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Expression for the Gradient of the First Normal Derivative
of the Velocity Potential

Zai You Yan1

Abstract: It is well-known that the velocity potential and its first normal deriva-
tive on the structure surface can be easily found in the boundary element method for
problems of potential flow. Based on an investigation in progress, the gradient of
the normal derivative of the velocity potential will be very helpful in the treatment
of the so-called hypersingular integral. Through a coordinate transformation, such
gradient can be expressed by the combination of the first and the second normal
derivatives of the velocity potential. Then one interesting problem is how to find
the second normal derivative of the velocity potential through the combination of
the velocity potential and its first normal derivative on the structure surface. Here
a detailed derivation of the second normal derivative of the velocity potential and
the gradient of the first normal derivative of the velocity potential are presented
for isoparametric curvilinear boundary elements. To validate these expressions,
some numerical results for the second normal derivative of the velocity potential
are compared to the corresponding analytical solutions.

Keywords: Boundary element method, second normal derivative, velocity poten-
tial, gradient

1 Introduction

Boundary element method [Banerjee (1994)] is a very popular numerical approach.
It can be applied in many scientific and engineering fields, such as stress analysis
[Tan, Shiah & Lin (2009)], cracks [Karlis, Tsinopoulos, Polyzos & Beskos (2008)],
electromagnetics [Soares & Vinagre (2008)], acoustics [Yang (2004), Chandrasekhar
& Rao (2007)], fluid mechanics [Mantia & Dabnichki (2008)], carbon nano-tube
reinforced composite [Wang & Yao (2008)], and so on. Comparing with other nu-
merical methods, such as finite element method, it has the merit that mesh need
only to be generated on the boundary. While two main drawbacks greatly affect its
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broad application in engineering. One is the fact that the final influence matrices
are dense matrices. In the past few years, the fast multipole expansion method and
its extensions (FMM) [Liu & Nishimura (2006), He, Lim & Lim (2008)] and pre-
corrected fast Fourier transform method (PFFT) [Phillips & White (1997), Ding &
Ye (2004)] had been developed to overcome this problem. The other is the singu-
lar, strongly singular and hypersingular integrals [De Klerk (2005)] appearing in the
boundary integral equations. To date, a lot of research has been done on the treat-
ment of such kind of integrals, especially hypersingular integrals [Tanaka, Sladek &
Sladek (1994), Chen & Hong (1999)]. Yan (2000), Yan, Hung & Zheng (2003) and
Yan, Cui & Hung (2005) investigated the calculation techniques of the hypersin-
gular integral occurring in acoustic problems. Yan, Cui & Hung(2005) pointed out
that taking into account the derivative of the solid angle the hypersingular integral
is reduced to an at most strongly singular integral. Qian, Han, Atluri (2004) derived
the symmetric Galerkin boundary element formulations of the regularized forms of
non-hypersingular boundary integral equations. Meantime, Qian, Han, Ufimtsev,
Atluri (2004) presented the non-hypersingular boundary integral equations by the
collocation based boundary element method. Recently, Han & Atluri (2007) pre-
sented a systematic derivation of the weakly singular boundary integral equations.
In their study, hypersingularities are avoided by applying some properties of the
fundamental solution. Sanz, Solis & Dominguez (2007) analytically transformed
the strongly singular and hypersingular integrals appearing in the mixed boundary
element formulation for three-dimensional piezoelectric fracture mechanics prob-
lems into weakly singular and regular integrals. Chandrasekhar & Rao (2008),
and Chandrasekhar (2008) used some simple vector calculus techniques to circum-
vent the hypersingularity occurred in the double layer and the so-called combined
layer formulation for exterior acoustic scattering. Gao, Yang & Wang (2008) pre-
sented an algorithm for the evaluation of some weakly, strongly and hypersingular
integrals in 2D problems by a semi-analytical method. Li, Wu & Yu (2009) pre-
sented an generalized extrapolation algorithm for the computation of one kind of
Hardamard finite part integrals.

