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The Particular Solutions of Chebyshev Polynomials for
Reissner Plates under Arbitrary Loadings

Chia-Cheng Tsai1

Abstract: Analytical particular solutions of Chebyshev polynomials are obtained
for problems of Reissner plates under arbitrary loadings, which are governed by
three coupled second-ordered partial differential equation (PDEs). Our solutions
can be written explicitly in terms of monomials. By using these formulas, we can
obtain the approximate particular solution when the arbitrary loadings have been
represented by a truncated series of Chebyshev polynomials. In the derivations
of particular solutions, the three coupled second-ordered PDE are first transformed
into a single six-ordered PDE through the Hörmander operator decomposition tech-
nique. Then the particular solutions of this six-ordered PDE can be found in the
author’s previous study. These formulas are further implemented to solve problems
of Reissner plates under arbitrary loadings in which the homogeneous solutions are
complementarily solved by the method of fundamental solutions (MFS). Numerical
experiments are carried out to validate these particular solutions. Due to the expo-
nential convergence of both Chebyshev interpolation and the MFS, our numerical
results are extremely accurate.

Keywords: Particular solution, Chebyshev polynomials, Reissner plate, Hörman-
der operator decomposition technique, method of fundamental solutions, method of
particular solutions

1 Introduction

There are two main theories to model plate structures: the classical thin plate the-
ory and the shear deformable thick plate theory. Theoretically, the thin plate theory
ignores the effect of shear deformation through the thickness and therefore the elas-
tic behaviors are not able to be captured accurately. The thick plate, as well as its
generalization to shell, is frequently used for plates and shells of small to moderate
thickness. In the last few decades, numerical methods have been well developed
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to solve plate problems, such as the finite element method (FEM), the boundary
element method (BEM) and the method of fundamental solutions (MFS).

In this paper we concentrate on obtaining the particular solutions of thick plates un-
der arbitrary loadings when boundary-type numerical methods are utilized. Boundary-
type numerical methods have become a popular research field because they can
reduce the computational dimensionalities by one and thus can save the compu-
tational costs. In these methods, the numerical discretization is performed either
on the solution boundary, or on a boundary-like geometry. Examples include the
boundary element method (BEM) [Criado, Ortiz, Mantic, Gray, and Paris (2007);
Davies, Crann, Kane, and Lai (2007); Sanz, Solis, and Dominguez (2007); He,
Lim, and Lim (2008); Lee and Chen (2008); Marin, Power, Bowtell, Sanchez,
Becker, Glover, and Jones (2008); Owatsiriwong, Phansri, and Park (2008)], the
MFS [Kupradze and Aleksidze (1964); Bogomolny (1985); Liu (2008B); Marin
(2008); Young, Chen, Liu, Shen, and Wu (2009)], the Trefftz Methods (TM) [Coz-
zano, Rodríguez (2007); Liu (2007A); Liu (2007B); Liu (2008A)], the meshless
local boundary integral equation method [Zhu, Zhang, and Atluri (1998); Selloun-
tos, Sequeira, and Polyzos (2009)], and others. A comprehensive review can be
found in the article of Cheng and Cheng (2005).

Boundary-type numerical methods had also been applied to solve thick plate prob-
lems. EL-Zafrany, Debbih and Fadhil (1995) studied the thick Reissner plates in
bending by the BEM. On the other hand, Fadhil and EL-Zafrany (1994) and AL-
Hosani, Fadhil and EL-Zafrany (1999) developed a BEM model for Reissner plates
resting on foundations. Recently, Wen (2008) and Wen, Adetoro and Xu (2008)
applied the MFS to solve the problems of thick plates in the Laplace domain. How-
ever, these studies were limited to concentrated and uniform loadings. Therefore,
the situation of arbitrary loadings should be studied.

