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Pricing Options with Stochastic Volatilities by the Local
Differential Quadrature Method

D. L. Young1,2, C. P. Sun1 and L. H. Shen1

Abstract: A local differential quadrature (LDQ) method to solve the option-
pricing models with stochastic volatilities is proposed. The present LDQ method
is a newly developed numerical method which preserves the advantage of high-
order numerical solution from the classic differential quadrature (DQ) method. The
scheme also overcomes the negative effect of the ill-condition for the resultant full
matrix and the sensitivity to the grid distribution. It offers a much better approach
for finding the optimal order of polynomial approximation when compared to the
conventional DQ method. The option-pricing problem under the stochastic volatil-
ities is an important financial engineering topic governed by the Black-Scholes
equation, a two-dimensional partial differential equation. For option-pricing prob-
lems, it would be helpful to improve the computational efficiency if we adopt the
non-uniform grids to reflect the high gradient areas. Besides the requirement of
non-uniform grids, a high-order solution is also easy to solve several important
parameters such as “delta” and “gamma” values in the option-pricing modeling.
Based on the advantages of the accuracy of the solution, the efficiency for non-
uniform grids, and the appropriation for the regular-domain computation (because
of its orthogonal grids), the LDQ method is proved to be very powerful to solve
option-pricing problems with the stochastic volatilities. This work will consider
two types of option-pricing problems under the stochastic volatilities, such as the
standard options and lookback options. For standard options, we will test the effects
of the final conditions, while for the lookback options we show the good capabil-
ity for evaluating the exotic options. The comparisons of the numerical results for
three case studies, namely the European standard call, the cash-or-nothing call and
the lookback put, all indicate that the LDQ method is a very effective, stable and
flexible numerical algorithm for solving the option-pricing models with stochastic
volatilities.
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1 Introduction

Over the past years, several researchers tried to numerically solve the option-pricing
problems. Based on the Black and Scholes equation (1973), the underlying-asset
value follows the diffusion process and the option value is governed by a second-
order single-variable parabolic partial differential equation (PDE). Traditional nu-
merical methods have successfully solved this one-dimensional PDE. For exam-
ple, Geske and Shastri (1985), Wu and Kwok (1997) developed a finite difference
method (FDM) for the American options valuation. Besides numerical solution of
the PDE, option price could also be numerically simulated by using the binomial
model (Cox et al. (1979), Barraquand and Pudet (1996), Hull and White (1987),
Babbs (1992) and Cheuk and Vorst (1994)) and also by the Monte-Carlo simu-
lation (Tilley (1992), Averbukh (1997) and Longstaff and Schwartz (2001)). In
recent years, the numerical solutions by using the meshfree or meshless methods
for the option-pricing problem were also discussed (Hon and Mao (1999), Koc et
al. (2003) and Tsai et al. (2006)). In our previous works (Sun and Young (2008)),
the numerical solutions for the Black and Scholes model under constant volatility
were also studied by the LDQ method.

The value of the volatility provides a crucial factor affecting the option price.
However, in the Black and Scholes model, the volatility of the underlying asset
is assumed to be a constant. Thus several approaches for the volatility estima-
tion have been suggested to improve the original Black and Scholes equation, such
as the jump-diffusion model (Merton (1976)), local volatility model (Coleman et
al. (1999)), the nonlinear uncertain volatility model (Avellaneda et al. (1995) and
Lyons (1995)) and the stochastic volatility model (Hull and White (1987), Heston
(1993) and Clarke and Parrott (1999)). In this study, we compute the option value
under the Heston’s stochastic volatility model (1993), which is the most popular
stochastic volatility model ever adopted in the literature. In the Heston’s model,
the volatility follows the Ornstein-Uhlenbeck process and the correlation between
asset return and volatility is allowed. However these improvements have forced this
one-dimensional governing equation into two dimensions. Thus the complexity for
numerical approaches would also be increased. Several mesh-dependent numerical
methods were proposed in the past decade for the option price in stochastic volatil-
ities models, such as the finite volume method (FVM) (Huang et al. (2006)), the
finite element method (FEM) (Forsyth et al. (1999)) and the FDM (Duffy (2006)).