In the conventional boundary integral equation(CBIE), generally there exist a pair
of variables directly related to the unknown variable. For problems of potential
flow, they are the velocity potential and its normal derivative or the normal veloc-
ity. While sometimes, the normal derivative of the conventional boundary inte-
gral equation (NDBIE) on the surface is required, such as that in the Burton and
Miller’s (1971) formulation for exterior acoustic problems. For simplicity, only
potential flow problem will be investigated in this paper. It is well-known that
hypersingular boundary integral occurs in NDBIE. However, a new theory of hy-
persingular boundary integral in process by the author shows that the same as in the
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CBIE, at most weakly singular integrals exist in the NDBIE after an exact deriva-
tion. It is very exciting that none strongly singular nor hypersingular boundary
integrals ocuur in the new NDBIE formulation. However, another problem is cre-
ated. That is the appearance of the gradient of the normal velocity. To solve the
new NDBIE formulation, this variable must be expressed by the combination of
the velocity potential and the normal velocity. Using a transformation between the
global coordinate system and the local coordinate system, the gradient of the nor-
mal velocity can be expressed by the velocity potential, the normal velocity and the
second derivative of the velocity potential. Schulz, Schwabb & Wendland (1998)
presented a method to find the potentials near the boundary using Taylor expansion
in the normal deriction of the boundary. Second normal derivative of the velocity
potential appears in this method. General formulation for the computation of the
second normal derivative of the velocity potential was presented. The second nor-
mal derivative of coordinates is presented by Lee & Soni (2004) in the enhancement
of elliptic grid generation. The governing equation is Poisson equation. Their work
can help to understand the application of second normal derivative of variables.
Meade, Slade, Peterson & Webb (1995) derived the second normal derivative of
the variable in the two-dimensional Helmholtz equation when they investigated on
the radiation boundary conditions.

In this paper, the gradient of the normal velocity for potential problems is inves-
tigated. At first, boundary integral equation for three dimensional potential flow
is introduced. And then normal derivative of the conventional boundary integral
equation is derived. A new variable, the gradient of the normal velocity, is gen-
erated in the final boundary integral equation. Hence, calculation of this variable
is crucial to the solution of the new NDHIE formulation. Using a transformation
matrix, this variable is transformed to the combination of the velocity potential, the
normal velocity and the second normal derivative of the velocity potential. Apply-
ing the governing equation, the second normal derivative of the velocity potential
is expressed by the combination of the velocity potential and its normal derivative.
Finally, two examples are computed to validate the expression of the gradient of
the normal velocity and the second normal derivative of the velocity potential.

2 Boundary integral equation for potential flow

Consider a uniform stream along z direction with velocity V∞ passes a three-dimensional
rigid object. The normal vector ~n at arbitrary point on the boundary of the object
is taken to be the inward normal as shown in Fig. 1. The symbols D, E and S
are respectively represents the interior domain, exterior domain and boundary of
the object. For this problem, the governing differential equation on the velocity
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Figure 1: A uniform stream past a rigid object

potential ϕ in the exterior domain is the well-known Laplace equation,

∇2
ϕ = 0 (1)

Neumann boundary condition or non-penetrating boundary condition on the bound-
ary surface S is given by,

∂ϕ

∂n
= 0 (2)

Using the Green’s second identity, the conventional boundary integral equation is
found as,

c(p)ϕ(p) =
∫ ∫ (

ϕ(q)
∂G(p,q)

∂nq
−G(p,q)

∂ϕ(q)
∂nq

)
dSq +V∞z (3)

The free-space Green’s function G(p,q) for the three-dimensional potential flow is
just a point source,

G(p,q) = 1/4πr, r = |p−q| (4)

Where p and q are respectively the source point and field point on the surface. r
represents the Euclidean distance between the points p and q.

Solid angle c(p) is given by

c(p) = 1−
∫∫

∂G(p,q)
∂nq

dSq (5)
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Obviously, equation (3) contains at most 1/r type weakly singular integrals. This
equation can be solved by boundary element method with a treatment technique for
the 1/r type weakly singular integral.

While sometimes it is also interested in the normal derivative of equation (3) [Bur-
ton and Miller (1971), Yan, Hung & Zheng (2003)].

∂

∂np
[c(p)ϕ(p)] =

∂

∂np

∫∫ (
ϕ(q)

∂G(p,q)
∂nq

−G(p,q)
∂ϕ(q)

∂nq

)
dSq +V∞nz (6)

In numerical simulation, if the collocation point p does not located on the integrat-
ing element, then the normal derivative with respect to p in equation (6) will be
easy to be obtained. Otherwise, if p located on the integrating element, it will be
very difficult to derive such a normal derivative. Usually, such elements are termed
as singular element with respect to the collocation point p. Therefore, in the fol-
lowing derivation, we will focus on the derivation of equation (6) on the singular
elements.