When boundary-type numerical methods are applied to solve PDEs, special algo-
rithms are required for the inhomogeneous parts. A usual way to eliminate the
inhomogeneous term is by the method of particular solutions (MPS) proposed by
Golberg and Chen (1999). The original idea of this formulation stemmed form the
dual reciprocity method (DRM) invented by Nardini and Brebbia (1982) which is
actually equivalent to the MPS. The applicability of the MPS depends on the avail-
ability of the particular solution associated with right hand side function as well as
the partial differential operator of the problem. Since analytical particular solutions
are rare, approximate methods for the particular solution have to be sought. This
can be accomplished by numerically approximating the right hand side function by
a summation of basis functions. Once the basis functions are selected, the problem
of finding particular solution associated to the right hand side function is reduced
to the problem of obtaining the particular solutions of the basis functions. In other
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word, the success of the MPS depends on the availability of the exact expression
of the particular solutions associated to the basis functions and the operator of the
problem. In this paper, we will derive analytical particular solutions of Chebyshev
polynomials associated to problems of Reissner plates.

In the last few decades, significant progress has been done in obtaining analytical
particular solutions for various basis functions. Among these are the radial basis
functions [Golberg (1995); Golberg, Chen, and Karur (1996); Golberg and Chen
(1999); Muleshkov, Golberg, and Chen (1999); Cheng (2000); Cheng, Chen, Gol-
berg, Rashed (2001); Muleshkov and Golberg (2007); Tsai (2009); Tsai, Cheng,
Chen (2009)], the trigonometric functions [Atkinson (1985); Li and, Chen (2004)],
the monomials [Janssen and, Lambert (1992); Cheng, Lafe, and Grilli (1994);
Golberg, Muleshkov, Chen, and Cheng (2003); Tsai (2008); Tsai, Cheng, Chen
(2009)], Chebyshev polynomials [Golberg, Muleshkov, Chen, and Cheng (2003);
Reutskiy and Chen (2006); Karageorghis, and Kyza (2007); Ding and Chen (2007);
Tsai (2008)] and others. In this study, we consider the analytical particular solu-
tion corresponding to Chebyshev polynomials for problems of Reissner plates in
bending.

In the original study of particular solutions of Chebyshev polynomials, Golberg,
Muleshkov, Chen, and Cheng (2003) utilized the symbol software Mathematica to
connect monomials with Chebyshev polynomials and used their derived particular
solution for floating number computing. However some book keepings are required
in their study. Reutskiy and Chen (2006) circumvented the tedious book keeping by
using two-stage approximations of trigonometric functions and Chebyshev polyno-
mials. On the other hand, Karageorghis, and Kyza (2007) studied the same issue
by directly deriving the particular solutions in terms of Chebyshev polynomials.
However matrix inverses are conducted to their final formulas. Alternatively, Ding
and Chen (2007) developed a recursive formulation free from book keepings and
matrix inverses. Recently, Tsai (2008) analytically derived the particular solutions
of Chebyshev polynomials with respect to polyharmonic and poly-Helmholtz oper-
ators and implemented the derived formulation free from book keepings and matrix
inverses. Compared to the recursive formulation, this analytical formulation is eas-
ier and more suitable for higher-ordered partial differential equations (PDEs) and
three dimensions.

In this paper, we will extend Tsai’s study (2008) to problems of Reissner plates in
bending which are governed by three coupled second-ordered PDEs. In our deriva-
tions, the coupled PDEs are first transformed into a single six-ordered PDE through
the Hörmander operator decomposition technique [Hörmander (1963)]. Then the
particular solutions of Chebyshev polynomials for problems of Reissner plates can
be obtained by utilizing the particular solutions of the single six-ordered PDE ad-
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dressed in the literature [Tsai (2008)].

After the particular solutions of Reissner plates under arbitrary loading are ob-
tained, the homogeneous solutions are complementarily solved by the method of
fundamental solutions (MFS). The MFS was first proposed by Kupradze and Alek-
sidze (1964) and mathematically established by Bogomolny (1985). Then the MFS
have been intensively studied by several researches, such as Tsai, Young, Cheng
(2002), Smyrlis, Karageorghis (2003), Chen, Fan, Young, Murugesan, Tsai (2005),
Young, Ruan (2005), Young, Chen, Chen, Kao (2007), Hu, Young, Fan (2008) and
et al. The combination of Chebyshev interpolation and the MFS forms a boundary-
type meshless numerical method which is very accurate since both of them are of
exponential convergences.

The contents of this paper are organized as following: the Ressner plate model is
stated in Section 2 and the fundamental solutions are reviewed in Section 3. Then
Chebyshev interpolation and the corresponding analytical particular solutions are
derived in Section 4 and Section 5, respectively. In Section 6, the implementation
of the derived particular solutions is explained. Section 7 gives the MFS-MPS for-
mulations for problems of Reissner plates and the numerical results are delineated
in Section 8. Finally, the main conclusions of the present study are given in Section
9.

