculate the random interval structural
displacement and stress responses. The coefficient of variation for random vari-
ables and interval factor for interval variables are all taken as 0.05 and 0.1, that
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Figure 4: 20-bar planar structure (unit: mm)

Table 4: Random interval displacement of node 12 in Y-direction

SRI HSM Relative error
Lower bound of mean value (mm) 6.2142 6.2141 0.0018%
Upper bound of mean value (mm) 6.5982 6.5984 0.0026%

Midpoint of mean value (mm) 6.4062 6.4062 3.1450e-6
Interval change ratio of mean value 0.0300 0.0300 0.0009%

Lower bound of standard deviation (mm) 0.1516 0.1516 0.0028%
Upper bound of standard deviation (mm) 0.1609 0.1609 0.0019%

Midpoint of standard deviation (mm) 0.1562 0.1563 3.8006e-6
Interval change ratio of standard deviation 0.0297 0.0298 0.0008%

is DD = ∆µR1 F = ∆σR1 F = ∆EF = νA = ν f =0.05 and DD = ∆µR1 F = ∆σR1 F =
∆EF = νA = ν f =0.1, respectively. The corresponding lower and upper bounds of
the reliability index βi, failure probability Pfi and reliability Pri of all elements are
given in Tables 6 and 7, respectively.

It can be seen that the lower bounds of reliability index, failure probability and
reliability of an element in Table 6 are bigger than those of this element in Table
7, whereas the upper bounds are smaller. This denotes that the smaller dispersal
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degree of random and interval structural parameters, load and resistance produce
smaller intervals of reliability index, failure probability and reliability of structural
elements. The midpoint of the reliability of a structural element is not a determin-
istic value when a structural system has both random and interval variables.

Table 5: Values of mean and standard deviation of resistance (unit: MPa)

Element (i) 1 2,4,6,810-14 3,7 5,9
µc

Ri
330 100 260 180

σ c
Ri

50 20 40 30
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Figure 5: 14-bar cantilever truss structure (unit: mm)

The reliability of element 1 are shown in Figs. 6(a) to 6(h) while the dispersal
degree of structural parameters, load and resistance are varied from zero to 0.1. The
reliability is not an interval variable when a structural system has random variables
as shown in Figs. 6(d) and 6(e). From Figs. 6(a) to 6(c), it can be observed that
the change of the Young’s modulus will produce greatest effect on the reliability
of element 1. Figs. 6(a), 6(b) and 6(f) show that the structural reliability is an
interval even if only resistance is an interval and structural parameters and load are
deterministic values. Fig. 6(h) shows that the maximum width of the reliability is
the biggest when the uncertainty of all structural parameters, load and resistance
are considered simultaneously.

Fig. 7 shows that the intervals of reliability index, failure reliability and reliability
of element 3 are all increasing as the dispersal degree of structural parameters, load
and resistance increase, as we expected. To decrease the change range of structural
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Figure 6: Reliability of element 1.
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Table 6: Computational results (DD = ∆µR1 F = ∆σR1 F = ∆EF = νA = ν f =0.05)

Element number βi βi Pfi Pfi Pri Pri Pc
ri

∆Pri

1 0.8818 2.5889 0.0048 0.1889 0.8111 0.9952 0.9031 0.0921
2 0.7207 2.0409 0.0206 0.2355 0.7645 0.9794 0.8719 0.1075
3 1.1013 2.7716 0.0028 0.1354 0.8646 0.9972 0.9309 0.0663
4 4.5238 5.5263 1.63e-8 3.03e-6 1.0000 1.0000 1.0000 1.51e-6
5 1.1820 2.7242 0.0032 0.1186 0.8814 0.9968 0.9391 0.0577
6 0.7207 2.0409 0.0206 0.2355 0.7645 0.9794 0.8719 0.1075
7 1.1013 2.7716 0.0028 0.1354 0.8646 0.9972 0.9309 0.0663
8 4.5238 5.5263 1.63e-8 3.03e-6 1.0000 1.0000 1.0000 1.51e-6
9 1.1820 2.7242 0.0032 0.1186 0.8814 0.9968 0.9391 0.0577
10 0.7207 2.0409 0.0206 0.2355 0.7645 0.9794 0.8719 0.1075
11 1.3438 2.6178 0.0044 0.0895 0.9105 0.9956 0.9530 0.0425
12 4.5238 5.5263 1.63e-8 3.03e-6 1.0000 1.0000 1.0000 1.51e-6
13 0.7207 2.0409 0.0206 0.2355 0.7645 0.9794 0.8719 0.1075
14 1.3438 2.6178 0.0044 0.0895 0.9105 0.9956 0.9530 0.0425