For a differentiable function f , the following identity exists,

∂ f
∂n

= ∇ f ·~n

According to this relation, if the gradient of the integral equation (3) at the point p
is obtained, then it will be easy to find the normal derivative of this equation. Based
on such an idea, now let us derive the gradient of the integral equation (3) at the
point p. On a singular element, taking the partial derivative of equation (3) with
respect to xp, we have,

∂

∂xp
[c(p)ϕ(p)] =

∂

∂xp

∫∫
singular

(
ϕ(q)

∂G(p,q)
∂nq

−G(p,q)
∂ϕ(q)

∂nq

)
dSq (7)

The boundary element applied for three-dimensional problem is an eight-nodded
isoparametric curvilinear quadrilateral element [Yan (2000)]. That is the number
of nodes in each element is NE = 8. The corresponding shape functions Ni (ξ ,η)
are given by formulation (A.1). Then the right hand side of equation (7) can be
expanded on such kind of singular element as,

∫ 1

−1

∫ 1

−1

[
∂

∂xp

(
ϕ(q)

∂G
∂nq

)
− ∂

∂xp

(
G

∂ϕ(q)
∂nq

)]
J2Ddξ dη

+
∫ 1

−1

∫ 1

−1

(
ϕ(q)

∂G
∂nq
−G

∂ϕ(q)
∂nq

)
∂J2D

∂xp
dξ dη (8)
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The expression for two-dimensional Jacobean determinant J2D is given by formu-
lation (A.2). In formulation (8), we only concern the following term,

∂

∂xp

[
G(p,q)

∂ϕ(q)
∂nq

]
It can be expanded as,

∂

∂xp

[
G(p,q)

∂ϕ(q)
∂nq

]
=

∂G(p,q)
∂xp

∂ϕ(q)
∂nq

+G(p,q)
∂

∂xq

[
∂ϕ(q)

∂nq

]
∂xq

∂xp
(9)

It is worthy to note that ∂xq/∂xp does not equal to zero. In the second term on the
right hand side of formulation (9), we can find one term,

∂

∂xq

[
∂ϕ(q)

∂nq

]
(10)

This is just what to be focused on in this paper. Obviously, for a general case, it is
equivalent to the gradient of the first normal derivative of the velocity potential or
the gradient of the normal velocity.

∇q

[
∂ϕ(q)

∂nq

]
(11)

3 The gradient of the normal velocity

First, let us define a local coordinate system Oξ ηζ on a boundary element, where
ξ and η are along the tangential directions and ζ coincide with the normal vector
~n [Liu and Rizzo (1992)]. Then the following transformation relation exists,


∂ϕ

∂x
∂ϕ

∂y
∂ϕ

∂ z

= J−1


NE
∑

i=1
Ni,ξ (ξ ,η)ϕi

NE
∑

i=1
Ni,η(ξ ,η)ϕi

∂ϕ

∂n

 =

ξ,x η,x ζ,x

ξ,y η,y ζ,y

ξ,z η,z ζ,z




NE
∑

i=1
Ni,ξ (ξ ,η)ϕi

NE
∑

i=1
Ni,η(ξ ,η)ϕi

∂ϕ

∂n

 (12)

The Jacobean matrix J is given by formulation (A.3).

Similarly, we find the transformation relation for the gradient of the normal velocity
is,


∂

∂x
∂ϕ

∂n
∂

∂y
∂ϕ

∂n
∂

∂ z
∂ϕ

∂n

= J−1



NE
∑

i=1
Ni,ξ (ξ ,η)

(
∂ϕ

∂n

)
i

NE
∑

i=1
Ni,η(ξ ,η)

(
∂ϕ

∂n

)
i

∂ 2ϕ

∂n2

 (13)
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In this formulation, there exists a new unknown variable ∂ 2ϕ/∂n2. To make sure
the considering problem can be solved, this variable must be expressed by the com-
bination of the velocity potential ϕ and the normal velocity ∂ϕ/∂n.