2 Reissner plate model

In the following of this article, the indices i, j,k are presented in the range {1,2,3}
and the indices α,β ,γ are in the range {1,2}.

 

h  
Ω  

1x

2x

3x

O

Γ  q  

 Figure 1: Geometric configuration of the Ressiner plate model.

As described in Fig. 1, we consider a plate of uniform thickness h with its middle
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plane being a domain Ω with boundary Γ in the x1−x2 plane and thickness coordi-
nate x3. The plate is subjected to normal loading with intensity q(x1,x2). Then the
equations of equilibrium are given by{

∂Mαβ

∂xβ

−Qα = 0
∂Qα

∂xα
+q = 0

(1)

where Qα are the transverse shears, Mαβ are the bending and twisting moments, all
per unit length.

The stress distribution is assumed to follow the Reissner thick plate theory, in which
the generalized displacement expressions with a weighted average across the thick-
ness are introduced that u3 is the lateral deflection of the plate in the middle surface
and uαs represent the average slope angles. According to the Reissner thick plate
theory, the constitutive equations written in terms of the displacements and the dis-
tributed load q(x1,x2) on the plate surface are given by:Mαβ = D(1−ν)

2 ( ∂uα

∂xβ

+ ∂uβ

∂xα
+ 2ν

1−ν

∂uγ

∂xγ
δαβ )+q ν

λ 2(1−ν)δαβ

Qα = D(1−ν)λ 2

2 (uα + ∂u3
∂xα

)
(2)

with

λ =
√

10/h (3)

Combining Eqs. (1) and (2), we can obtain

Li j(∂ )u j =−Ei(∂ )q (4)

with
Lαβ = D(1−ν)

2 (∇2−λ 2)δαβ + D(1+v)
2

∂ 2

∂xα ∂xβ

Lα3 =−L3α =−Dλ 2(1−ν)
2

∂

∂xα

L33 = Dλ 2(1−ν)
2 ∇2

(5)

and{
Eα = ν

(1−ν)λ 2
∂

∂xα

E3 = 1
(6)

Eq. (4) are three coupled second-ordered PDEs for the three unknown function u j

and thus three boundary conditions on Γ should be imposed to form a well-posed
problem as follows

Bi ·u = bi (7)
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where Bi are the vector-valued boundary differential operators, bi are given bound-
ary data and u = (u1,u2,u3). Usually, three of the following six boundary condi-
tions shall be adopted.

Bθn ·u = n1u1 +n2u2

Bθt ·u =−n2u1 +n1u2

Bw ·u = u3

BMn ·u = n2
1M11 +2n1n2M12 +n2

2M22

BMt ·u =−n1n2M11 +(n2
1−n2

2)M12 +n1n2M22

BQn ·u = n1Q1 +n2Q2

(8)

where n1 and n2 are related to the boundary normal and tangential vectors respec-
tively by

n = (n1,n2,0) t = (−n2,n1,0) (9)

For example, the clamped boundary conditions are defined by
B1 = Bθn

B2 = Bθt

B3 = Bw

(10)

and the free boundary conditions are represented by
B1 = BMn

B2 = BMt

B3 = BQn

(11)

In this paper we will develop a meshless numerical method to solve the well-posed
PDE system given in Eqs. (4) and (7).

3 Fundamental solution

In order to apply the MFS for Eq. (4), we need the fundamental solution u∗j defined
by

Li j(∂ )u∗jk =−δ (x− s)δik (12)

where x = (x1,x2) is the coordinate and s = (s1,s2) is the source point. To derive the
fundamental solution, we use the Hörmander operator decomposition technology
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[Hörmander (1963)], in which the fundamental solutions should be assumed to be
of the following form:

u∗jk = Lad j
jk (∂ )G (13)

where G is an unknown function which can be understood later and the adjoint
operator Lad j

jk (∂ ) is defined by

Lad j
i j (∂ )L jk(∂ ) = Li j(∂ )Lad j

jk = det(L)δik (14)

with det(L) being the determinant of the matrix operator L =
{

Li j(∂ )
}

. By using

the definition of Lad j
jk (∂ ), we have

Lad j
αβ

= 2δαβ ∇4− ∂ 2

∂xα ∂xβ

[(1+ν)∇2 +(1−ν)λ 2]