In this paper, we will employ the LDQ method to solve the numerical solutions for
the stochastic volatility model established by Heston (1993). The LDQ method is
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improved from the global differential quadrature (DQ) method which is originated
by Bellman et al. (1972). Base on 1972 Bellman’s work, the numerical solution by
the DQ method has high accuracy with relatively fewer computational nodes than
traditional numerical methods. Thus the DQ method is widely applied in many en-
gineering applications, for example, the fluid-dynamics problems by Shu (1991 and
2000), and Shu and Richards (1990 and 1992), studies of micro-electro-mechanical
systems (MEMS) by Sadeghian et al. (2007) and vibration analysis by Shina et al.
(2008). However, the resultant full matrix may become easily ill-conditioned be-
cause of its large full matrix system. Furthermore, a high-order numerical approach
such as the DQ method may not always be stable in applications, in particular when
the initial value has discontinuity such as step function. Zong and Lam (2002) pro-
posed the concept of the LDQ method for amending these disadvantages, which
made the order of the DQ method adjustable and resulting matrix sparse, banded
and no longer full. Shen et al. (2009) further extended the LDQ research to the
applications in computational fluid dynamics and improvements for treating irreg-
ular geometric domains. Recently, the approximation of the weighting coefficients
in the LDQ method is also an essential topic, such as Shu et al. (2005), Ding et
al. (2006), Shan et al. (2008), and Ma and Qin (2008). This evolution increased
flexibility of the order of approximation function and made the LDQ method more
versatile and convenient to use. The localization of the DQ method also makes the
large full matrix into a banded one, and thus alleviates the ill-condition for such a
large linear algebraic system. For solving a banded matrix, the Bi-CG algorithm
is one of the most effective matrix solvers used. Note that there are also several
novel methods developed recently for solving the large systems of non-linear alge-
braic equations (Liu and Atluri (2008)) as well as ill-conditioned systems (Liu et
al. (2009)). Moreover, because of the high-order approximation, the LDQ method
also has the advantage in calculating the high-order derivatives, such as the vortic-
ity and shear stress in the hydrodynamics or the delta “∆” problem of the option
price in this study, which is one of the most important issues for option investors
and is referred to as the first-order derivative of option price with respect to stock
price.

For certain option-pricing problems, the non-uniform grids are in general more
efficient for the value at interesting position. For example, the adaptive mesh is
more sensitive to the valuation of barrier option (Figlewski and Gao (1999), Ahn
et al. (1999), and Zvan et al. (2000)); while Clarke and Parrott (1999) pointed out
that the option value is especially interested for the strike price when it is equal to
the underlying stock price. To the best of our knowledge, the FDM is still one of
the most popular numerical skills for the option-pricing modeling. However, the
mapping skills are also required if non-uniform grids are adopted. According to
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the structure of the weighting function, the LDQ method can provide a much better
capacity for solving the problem with non-uniform grids without additional efforts.
It will also increase the efficiency of the numerical procedure.

To effectively solve the option-pricing models we require a numerical method
which has to provide competitive conditions such as the advantages of the accu-
racy of the solution, the appropriation for the regular-domain computation, and the
efficiency for non-uniform grids. The LDQ method is considered to be the best
candidate among the various numerical schemes and therefore is adopted to solve
the option-pricing problems in this study. The structure of this paper is organized
as follows: Section 1 gives a general introduction to the numerical modeling of the
pricing options with stochastic volatilities. Section 2 introduces the option-pricing
models about the underlying asset with the stochastic volatilities. Section 3 demon-
strates the numerical discretization by the LDQ method. Section 4 addresses the
numerical experiments, and finally the capability and feasibility of the LDQ solu-
tions for the option-pricing problems is concluded in Section 5.

2 Formulation

Three pricing options are taken as the numerical experiments by the present LDQ
method. Case 1 is the European standard call; Case 2 the cash-or-nothing call and
Case 3 the lookback put. Before solving these three case studies, we shall first re-
view the stochastic volatility models, and then elaborated the governing equations,
final conditions and boundary conditions for these three options.