How to find the second normal derivative of the velocity potential ∂ 2ϕ/∂n2? This
is a second order partial derivative, so we think of the governing equation (1). As
the local coordinate ζ is defined to coincide with the normal vector, therefore,

∂ 2ϕ

∂n2 ≡
∂ 2ϕ

∂ζ 2 (14)

Now, let us express the governing equation (1) in the local coordinate system Oξ ηζ

[Oostendorp & Oosterom (1996)].

∆ϕ =
1

H1H2H3

[
∂

∂ξ

(
H2H3

H1

∂ϕ

∂ξ

)
+

∂

∂η

(
H3H1

H2

∂ϕ

∂η

)
+

∂

∂ζ

(
H1H2

H3

∂ϕ

∂ζ

)]
(15)

The Lame coefficientsH1,H2,H3 are given by formulation (A.4). Equation (15) can
be expanded as,

∆ϕ =
1

H1H2

[
∂

∂ξ

(
H2

H1

)
∂ϕ

∂ξ
+

H2

H1

∂ 2ϕ

∂ξ 2 +

∂

∂η

(
H1

H2

)
∂ϕ

∂η
+

H1

H2

∂ 2ϕ

∂η2 +
∂H1H2

∂n
∂ϕ

∂n

]
+

∂ 2ϕ

∂n2 (16)

Where

∂H1

∂n
=

xξ
∂nx
∂ξ

+ yξ

∂ny

∂ξ
+ xξ

∂nz
∂ξ

H2

=
xξ

NE
∑

i=1
Ni,ξ nix + yξ

NE
∑

i=1
Ni,ξ niy + xξ

NE
∑

i=1
Ni,ξ niz

H2

(17)

Similarly, the expression for ∂H2/∂n can be obtained.

Because on each element,

∂ϕ

∂ξ
=

NE

∑
i=1

Ni,ξ (ξ ,η)ϕi,
∂ϕ

∂η
=

NE

∑
i=1

Ni,η(ξ ,η)ϕi

and

∂ 2ϕ

∂ξ 2 =
NE

∑
i=1

Ni,ξ ξ (ξ ,η)ϕi,
∂ 2ϕ

∂η2 =
NE

∑
i=1

Ni,ηη(ξ ,η)ϕi
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the second normal derivative of the velocity potential ∂ 2ϕ/∂n2 now can be ex-
pressed by the combination of the velocity potential ϕ and its first order normal
parital derivative ∂ϕ/∂n through the equation (16). That is,

∂ 2ϕ

∂n2 =
NE

∑
i=1

[
Aiϕi +Bi

(
∂ϕ

∂n

)
i

]
(18)

Where

Ai =
1

H1H2

[
∂

∂ξ

(
H2

H1

)
Ni,ξ +

H2

H1
Ni,ξ ξ +

∂

∂η

(
H1

H2

)
Ni,η +

H1

H2
Ni,ηη

]
and

Bi =
1

H1H2

∂H1H2

∂n
Ni

Then the gradient of the normal velocity can be obtained by equation (13) as,


∂

∂x
∂ϕ

∂n
∂

∂y
∂ϕ

∂n
∂

∂ z
∂ϕ

∂n

=J−1



NE
∑

i=1
Ni,ξ (ξ ,η)

(
∂ϕ

∂n

)
i

NE
∑

i=1
Ni,η(ξ ,η)

(
∂ϕ

∂n

)
i

NE
∑

i=1

[
Aiϕi +Bi

(
∂ϕ

∂n

)
i

]



=J−1

N1,ξ N2,ξ · · · NNE,ξ

N1,η N2,η · · · NNE,η

B1 B2 · · · BNE




(
∂ϕ

∂n

)
1(

∂ϕ

∂n

)
2

...(
∂ϕ

∂n

)
NE


+ J−1

3

[
A1 A2 · · · ANE

]


ϕ1

ϕ2
...

ϕNE



(19)

Where J−1
3 represents the third column vector of the inverse Jacobean matrix J−1.

4 Numerical examples

To show the feasibility that the gradient of the normal velocity on the boundary can
be expressed by the combination of the velocity potential and the normal velocity
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and to validate the above derivation, two examples about a uniform stream with
velocity V∞ = 100 m/s past a rigid object are presented. One is the uniform stream
along x direction past an unlimited cylinder as shown in Fig. 2. Obviously, this is
a two-dimensional exterior problem for potential flow. Another one is the uniform
stream along z direction past a sphere as shown in Fig.3. Of course, this is a three-
dimensional exterior problem for potential flow. Both of these cases have analytical
solutions.