Lad j
α3 = (1−ν) ∂

∂xα
(∇2−λ 2)

Lad j
3α

=−(1−ν) ∂

∂xα
(∇2−λ 2)

Lad j
33 = (∇2−λ 2)[2∇2− (1−ν)λ 2]/λ 2

(15)

and

det(L) =
D3λ 2(1−ν)2

4
(∇2−λ

2)∇2∇2 (16)

Then, we substitute Eq. (13) into Eq. (12) and use Eqs. (14) and (16) to have:

D3λ 2(1−ν)2

4
(∇2−λ

2)∇2∇2G =−δ (x− s) (17)

The solution of Eq. (17) can be found in the literature [Cheng, Antes and Ortner
(1994)] as follows:

G(x,s) =
−λ 2r2 +4K0(λ r)+(4+λ 2r2) logr

2πD3(1−ν)2λ 6 (18)

where r =
√

(x1− s1)2 +(x2− s2)2. Eqs. (13) and (18) are sufficient for the fun-
damental solutions as follows:

u∗
αβ

= δαβ [(1−ν)λ 2r2−8 + 8λ 2r2K0(λ r) + 8λ rK1(λ r)−2(1−ν)λ 2r2 logr]
8πDλ 2(1−ν)r2

+ xα xβ [8−(1−ν)λ 2r2−4λ 2r2K2(λ r)]
4πDλ 2(1−ν)r4

u∗
α3 =−u∗3α

= xα (1−2logr)
8πD

u∗33 = −(1−ν)λ 2r2−[8−(1−ν)λ 2r2] logr
8πDλ 2(1−ν)

(19)
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Correspondingly, we also have the shears and the moments respectively as follows:{
Q∗

αβ
= δαβ [−1+λ 2r2K0(λ r)+λ rK1(λ r)]

2πr2 + xα xβ [2−λ 2r2K2(λ r)]
2πr4

Q∗
α3 =− xα

2πr2

(20)


M∗

αβγ
= δαβ xγ [8−(1+ν)λ 2r2−4λ 2r2K2(λ r)]

4πλ 2r4 + xα xβ xγ [−16+(1−ν)λ 2r2+2λ 3r3K3(λ r)]
2πλ 2r6

+ (δαγ xβ +δβγ xα )[8−(1−ν)λ 2r2−4λ 2r2K2(λ r)−2λ 3r3K1(λ r)]
4πλ 2r4

M∗
αβ3 = δαβ [(1−ν)−2(1+ν) logr]

8π
− xα xβ (1−ν)

4πr2

(21)

which are defined respectively by

Q∗αi =
D(1−ν)λ 2

2

(
u∗αi +

∂u∗
α3

∂xα

)
(22)

M∗
αβ i =

D(1−ν)
2

(
∂u∗

αi

∂xβ

+
∂u∗

β i

∂xα

+
2ν

1−ν

∂u∗
αi

∂xα

δαβ

)
(23)

Eqs. (19)–(21) are the fundamental solutions required for the MFS formulation to
be introduced later.

4 Chebyshev interpolation

In order to apply boundary-type numerical methods to solve Eq. (4), particular
solutions should be approximated. Inspired by the MPS based on Chebyshev poly-
nomials [Golberg and Chen (1999); Golberg, Muleshkov, Chen, and Cheng (2003);
Tsai (2008)], we need to interpolate the arbitrarily distributed loading q(x1,x2) by
the bivariate Chebyshev polynomial interpolation as follows:

q(x1,x2)∼= q̃(x1,x2)=
M1

∑
m1=0

M2

∑
m2=0

am1m2Tm1

(
2x1− x1b− x1a

x1b− x1a

)
Tm2

(
2x2− x2b− x2a

x2b− x2a

)
(24)

where [x1a, x1b]× [x2a, x2b] is a rectangular domain which is big enough to enclose
the computational domain. Then, by the theory of Chebyshev interpolation we have

am1m2 =
4

M1M2cM1,m1cM2,m2

M1

∑
l1=0

M2

∑
l2=0

q(x1l1 ,x2l2)
cM1,l1cM2,l2

cos
πm1l1

M1
cos

πm2l2
M2

(25)
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with

CMα ,0 = cMα ,Mα
= 2

cMα ,mα
= cMα ,lα = 1 for 1≤ mα , lα ≤Mα −1

(26)

and

xa,lα =
(xab− xaa)