2.1 Stochastic volatility

Suppose a stochastic differential equation (SDE) describing X is considered by the
following form:

dX = A(X , t)dt +B(X , t)dW (1)

where A(X , t) is called the drift term, B(X , t) is the noise intensity term or volatility
function at time t, and dW is a Brownian motion or Wiener process. Assuming that
the spot asset follows the SDE:

dS(t) = µSdt +
√

ySdz1 (2)

where µ is the expected rate of return on asset price S , y is the variance and z1

is the Brownian motion. In this study, the underlying asset refers to stock and the
stochastic volatility of the underlying asset, the square root of the variance y, is
assumed to follow the Ornstein-Uhlenbeck process of the Heston’s model as given
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by Eq. (3).

dy = κ(θ − y)dt +ξ
√

ydz2 (3)

whereκ is the speed of reversion parameter for y, θ is the reversion level of y, ξ is
the ‘volatility of volatility’, z2 is Wiener processes with correlation parameter ρ .

2.2 Governing equations

This study assumes the underlying assets of the pricing options have stochastic
volatilities followed by the Heston’s model as stated by Eq. (3). By combining
Eqs. (2) and (3) and also applying the Ito’s lemma, we could obtain the partial
differential equation as follows (Heston, 1993):

yS2

2
VSS +ρyξ SVSy +

ξ 2y
2

Vyy + rSVS +(κ(θ − y)−λ )Vy− rV +Vt = 0 (4)

where r is the risk-free rate of interest, and λ is the market price of volatility risk.
Eq. (4) is the governing equation for the Case 1 and Case 2 which are both Euro-
pean standard option problems.

The Case 3 is referred to as the lookback option, which is one of the exotic options
with stochastic volatility, and its rule is more complex than the standard option.
The payoff from the lookback options depends on the maximum or minimum asset
price ever reached during the life time of the option. Generally speaking, the payoff
from a lookback call is renewed as the final stock price minus the minimum stock
price per observation date or the expiration date. While the put, the Case 3 in this
work, is the maximum stock price minus the final stock price. Thus the lookback
belongs to a path-dependent option. To obtain the governing equation of the Case
3, one may require a variable transformation (Wilmott et al. 1993). First assuming
t− and t+ are the times just before and after an observation date, then standard
no-arbitrage arguments can be used to derive the following condition:

V (J+,s,y, t+) = V (J−,s,y, t−) (5)

where the new variable J denotes the maximum value of the asset price S ever
achieved till the maturity. Thus the value of the variable J at observation date ti
should be changed into the following rules:

J− =

{
J+ if J+

S > 1

S if J+

S < 1
(6)

Then a new variable α is chosen and the process for variable transformation is as
follows:
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If we further define:

α = S/J

V (J,S,y, t) = JU (α,y, t)
(7)

then Eq. (4) simply becomes

yα2

2
Uαα +ρξ yαUαy +

ξ 2y
2

Uyy + rαUα +(κ(θ − y)−λ )Uy− rU +Ut = 0 (8)

Since the value of variable J varies at observation date ti, the jump condition from
Eq. (5) thus becomes:

U
(
α,y, t+

)
=

{
U (α,y, t−) if α < 1

αU (α,y, t−) if α ≥ 1
(9)

The following subsections 2.3 and 2.4 will demonstrate the transformation for fi-
nal conditions and boundary conditions. After these transformations, this problem
could be easily solved.

2.3 Final conditions

This subsection derives the final conditions of the three cases. In the following
notations, we let IS = (0,Smax) and Iy = (0,ymax), where the Smax and ymax
denote the maximum of the stock price S and variance y, respectively.

(i): Case 1 is the European standard call option whose final condition is the ramp
payoff given by

V (S,y,T ) = max(0,S−K) , (S,y) ∈ IS× Iy (10)

where K denotes the exercise price of the option and T is the maturity. Here the
value of the exercise price K depends on the option contract and is less than the
maximum of the stock price S. The value of the time to expiry, or maturity, T is up
to the option contract.

(ii): Case 2 is the cash-or-nothing call which means the payoff of this option is set
to a specified fixed price B if the final asset price is above the exercise price K; if
not, the payoff is set to zero. Thus, giving the final condition as

V (S,y,T ) = BH (0,S−K) , (S,y) ∈ IS× Iy (11)

where B is a positive constant and H denotes the Heaviside step function. Obvi-
ously, this terminal condition shows that the option price is zero if S < K and is B
if S≥ K.
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(iii): Case 3 is the lookback put whose payoff depends on the maximum value of
the stock price ever achieved till the maturity. Thus the final condition for Case 3
is given by

V (S,y,T ) = max(J−S,0), (S,y) ∈ IS× Iy (12)

After taking variable transformation, Eq. (12) becomes

U (α,y,T ) = max(1−α,0), (α,y) ∈ Iα × Iy (13)

where Iα = (0,α max).