 
 

100V∞ =

y
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θ

Figure 2: A uniform stream past an unlimited cylinder

 
 

z

x

y

100V∞ =

r

θ

Figure 3: A uniform stream past a sphere

4.1 A uniform stream past an unlimited cylinder

This is a classical two-dimensional problem for potential flow. In section 2, the
derivation is about three-dimensional problems of potential flow. For two-dimensional
problem of potential flow, the derivation of the gradient of the normal velocity on
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the boundary can be achieved similarly except that the free-space Green’s function
is replaced by

G(p,q) =− 1
2π

lnr (20)

and the boundary element reduced to a three-nodded isoparametric curvilinear
element which is just composed by the first three elemental nodes in the three-
dimensional eight nodded boundary element by setting η ≡ −1. That is for two-
dimensional problem the number of element nodes is NE = 3. Such treatments
make sure the shape functions for the eight nodded elements can be directly ap-
plied in the two-dimensional three-nodded elements.

In the following simulation, the boundary of the cylinder is descretized by 80 el-
ements with 160 nodes in total. The analytical solution of the velocity potential
ϕ for the uniform stream past an unlimited cylinder of radius a can be found in
general fluid mechanics textbooks as,

ϕ (r,θ) = V∞

(
r +

a2

r

)
cosθ (21)

Where θ is the angle between the radial vector r and the x direction.

Then, the second normal derivative of the velocity potential on the boundary can
be derived as,

∂ 2ϕ

∂n2 =
∂ 2ϕ

∂ r2

∣∣∣∣
r=a=1

= 2V∞ cosθ (22)

Fig.4 displays the comparison between the numerical solutions and the correspond-
ing analytical solutions of the second normal derivative of the velocity potential on
the boundary. In the numerical simulation, the velocity potentials are provided by
the analytical solutions. The agreement between these solutions proofs the deriva-
tion is correct and the second normal derivative of the velocity potential does can
be expressed by the velocity potential and its normal derivative.

Similarly, the gradient of the normal velocity or the first order normal derivative of
the velocity potential on the boundary is derived as,

∂ 2ϕ

∂x∂n
=

∂ 2ϕ

∂x∂ r

∣∣∣∣
r=1

= V∞a2
[

1
r
− 1

r3 +
(
−1
r

+
3
r3

)
xcosθ

]∣∣∣∣
r=a=1

= 2V∞xcosθ

∂ 2ϕ

∂y∂n
=

∂ 2ϕ

∂y∂ r

∣∣∣∣
r=a=1

= 2V∞ycosθ

(23)
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 Figure 4: The second normal derivative of the velocity potential as a function of θ

Fig. 5 displays the comparison between the numerical results and the correspond-
ing analytical solutions of the gradient of normal derivative of the velocity potential.
The velocity potentials applied in the numerical simulation are given by analytical
solution too. Obviously, the numerical results agree quite well with the correspond-
ing analytical solutions.

4.2 A uniform stream past a rigid sphere

The origin of the coordinate system is located at the center of the sphere. Analytical
solution of the velocity potential ϕ on the spherical surface for a uniform stream
past a sphere of radius a can also be found in general fluid mechanics textbooks as,

ϕ = V∞r cosθ

(
1+

a3

2r3

)
(24)

Where θ represents the angle between the radial direction and the z direction.

Then, the second normal derivative of the velocity potential on the surface can be
derived as,

∂ 2ϕ

∂n2 =
∂ 2ϕ

∂ r2

∣∣∣∣
r=1

= 3V∞ cosθ (25)

Fig. 6 displays the comparison between the numerical results and the corresponding
analytical solutions of the second normal derivative of the velocity potential on the
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 Figure 5: The gradient of the first order normal derivative of the velocity potential
as a function of θ

boundary. The velocity potential applied in the numerical simulation are given
by analytical formulation. Even though the agreement of these solutions are not
as well as that in the previous example, it still can proof the correctness of the
derivation and show that the second normal derivative of the velocity potential on
the boundary can be expressed by the combination of the velocity potential and its
normal derivative.