2
cos

plα
Mα

+
xab + xaa

2
(27)

Note that Mα + 1 is the number of Gauss-Lobatto nodes in the xα direction. It
should be noticed that the use of Gauss-Lobatto nodes ensure the exponential con-
vergence for Chebyshev interpolation. Details of Chebyshev interpolation can be
found in an excellent review book by Mason and Handscomb (2003).

Eq. (24) can also be rewritten in terms of monomials of 2xα−xαb−xαa
xαb−xαa

as

q̃(x1,x2) =
M1

∑
m̌1=0

M2

∑
m̌2=0

ǎm̌1m̌2

(
2x1− x1b− x1a

x1b− x1a

)m̌1
(

2x2− x2b− x2a

x2b− x2a

)m̌2

(28)

where

ǎm̌1m̌2 =
M1

∑
m1=m̌1

M2

∑
m2=m̌2

am1m2dm1,m̌1dm2,m̌2 (29)

In Eq. (29), dmα ,m̂α
is defined by

Tmα

(
2xa− xab− xaa

xab− xaa

)
=

mα

∑
m̂α=0

dmα ,m̂α

(
2xα − xαb− xαa

xαb− xαa

)m̂α

(30)

and it can be computed by using the explicit formula in [Mason and Handscomb
(2003)]. Furthermore, Eq. (28) can be simplified to

q̃(x1,x2) =
M1

∑
m̂1=0

M2

∑
m̂2=0

âm̂1m̂1xm̂1
1 xm̂2

2 (31)

with

âm̂1m̂2 =
M1

∑
m̂1=m̂1

M2

∑
m̂2=m̂2

2m̂1 (−x1b− x1a)
m̂1−m̂1 m̂1!

(x1b− x1a)
m̂1 (m̂1− m̂1)!m̂1!

2m̂2 (−x2b− x2a)
m̂2−m̂2 m̂2!

(x2b− x2a)
m̂2 (m̂2− m̂2)!m̂2!

âm̂1m̂2

(32)

where the following binomial expansion is utilized(
2xa− xαb− xαa

xαb− xαa

)m̂α

=
m̂α

∑
m̂α=0

2m̂α (−xαb− xαa)
m̂α−m̂α m̂α !

(xαb− xαa)m̂α (m̂α − m̂α)!m̂α !
xm̂α

α (33)

Eq. (31) is the desired Chebyshev interpolation in terms of monomials.
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5 Analytical particular solution

Eq. (31) indicates that we need the analytical particular solutions, u(m̂1,m̂2)
j , corre-

sponding to monomials, xm̂1
1 xm̂2

2 , defined by

Li j(∂ )u(m̂1,m̂2)
j =−Ei(∂ )xm̂1

1 xm̂2
2 (34)

The solution of Eq. (34) can also be obtained by using the Hörmander operator
decomposition technology [Hörmander (1963)]. First of all, we assume

u(m̂1,m̂2)
j = L̃ad j

jk (∂ )Ek(∂ )F(m̂1,m̂2) (35)

where F(m̂1,m̂2) is a unknown function to be determined. Eq. (35) can also be
rewritten in Cartesian coordinates as follows:

ui = ΛΛΛuiF
(m̂1,m̂2) (36)

where ΛΛΛui are the partial differential operators defined by

ΛΛΛuα
=−D2(1−ν)

4

 (1−ν)λ 4− (1−2ν)λ 2 ∂ 2

∂x2
1
− (1−2ν)λ 2 ∂ 2

∂x2
2

−ν
∂ 4

∂x4
1
−2ν

∂ 4

∂x2
1∂x2

2
−ν

∂ 4

∂x4
2

 ∂

∂xα

(37)

ΛΛΛu3 =−D2(1−ν)
4

 −(1−ν)λ 4 +(3−2ν)λ 2 ∂ 2

∂x2
1
+(3−2ν)λ 2 ∂ 2

∂x2
2

−(2−ν) ∂ 4

∂x4
1
−2(2−ν) ∂ 4

∂x2
1∂x2

2
− (2−ν) ∂ 4

∂x4
2

 (38)