2.4 Boundary conditions

The geometric domain of the above problems contains four boundary surfaces de-
fined by S = 0. S = S max, y = 0 and y = ymax. The boundary conditions at the
minimum (S = 0) and the maximum (S = Smax) of the asset price are shown as
follows:{

V (0,y, t) = V (0,y,T ) = 0

V (Smax,y, t) = V (Smax,y,T )
(14)

To determine the boundary conditions at y = 0 and y = ymax, we treat them as
Robin conditions by directly taking two particular values y = 0 and y = ymax in
Eq. (4).

The boundary condition of the Case 3 at S = 0 is in the Dirichlet type as:

V (S,y, t) = J exp(−r(T − t)) (15)

In addition to y = 0 and y = ymax, the boundary condition atS = Smax for Case
3 can also be calculated by the simplified governing equation. After taking the
variable transformation, we can transform the boundary condition from Eq. (15) to
(16) as follows:

U (S,y, t) = exp(−r(T − t)) (16)

The boundary conditions at α = α max (the maximum value of α), y = 0 and
y = y max are also obtained by the governing equation as mentioned above. In the
following numerical procedure, the values of α max and y max are set large enough
to have no affect on the numerical results.
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Figure 1: Illustration of the distribution for the grid nodes in the 1-D LDQ method

3 Numerical Discretization

In this section we illustrate the procedure of the application of the LDQ method
to solve the option-pricing models. First we introduce the one-dimensional LDQ
approximation, and then extend to higher dimension such as two-dimensional prob-
lem, and finally discretize the above governing equations by the LDQ method. We
now consider there are N grid points distributed on one axis as depicted in Fig. 1.
The formulation for the LDQ approximation for the first order derivative takes the
following form:

f (1)
x (xi) =

L

∑
j=1

ai j · f (x j) , for i = 1,2, · · · ,N, L≤ N (17)

where f (x j) represents the functional value at a grid point x j, f (1)
x (xi) indicates the

first order derivative with respect to x = xi, and ai j are the weighting coefficients of
the first order derivative. Here, L named as the number of local referenced nodes is
adopted to approximate the functional value and the derivative of the grid point, in
which the L could be chosen from the condition of the demand of the order or the
accuracy. In this study we adopt the localized Shu’s general approach (1990 and
2000) to determine the weighting coefficients ai j:

ai j =
M(1) (xi)

(xi− x j) ·M(1) (x j)
, for i 6= j

aii =−
L

∑
j=1, j 6=i

ai jfor i = 1,2, · · · ,N; L≤ N

(18)

where the M(1) (xi) term is defined by:

M(1) (xi) =
L

∏
k=1,k 6=i

(xi− xk) (19)

For the discretization of the second order derivative, an approximation form is ob-
tained by a similar derivation:

f (2)
x (xi) =

L

∑
j=1

bi j · f (x j) , for i = 1,2, · · · ,N, L≤ N (20)
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where bi j is the weighting coefficients of the second order derivative f (2)
x (xi), which

could also be calculated by the localized Shu’s approach (1990 and 2000) as fol-
lows:

bi j = 2ai j

(
aii−

1
xi− x j

)
, for i 6= j

bii =−
L

∑
j=1,i6= j

bi j, for i = 1,2, · · · ,N; L≤ N
(21)

or can be obtained by using the matrix multiplication approach:

bi j =
N

∑
k=1

aik ·ak j (22)

The LDQ formulae for higher order derivatives can also be similarly obtained.