Table 7: Computational results (DD = ∆µR1 F = ∆σR1 F = ∆EF = νA = ν f =0.1)

Element number βi βi Pfi Pfi Pri Pri Pc
ri

∆Pri

1 0.0990 3.0891 0.0010 0.4606 0.5394 0.9990 0.7692 0.2298
2 0.1164 2.5528 0.0053 0.4537 0.5463 0.9947 0.7705 0.2242
3 0.3098 3.2750 5.28e-4 0.3784 0.6216 0.9995 0.8106 0.1889
4 4.0909 6.1111 4.94e-10 2.14e-5 1.0000 1.0000 1.0000 1.07e-5
5 0.4421 3.2407 5.96e-4 0.3292 0.6708 0.9994 0.8351 0.1643
6 0.1164 2.5528 0.0053 0.4537 0.5463 0.9947 0.7705 0.2242
7 0.3098 3.2750 5.28e-4 0.3784 0.6216 0.9995 0.8106 0.1889
8 4.0909 6.1111 4.94e-10 2.14e-5 1.0000 1.0000 1.0000 1.07e-5
9 0.4421 3.2407 5.96e-4 0.3292 0.6708 0.9994 0.8351 0.1643
10 0.1164 2.5528 0.0053 0.4537 0.5463 0.9947 0.7705 0.2242
11 0.7271 3.1349 8.59e-4 0.2336 0.7664 0.9991 0.8828 0.1164
12 4.0909 6.1111 4.94e-10 2.14e-5 1.0000 1.0000 1.0000 1.07e-5
13 0.1164 2.5528 0.0053 0.4537 0.5463 0.9947 0.7705 0.2242
14 0.7271 3.1349 8.59e-4 0.2336 0.7664 0.9991 0.8828 0.1164

reliability, the dispersal degree of system parameters and loads should be decreased
greatly.

The statically determinate truss structure shown in Fig. 5 can be considered as a
series system. The structural reliability is given in Table 8 when DD = ∆µR1 F =
∆σR1 F = ∆EF = νA = ν f = 0.05 and DD = ∆µR1 F = ∆σR1 F = ∆EF = νA = ν f = 0.1,
respectively. It can be seen that the lower bound of the structural reliability, that is
the worst possible value of structural reliability, is quite low as it is the product of
the lower bounds of the reliability of all structural elements. For a series system,
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Figure 7: Reliability index (a), failure probability (b) and reliability (c) of element
3. (DD = ALL = ∆µR1 F = ∆σR1 F = ∆EF = νA = ν f )

the reliability of all elements should be improved greatly if we want to improve the
structural reliability.

Table 8: Structural reliability

Pr Pr Pc
r ∆Pr

∆µR1 F = ∆σR1 F = ∆EF = νA = ν f = 0.05 0.1333 0.8968 0.5150 0.3817
∆µR1 F = ∆σR1 F = ∆EF = νA = ν f = 0.1 0.0049 0.9741 0.4895 0.4846

7 Conclusions

A probabilistic interval method is proposed in this paper for static analysis of
structures having both random and interval parameters/loads. The expressions
for calculating the mean value and standard deviation of random interval struc-
tural responses are developed. The accuracy of the random interval perturbation
method based on the first- and second- order perturbation technique is demon-
strated. The interval reliability of structures is investigated using the first-order
reliability method. The effects of random and interval parameters/loads on struc-
tural response are also studied. The expressions of reliability index, failure proba-
bility and reliability of structural elements, series and parallel structural systems are
given in terms of intervals. From the three examples, the accuracy of the methods
presented in this paper is illustrated.
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Appendix A Second-order random interval moment method