Then, by using Eq. (2) we also have the corresponding shears and moments as
follows:

Qα = ΛΛΛQα
F(m̂1,m̂2) (39)

Mαβ = ΛΛΛMαβ
F(m̂1,m̂2) +

δαβ νxm̂1
1 xm̂2

2

λ 2(1−ν)
(40)

where ΛΛΛQα
and ΛΛΛMαβ

are the partial differential operators defined by

ΛΛΛQα
=−D3λ 2(1−ν)2

4

(
λ

2 ∂ 2

∂x2
1

+λ
2 ∂ 2

∂x2
2

− ∂ 4

∂x4
1

−2
∂ 4

∂x2
1∂x2

2

− ∂ 4

∂x4
2

)
∂

∂xα

(41)

ΛΛΛMαβ
=−D3(1−ν)2

4

(
δαβ

R1

(1−ν)
+R2

∂ 2

∂xα∂xβ

)
(42)
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with

R1 = ν(1−ν)λ 4 ∂ 2

∂x2
1

+ν(1−ν)λ 4 ∂ 2

∂x2
2

−ν(1−2ν)λ 2 ∂ 4

∂x4
1

−2ν(1−2ν)λ 2 ∂ 4

∂x2
1∂x2

2

−ν(1−2ν)λ 2 ∂ 4

∂x4
2

−ν
2 ∂ 6

∂x6
1

−3ν
2 ∂ 6

∂x4
1∂x2

2

−3ν
2 ∂ 6

∂x2
1∂x4

2

−ν
2 ∂ 6

∂x6
2

(43)

and

R2 = (1−ν)λ 4− (1−2ν)λ 2 ∂ 2

∂x2
1

− (1−2ν)λ 2 ∂ 2

∂x2
2

−ν
∂ 4

∂x4
1

−2ν
∂ 4

∂x2
1∂x2

2

−ν
∂ 4

∂x4
2

(44)

Then we can substitute Eq. (35) into Eq. (34) and use Eqs. (14) and (16) to have
the governing equation for Fas follows:

−D3λ 2(1−ν)2

4
(∇2−λ

2)∇2∇2F = xm̂1
1 xm̂2

2 (45)

The solution of Eq. (45) can be found in Tsai (2008) as follows:

F(m̂1,m̂2) =
4F(m̂1,m̂2)

1

D3λ 4(1−ν2)
+

4F(m̂1,m̂2)
2

D3λ 6(1−ν2)
−

4F(m̂1,m̂2)
3

D3λ 6(1−ν2)
(46)

with

F(m̂1,m̂2)
1 =

[ m̂2
2 ]

∑
l=0

(−1)l(l+1)m̂1!m̂2!x
m̂1+2l+4
1 x

m̂2−2l
2

(m̂1+2l+4)!(m̂2−2l)!

F(m̂1,m̂2)
2 =

[ m̂2
2 ]

∑
l=0

(−1)lm̂1!m̂2!x
m̂1+2l+2
1 x

m̂2−2l
2

(m̂1+2l+2)!(m̂2−2l)!

F(m̂1,m̂2)
3 =

[ m̂1
2 ]

∑
l1=0

[ m̂2
2 ]

∑
l2=0

−(l1+l2)!m̂1!m̂2!x
m̂1−2l1
1 x

m̂2−2l2
2

λ 2l1+2l2+2l1!l2!(m̂1−2l1)!(m̂2−2l2)!

(47)

which are the solutions for
∇2∇2F(m̂1,m̂2)

1 = xm̂1
1 xm̂2

2

∇2F(m̂1,m̂2)
2 = xm̂1

1 xm̂2
2

(∇2−λ 2)F(m̂1,m̂2)
3 = xm̂1

1 xm̂2
2

(48)

Eq. (36), Eqs. (39)–(40) and Eq. (46) are sufficient for the required analytical
particular solutions.
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6 Implementation of particular solutions

In the practical implementation of particular solutions, we first approximate the ar-
bitrarily distributed loading q(x1,x2) by Chebyshev polynomials in terms of mono-
mials given in Eq. (31). Then in the spirit of the MPS, we can approximate the
particular solutions corresponding to q(x1,x2) by the following formulas:

ũ j(x1,x2) =
M1

∑
m̂1=0

M2

∑
m̂2=0

âm̂1m̂1ΛΛΛu j F
(m̂1,m̂2) (49)

Q̃α(x1,x2) =
M1

∑
m̂1=0

M2

∑
m̂2=0

âm̂1m̂1ΛΛΛQα
F(m̂1,m̂2) (50)

M̃αβ (x1,x2) =
M1

∑
m̂1=0

M2

∑
m̂2=0

âm̂1m̂1

(
ΛΛΛMαβ

F(m̂1,m̂2) +
δαβ νxm̂1

1 xm̂2
2

λ 2(1−ν)

)
(51)

In Eqs. (49)–(51), we shall use the analytical particular solutions derived in the
previous section. Although the explicit forms of âm̂1m̂2 and the analytical particu-
lar solutions are very complex, its coding is not very difficult. In Fig. 2, we give
the flowchart for the implementation of ũ1(x1,x2). Furthermore, it should be un-

derstood that terms, such like ΛΛΛu1

(
xm̂1+2l+4

1 xm̂2−2l
2

)
, can be computed by coding

a subroutine for handling
∂ l2(xl1)

∂xl2
when a real number x and non-negative integers

l1 & l2 are given. In the solution procedure, there are several summations which
can be easily coded by the multiple loops. For example, Eq. (25) is able to be
implemented by the pseudo codes depicted in Fig. 3. In the whole computation
procedure of the MPS, it can be observed that no book keepings and matrix inverses
are required.

7 MFS-MPS formulation

After the particular solutions and the fundamental solutions are introduced, we are
in a position to develop the MFS-MFS formulation for problems of Reissner plates
governed by Eq. (4) with boundary conditions given in Eq. (7). As usual, the
MFS-MPS formulation begins with the principle of superposition

u j = uh
j +up

j (52)

In which the particular solution up
j satisfies

Li j(∂ )up
j =−Ei(∂ )q (53)
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Figure 2: Flowchart for the implementation of ũ1(x1,x2)
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1 2m ma 0 m Mα α≤ ≤ . Figure 3: The pseudocode for computing am1m2 for all 0≤ mα ≤Mα .

without specifying any boundary condition. Then the homogeneous solution uh
j

requires

Li j(∂ )uh
j = 0 (54)

with the following boundary conditions:

Bi ·uh = bi−Bi ·up (55)

where uh = (uh
1,u

h
2,u

h
3) and up = (up

1 ,up
2 ,up

3).
By applying the MPS based on Chebyshev interpolations, the particular solution
governed by Eq. (53) should be approximated by

up
j
∼= ũ j(x1,x2) (56)
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where ũ j(x1,x2) have been introduced in Section 5 and Section 6. Before the intro-
duction of the MFS to solve the homogeneous solution governed by Eqs. (54) and
(55), we also need Bi ·up which can be obtained by using Eqs. (49)–(51).

Now, we are ready to solve the homogeneous solution by the MFS. Formally in the
applications of the MFS the homogeneous solution can be approximated by

uh
j
∼=

3

∑
k=1

N

∑
l=1

Ak
l u∗jk(x,sl) (57)

where u∗jk(x,sl) is the fundamental solution derived in Section 4, and sl are N
sources points, which are typically distributed away from the boundary to avoid the
singularity when x and sl coincide. Here, Ak

l are the coefficients to be determined.
If we collocate Eq. (57) to the boundary conditions in Eq. (55) at N boundary
points, we obtain a linear system with 3×N unknowns, Ak

l , and 3×N equations,
which can be solved if the system is nonsingular. After, Ak

l are solved, we have the
homogeneous solution as addressed in Eq. (57). Details of the MFS can be found
in the theoretical work of Bogomolny (1985). Also Tsai, Lin, Young, and Atluri
(2006) discussed the locations of the source and boundary collocation points. Fig.
4 gives a typical geometrical configuration of the MFS-MPS formulation, where xl

is the collocation points corresponding to the source point, sl . 

 

Ω  

Γ

ls
lx  

c  

1 2( , )b bx x

1 2( , )a ax x  

Figure 4: Geometry configuration of the MFS-MPS.