We can extend the higher-dimension LDQ approximation by taking the following
two-dimensional case as an illustration. It is assumed that the following linear
formulations are satisfied for the function f (x,y)and its first order derivatives:

f (1)
x (xi,y j) =

Lx

∑
k=1

ax
ik · f (xk,y j) , Lx ≤ N

f (1)
y (xi,y j) =

Ly

∑
k=1

ay
jk · f (xi,yk) , Ly ≤M

for i = 1,2, · · · ,N; j = 1,2, · · · ,M

(23)

where f (1)
x , f (1)

y are the first order derivatives of the function f (x,y) with respect to
x and y, respectively. ax

ik, ay
jk are the corresponding weighting coefficients calcu-

lated by Lx local referenced nodes from N grid points on x-axis, and also Ly local
referenced nodes from M grid points on y−axis. The approximation for two dimen-
sional higher-order derivatives can be obtained analogously as one dimension, or
by applying the matrix multiplication approach. We can approximate the weighting
coefficients of mixed derivative term as follows:

axy
i j =

N

∑
k=1

ax
ik ·a

y
k j (24)

We will first demonstrate the discretization for Eq. (4), the governing PDE of the
standard European option model. By expanding the first derivative of time t by the
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finite difference method, Eq. (4) becomes:

(1−φ)
(

yS2

2
V n+1

SS +ρyξ SV n+1
Sy +

ξ 2y
2

V n+1
yy + rSV n+1

S +(κ(θ − y)−λ )V n+1
y

− rV n+1
)

+φ

(
yS2

2
V n

SS +ρyξ SV n
Sy +

ξ 2y
2

V n
yy + rSV n

S +(κ(θ − y)−λ )V n
y − rV n

)
+

V n+1−V n

∆t
= 0 (25)

where φ is the time integrating factor. After introducing the above transposition
and the discretization procedures, Eq. (25) could be rewritten as follows:[
(1− r∆t (φ −1)) [I]+∆t (θ −1)

(
1
2

yiS
2
i [bSi j]+

1
2

ξ
2yi[byi j]+ rSi[aSi j]

+ρyξ Si[aSyi j]+ (κ(θ − yi)−λ )[ayi j])]
{

V n (S j,y j)
}

=
[
(1− r∆tφ) [I]+∆tφ

(
1
2

y2
i S2

i [bSi j]+
1
2

ξ
2yi[bυ i j]+ rSi[aSi j]+ρyξ Si[aSyi j]

+ (κ(θ − yi)−λ )[ayi j])]
{

V n+1 (S j,y j)
}

,

for 0 ≤ φ ≤ 1, i = 1,2, · · · ,N (26)

The discretization for the lookback option model could also be obtained in a very
similar process from Eq. (8).

4 Numerical experiments

This section will introduce the applications of the LDQ method to perform the nu-
merical experiments. In order to show the results for solving the option-pricing
models with stochastic volatilities by the LDQ method, this section will carry
out three numerical experiments, the European-style standard and lookback op-
tion cases as mentioned in sections 2 and 3. For all these test problems, we choose
φ = 0.5(Crank-Nicolson scheme) and λ = 0.

4.1 Case 1 A European standard call option

Case 1 is a European standard call option with the ramp-payoff final condition as
Eq. (10) and the boundary conditions as Eq. (14). The parameters chosen are
as follows: S max = 100, y max = 1, T = 1 (year), r = 10%, ρ = 0.9, ξ = 1,
µ = 0,κ = 0.2 and K = 57.

The numerical results by the LDQ method are compared with the benchmark solu-
tions by the FDM. The benchmark results are independent on both grid nodes and
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time interval (1681 nodes and 0.001 year adopted). In this case, 143 and 441 com-
putational nodes are adopted for the LDQ method with uniform grids. The maturity
T is divided into 1000 time steps for both methods. The results are displayed in
Figs. 2 and 3, where the contours drawn by dash line are the numerical results by
the LDQ method, while the solid line contours by the FDM. Fig. 2 shows the V
contours for the boundary conditions of the option values against time during matu-
rity, by solving the single-variable Black-Scholes equation. In Fig. 2, the results (a)
are solved by 143 nodes and (b) by 441 nodes. The LDQ method could obviously
well solve the one dimensional Black-Scholes equation with the Robin boundary
conditions, especially around the area S = 50 which is the most interesting area for
option-pricing work. The governing equation Eq. (4) and the associated boundary
conditions can be used to obtain the numerical results for the European standard
call option price with stochastic volatility. Figure 3 shows the comparison of the
results by the LDQ method with (a) 143 nodes and (b) 441 nodes with the numer-
ical solutions by the FDM. The V contours drawn by solid line refer to the results
by the FDM and the dash line by the LDQ method. The number of the number of
local referenced node L (per dimension) is 4 for the numerical solution by the LDQ
method in Figs. 2 and 3. Thus the order of the numerical solution by the LDQ
method is much higher than the FDM.