The Taylor series to the second-order of the random interval variable ZRI about
(~̄X ,~Y c) is developed as

ZRI2 = f (~̄X ,~Y I)+
n

∑
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The mean value and variance of random interval variable ZRI2 can be obtained

µZRI2 = E(ZRI2)
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Appendix B Second-order random interval perturbation method

The structural displacement based on the second-order perturbation is given by

URI2 = Ud +∆1U +∆2U (B1)



178 Copyright © 2009 Tech Science Press CMES, vol.46, no.2, pp.151-189, 2009

Substituting Eqs.(19), (20), (22), (23) to (27) into Eq.(B1) gives
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URI2 in Eq.(B2) can be simply expressed as
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Using the random interval moment method, the mean value and variance of URI2
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can be calculated by
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)

+
n

∑
i=1

n

∑
k=1

n

∑
l=1

n

∑
s=1

B(aR
i ,aR

k ,~bI)B(aR
l ,aR

s ,~bI)

·E
(
(aR

i − āi)(aR
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l − āl)(aR
s − ās)

)
−

n

∑
i=1

n

∑
l=1

(
B(aR

i ,aR
l ,~bI)Cov(aR

i ,aR
l )
)2

(B7)

Appendix C Random interval extension of a bar

From Eq.(58), using the first-order random interval perturbation method (FRI) pre-
sented in this paper , the mean value of URI1 can be obtained as

µURI1 =
µLµF

µEAc −
µL

µEAc

µE

µL
·∆AI · µLµF

µEAc =
µLµF

µEAc −
µLµF

(Ac)2µE
·∆AI (C1)

The lower and upper bounds on µURI1 are

µURI1 =
µLµF

µEAc −
µLµF

(Ac)2µE
·∆A (C2)

µURI1 =
µLµF
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µLµF
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The variance of URI1 is
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Then, the lower and upper bounds on σ2
URI1 are given by
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From Eq.(58), using the second-order random interval perturbation method (SRI)
presented in this paper , URI2 can be obtained as
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The mean value and variance of URI2 can be obtained as

µURI2 =
µLµF

µEAc −
µLµF

(Ac)2µE
·∆AI +

(
µL

µEAc

)2(
µE

µL

)2 (
∆AI)(∆AI) µLµF

µEAc

+ E2 ·σ2
E + L2 ·σ2

L (C16)

σ
2
URI2 = (E1)2

σ
2
E +(L1)2

σ
2
L +(F1)2

σ
2
F − (E2)2(σ2

E)2− (L2)2(σ2
L)2

−2 ·E2 ·L2 ·σ2
E ·σ2

L +2 ·E1 ·E2 ·σ3
E +2 ·L1 ·L2 ·σ3

L +(E2)2
σ

4
E +(L2)2

σ
4
L

(C17)

where σ3
(•) and σ4

(•) are the third-order and fourth-order moments of the random

variable (•), respectively. Note that σ4
(•) = 3(σ2

(•))
2 and σ3

(•) = 0 for normal random
variables, Eq.(C17) become as
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The lower and upper bound of the mean value and variance of URI2 can be com-
puted by

µURI2 = min{µURI2} , µURI2 = max{µURI2} (C19)

σ
2
URI2 = min

{
σ

2
URI2

}
, σ2

URI2 = max
{

σ
2
URI2

}
(C20)

The solution for the extension at the loaded end is also given by

URI =
LRFR

ERAI (C21)

From Eq.(C21) and using the algebra synthesis method (ASM) which can be found
in many books (also see Appendix D) and interval operations, the expectation and
variance of URI can be obtained as
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The lower and upper bounds for the expectation are
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The lower and upper bounds on the variance are
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Appendix D Algebra synthesis method

Suppose that X and Y are normal (Gaussian) random variables, the mean value
µZ and standard deviation σZof random variable Z = f (X ,Y ) are given in Table
A1. In this table, α and β are constant, µX and µY are the mean value of X and
Y respectively, σX and σY are the standard deviation of X and Y respectively, and
cXY is the correlation coefficient of X and Y . If X and Y are not normal random vari-
ables, they should be transformed as normal random variables equivalently before
use equations given in Table A1.
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