Similarly, the gradient of the normal derivative of the velocity potential on the
surface can be derived as,

∂ 2ϕ

∂x∂n
=

∂ 2ϕ

∂x∂ r

∣∣∣∣
r=1

= V∞

{[
−1

r
+

4
r4

]
xcosθ

}∣∣∣∣
r=1

= 3V∞xcosθ

∂ 2ϕ

∂y∂n
= 3V∞ycosθ

∂ 2ϕ

∂ z∂n
= V∞

[
1
r
− 1

r4 +
(
−1
r

+
4
r4

)
zcosθ

]∣∣∣∣
r=1

= 3V∞zcosθ (26)

Fig. 7 displays the comparison between the numerical results and the corresponding
analytical solutions of the gradient of the normal derivative of the velocity potential.
The velocity potentials applied in the numerical simulation are given by analytical
solutions too. Obviously, the numerical results agree with the corresponding ana-
lytical solutions.
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Figure 6: The second normal derivative of velocity potential as a function of θ
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 Figure 7: The gradient of the normal velocity on the boundary as a function of θ

5 Conclusion

In the normal derivative of the conventional boundary integral equation for poten-
tial flow problems, there exists a new variable ∂ 2ϕ/∂n2 which is the second normal
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derivative of the velocity potential on the boundary. Accounting for the governing
equation, this variable can be expressed by the combination of the velocity po-
tential and the normal velocity. Then the gradient of the normal velocity can be
expressed by the combination of the velocity potential and the normal velocity. In
fact, the second normal derivative of the velocity potential will be very important
in the oncoming treatment technique of hypersingular integrals. Two examples are
presented to validate the correctness of the derivation. Under the condition that
velocity potentials are provided by analytical formulation, numerical results for the
second normal derivative of the velocity potential and the gradient of the normal
velocity on the boundary all agree well with the corresponding analytical solutions.
The ideal developed here will be combined with the treatment technique of sharp
edges & corners [Yan (2006)] to solve complicated acoustic problems.
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Appendix: Shape functions and normal vectors

Node distribution for an eight-nodded isoparametric curvilinear quadrilateral ele-
ment is displayed in Fig. A.1.
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 Figure A.1: Parent element for the eight-nodded isoparametric curvilinear quadri-
lateral element

The eight shape functions are given by,

N1 =−1
4
(1−ξ )(1−η)(1+ξ +η)

N2 =
1
2
(1−ξ

2)(1−η)

N3 =
1
4
(1+ξ )(1−η)(ξ −η−1)

N4 =
1
2
(1−ξ )(1−η

2)

N5 =
1
2
(1+ξ )(1−η

2)

N6 =
1
4
(1−ξ )(1+η)(−1−ξ +η)

N7 =
1
2
(1−ξ

2)(1+η)

N8 =
1
4
(1+ξ )(1+η)(ξ +η−1) (A.1)
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The global coordinates on the boundary can be found through the combination of
the global coordinates of each element node as,

x
y
z

=
NE

∑
i=1

Ni(ξ ,η)


xi

yi

zi


Then the partial derivatives of global coordinates with respect to each elemental
local coordinates are,

~S =


x,ξ

y,ξ

z,ξ

=
NE

∑
i=1

Ni,ξ (ξ ,η)


xi

yi

zi


~T =


x,η

y,η

z,η

=
NE

∑
i=1

Ni,η(ξ ,η)


xi

yi

zi


~U =


x,ζ

y,ζ

z,ζ

=~n, ζ ≡ n,
∣∣∣~U∣∣∣≡ 1

And the Jacobean determinant occurs in the boundary integration is,

J2D =
∣∣∣~S×~T

∣∣∣ (A.2)

The normal vector can be expressed using the above formulations as,

~n =
[
nx ny nz

]
nx =

(
y,ξ z,η − y,ηz,ξ

)
/J2D

ny =
(
z,ξ x,η − z,ηx,ξ

)
/J2D

nz =
(
x,ξ y,η − x,ηy,ξ

)
/J2D

The Jacobean matrix J between the global coordinate system and the local coordi-
nate system is,

JT =
[
~S ~T ~U

]
=

x,ξ x,η x,ζ

y,ξ y,η y,ζ

z,ξ z,η z,ζ

 (A.3)
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The Lame coefficients are given by,

H1 =
∣∣∣~S∣∣∣

H2 =
∣∣∣~T ∣∣∣

H3 =
∣∣∣~U∣∣∣≡ 1 (A.4)