Table 1: The results of price and delta at S = 50 and y = 0.5 for Case 1. (L is the the
number of local referenced node per dimension)

LDQ LDQ FDM
143 nodes 441 nodes 1681 nodes

L Price Delta Price Delta Price Delta
2 11.651 48.27 11.660 48.29

11.68 48.32
4 11.685 48.29 11.689 48.34
6 11.739 48.35 11.690 48.34
8 10.977 48.39 11.798 48.53

Table 1 shows the comparisons between different L by the LDQ method with dif-
ferent set of grid nodes from the results by the FDM. Besides the option price, the
numerical solutions of the delta, which is the first-order derivative of option price
with respect to stock price of the option price, are also compared in Table 1. It is
demonstrated that the LDQ method has a better capability to solve the high-order
derivatives more efficiently with an optimal choice for the value of L. In Table
1, the results show that the optimal value of L should be 4 in both perspectives
by the data in option price and delta. This is also a simple test for solving the
option-pricing model by the LDQ method. In Fig. 2, it is proved again that the
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(a1)   V (S,0,t) by LDQ with 143 nodes              (b1) V (S,0,t) by LDQ with 441 nodes 
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(a2) V (S,1,t) by LDQ with 143 nodes                (b2) V (S,1,t) by LDQ with 441 nodes 

 
Figure 2: The boundary conditions with 143 and 441 nodes for Case 1

Black-Scholes equation by the LDQ method is stable and correct to be the bound-
ary conditions for the two-variable option-pricing problem under a smooth final
condition. Figure 3 demonstrates that the numerical solutions for this two-variable
option-pricing model are convergent with increasing number of grid nodes. From
Table 1, the numerical results by the LDQ method with only 143 coarse grid nodes
and higher-order approach still have good numerical performance. These results
verify the super capability about the high-order LDQ method to solve the standard
option problems.

4.2 Case 2 A cash-or-nothing call option

Case 2 is a call option with the cash-or-nothing final condition. The formula of
the final condition is shown as Eq. (11) and the boundary conditions are given by
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Figure 3: The LDQ solution with 143 and 441 nodes (L = 4) and comparison with
FDM with 1681 nodes for Case 1

V (0,y, t) = 0 and V (Smax,y, t) = S. The parameters for this case are as follows: S
max = 100, y max = 1, T = 1 (year), r = 10%, ρ = 0.9, ξ = 1, µ = 0 ,κ = 0.2 and
K = 100. As in Case 1, the LDQ solutions are also compared well with the FDM
by using 1681 nodes and 1000 time steps. The results are demonstrated in Fig. 4,
where the contours drawn by the dash line are the numerical results by the LDQ
method, and the solid line contours by the FDM.

Based on the experience of Case 1, we first choose 441 grid nodes, L = 4 and di-
vide the maturity T into 1000 time steps. However, Case 2 is unfavorable to use
the high-order numerical approach because of the step-function type final condi-
tion. The numerical results with 441 nodes by L = 4 and 2 are depicted in Fig.
4. We obtain a better numerical solution as expected when we reduce L to 2. Ta-
ble 2 demonstrates the comparison for the delta values. Although the higher-order
solutions (larger L) may not be necessary to be the optimal option-price solutions
because of the existence of the step-function type final condition, however they still
have better performance as far as the delta value is concerned due to the advantages
of derivatives calculation.

For other high-order numerical methods, the problem with discontinuous situation
is not easy to solve directly. For this case, with step-function type final condition,
it is obvious to observe that the better solutions of the option price for the bound-
ary conditions are solved by the lower-order approach, especially at the y = 0 side
in which the diffusion coefficient is zero. In other words, the LDQ method pro-
vides the flexibility for choosing the order of the numerical solution, and solves the
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problem under step-function type final condition directly without additional numer-
ical efforts. From observing the results of this case, it is convinced that the LDQ
method is more convenient to solve these problems directly as comparing with other
numerical methods such as the FDM. For more involved and exotic option-pricing
problems, such as the payoff function of the option contract with several special
conditions, the LDQ will provide a more powerful scheme for the analysis.
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          (a) Dash line: LDQ with 441 nodes (L = 4);                     (b) Dash line: LDQ with 441 nodes (L = 2); 

Solid line: FDM by 1681 nodes                                        Solid line: FDM by 1681 nodes 
 

Figure 4: The LDQ solution with 441 nodes (L = 4 and L = 2 ) for Case 2

Table 2: The results of price and delta at S = 50 and y = 0.5 for Case 2. (L is the
number of local referenced node per dimension)

LDQ 441 nodes FDM 441 nodes FDM 1681 nodes FDM 6561 nodes
L Delta Delta Delta Delta
2 121.90

121.43 122.68 122.164 122.03
6 122.00

4.3 Case 3 A lookback put option

In Case 3, a lookback option is the final test example solved by the LDQ method.
By comparing to the other two cases, the lookback option problem has additional
boundary condition for updating the maximum stock price J as seeing from Eqs.
(6), (7) and (9). For t = 0, the maximum stock price J shall be equal to the stock
price S. Thus the interesting option price will focus on the position S/J = 1. To save
the computing nodes, appropriate numerical method for non-uniform grids would
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Figure 5: The distribution of non-uniform grids for Case 3

be required. This test first discusses the capacity for two different non-uniform
grids A and B as shown in Fig. 5 and then the performance of the solutions by
the LDQ method. It is noted that in the grid A the grid is dense between 0.5 and
1.5 and coarse in the other domain; while in the grid B the grid is dense around
1.0 and coarse in other area. This is to reflect the denser grids are used to severe
gradient areas in the computational domain. In order to validate the option-pricing
model for the lookback case by the LDQ method, we first give a 1-D test case with
constant volatility as done by the previous research by the FEM (Forsyth et al.,
1999) by setting the parameters κ = ρ = ξ = 0 and y = 0.04 in Eq. (8). Thus the
number of variables of this model is reduced to one, only the stock price S. The
following 1-D test case will be validated by the 2-D model. The other parameters
are r = 10%, T = 1 (year), ymax = 0.32 and α max = 3, with observation times 0.5,
1.5, 2.5. . . 11.5 months.

For the convenience of the comparison, the aspect ratio of the discussed domain is
kept as the reference. The results by the LDQ method from grid A and B are drawn
in Fig. 6. In Fig. (6a) the contour in dash line is solved by 4625 nodes with grid
A and the other one in solid line is solved by 575 nodes with grid B. In Fig. 6(b),
the contours in solid line are the results by the LDQ method with 575 nodes and L
= 4 with grid B, and the dash line is with 1750 nodes and L = 8 with grid B. It is



144 Copyright © 2009 Tech Science Press CMES, vol.46, no.2, pp.129-150, 2009

Table
3:

C
om

parison
of

discrete
lookback

putw
ith

constantvolatility
by

stochastic
volatility

m
odelfor

C
ase

3.(G
rid

size
is

the
totalnum

ber
of

nodes
in

the
α

direction
and

L
is

the
num

ber
of

localreferenced
node

per
dim

ension)

FE
M

(Forsyth
etal.,1999)

W
ilm

ottetal.
(1993)

L
D

Q
G

rid
A

G
rid

B
G

rid
size

A
tS

/J=
1

G
rid

size
A

tS
/J=

1
G

rid
size

(L
)

A
tS

/J=
1

G
rid

size
(L

)
A

tS
/J=

1
93

0.08863
N

otstated
0.089

81(4)
0.0880

23
(4)

0.0888
185

0.08883
185(4)

0.0887
37

(4)
0.0888

389
0.08885

385(4)
0.0888

70
(8)

0.0889



Pricing Options with Stochastic Volatilities 145

obvious to observe that the results by grid B have good agreement with grid A in
this 1-D test though coarse non-uniform grids are used in grid B.
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     (a) Dash line: 4625 nodes with Grid A;                                     (b) Dash line: 1750 nodes with Grid B; 

      Solid line: 575 nodes with Grid B                                              Solid line: 575 nodes with Grid B 
 

Figure 6: Lookback put with constant volatility solved by the LDQ method for
Case 3

0 1 2 3
S/J

0

0.04

0.08

0.12

V
ar

ia
nc

e 
(y

)

                
0 1 2 3

S/J

0

0.04

0.08

0.12

Va
ria

nc
e 

(y
)
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Figure 7: Lookback put with stochastic volatility solved by the LDQ method for
Case 3

Table 3 shows the comparison for the results by the LDQ method atα = 1with
those from Wilmott et al. (1993), and also from Forsyth et al. (1999) by using
the FEM. From the comparison in Table 3, it is convinced that the LDQ method
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provides more efficient and stable solutions for solving the option-pricing model
with constant volatility. It also shows that the solution by non-uniform grid B is
more efficient than gird A for the LDQ method for this 1-D test case.

After verifying the above 1-D test, we solved the following 2-D lookback option
case under stochastic-volatility model by the LDQ method. The parameters are
chosen as r = 10%, T = 0.5 (year), y max = 0.32 and the maximum of α = 3,
with weekly observation (1/52 of a year). Different from the above 1-D numerical
validation, the other parameters are set asκ = 0.2, ρ =−0.5, and ξ = 0.5. Figure
7 shows the comparison between different grids and nodes. It shows that the results
by grid B also have good agreement with grid A in this 2-D case. Table 4 shows the
comparison of the LDQ numerical results by two different numbers of nodes with
grid B at α = 1 and the FEM solutions from Forsyth et al. (1999). The comparison
in Table 4 also reveals that the optimal order of the numerical approach, or the
optimal value of L, may depend on different cases. For example the optimal value
of L for 1127 grid nodes is 6 but for 3430 grid nodes it is 8. Comparing to the
optimal value of L in Case 2, it is increased in Case 3. This implies that the optimal
order for this numerical approach is not always needed to be reduced as in Case 2,
but for some cases it is also necessary to be increased. Thus the capability of easily
controlling the order of numerical approach by adjusting the value of L together
with the capability of non-uniform grid distribution makes the LDQ method more
flexible and powerful for the financial engineering computations.

Table 4: Comparison of discrete lookback put with stochastic volatility for Case 3.
(Grid size is the total number of nodes and L is the number of local referenced node
per dimension)

FEM LDQ
Grid size 19551 77645 L 1127 3430

At α=1 0.0541 0.0545

2 0.0536 0.0539
4 0.0543 0.0543
6 0.0544 0.0543
8 0.0528 0.0544

5 Conclusions

Since Black and Scholes made remarkable contributions to the computational fi-
nance in 1973, the innovation for the option-pricing modeling in the financial mar-
ket developed has been rising and flourishing during those past years. The situation
for the pay-off function is various and contingent according to different option con-
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tracts on the market or the portfolio of the options, such as the cash-or-nothing pay-
off in step-function form in Case 2. Furthermore, many types of exotic options also
were developed for different demands, like the lookback option in Case 3 which
desires to hedge the risk about the maximum or minimum stock price ever reached
during the maturity. These changes also stimulate the developments of the research
in computational financial engineering areas.

This work proposes a LDQ method to provide a numerical prediction tool for solv-
ing the option-pricing model with stochastic volatilities. The numerical results for
these three option-pricing test cases demonstrate that the optimal order of numer-
ical schemes should not always be fixed, thus the LDQ method which provides
the flexibility in the approximating order is an appropriate and flexible numerical
method for the application in option-pricing modeling. For certain option, such as
the lookback option in Case 3, applying non-uniform grid will increase the effi-
ciency of option pricing modeling without additional numerical difficulty. Thus the
convenience and efficiency by adopting non-uniform grid to calculate the option
pricing problems make the LDQ method a very competitive numerical alternative
comparing to other numerical schemes. The numerical experiments of the Euro-
pean standard option and the lookback option valuation have shown that the LDQ
method not only gives a reasonable solution, but also solves problem accurately
and efficiently. Moreover, these experiments also show that the advantage for solv-
ing high-order derivatives is still maintained from the present LDQ and original
DQ method. The efficiency, flexibility, and stability shown in the numerical results
prove that the LDQ method is appropriate for solving option-pricing model with
stochastic volatilities. It is worth investigating to apply the LDQ method to the
more involved and exotic option-pricing problems with stochastic volatilities.
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