After the homogeneous solution uh
j and the particular solution up

j are solved, we
can apply the principle of superposition (Eq. (52)) to get the sought solution.



264 Copyright © 2009 Tech Science Press CMES, vol.45, no.3, pp.249-271, 2009

8 Numerical results

In order to validate the proposed MFS-MPS formulation, three numerical cases are
considered. Typically, D = λ = 1000 and ν = 0.3 are selected in these numerical
studies. Furthermore, in the applications of the MFS we uniformly locate sixty
boundary field points and place the source points stipulated out on a ten times larger
artificial boundary as depicted in Fig. 4 according to the study of Tsai, Lin, Young,
and Atluri (2006). These configurations are set up through a preliminary study.
This typical setup has been done without thorough explorations since we mainly
concentrate on the validation of the derived particular solutions in this study. The
root mean square errors (RMSEs) of the numerical solutions are defined by

uRMSE =

√√√√√ 3
∑

i=1

L
∑

l=1
(uNUM

i,l −uANA
i,l )2

3L
(58)

where uNUM
i,l is the numerical solution obtained by the MFS-MPS formulation at

the l-th point of the L considered positions and uANA
i,l is the corresponding analytical

solution of the problem. Here, L shall be chosen to be large enough to ensure the
utilization of the RMSEs.

On the other hand, a usual way to validate a numerical method is to set up some
analytical solution without the enforcement of the boundary conditions. In our
numerical experiments, we solve the following Reissner plate problem:

Li j(∂ )u j =−DEi(∂ )sinx1
(
sinhx2 + x2

2 sinhx2
)

(59)

Analytical solutions of the problem are

u1 =

cosx1

 −6ν
(
−8x2 +

(
1+4x2 +2x2

2

)
coshx2−2(1+ x2)sinhx2

)
−λ 2 (1−ν)

(
48x2−6(1+ x2)

2 coshx2

+
(
9+9x2 +6x2

2 +2x3
2

)
sinhx2

)


48λ 2 (1−ν)
(60)

u2 =
sinx1

(
−6ν

(
−8+2(1+ x2)coshx2 +

(
−1+4x2 +2x2

2

)
sinhx2

)
−λ 2 (1−ν)

(
48+

(
−3−3x2 +6x2

2 +2x3
2

)
coshx2 +3sinhx2

) )
48λ 2 (1−ν)

(61)
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u3 =

sinx1

 −6(2−ν)
(
−8x2 +

(
1+4x2 +2x2

2

)
coshx2−2(1+ x2)sinhx2

)
−λ 2 (1−ν)

(
−48x2 +6(1+ x2)

2 coshx2

−
(
9+9x2 +6x2

2 +2x3
2

)
sinhx2

)


48λ 2 (1−ν)
(62)

Example 1: First of all, we solve the problem defined in Eq. (59), in [−1
4 , 1

4 ]×
[−1

4 , 1
4 ], subjected to clamped boundary conditions, defined in Eqs. (7) and (10)

with bi being set up according to the analytical solutions in Eqs. (60)∼(62).

RMSEs 8.15E-12 3.44E-15 3.44E-15 3.43E-15 1.85E-15

Table I: The RMSEs for Example 1
4Mα = 8Mα = 20Mα =12Mα = 16Mα =

 

Table I gives the RMSEs for different M1 and M2 in which excellent accuracy can
be observed.

Example 2: Then, we solve the same problem but we change the boundary condi-
tions to the free boundary conditions (Eqs. (7) and (11)) on one side.

RMSEs 3.12E-08 1.02E-13 9.77E-14 3.07E-13 3.40E-10

Table II: The RMSEs for Example 2
4Mα = 8Mα = 20Mα =12Mα = 16Mα =

 

Table II addresses the RMSEs of the numerical results in this example. The ac-
curacy is also great although it is slightly worse than the previous case. This can
be expected since the free boundary conditions are imposed. Furthermore, the ill-
conditioning of Chebyshev interpolation can be observed for Mα ≥ 16, which is a
usual phenomenon of Chebyshev interpolations. In our further researches, we will
try to remedy the ill-conditioning of Chebyshev interpolation by trying the scheme
derived by Liu and Atluri (2009) or Liu, Yeih, and Atluri (2009).

Example 3: Finally, we solve a clamped Reissner plate problem on a peanut de-
fined by

r(θ) = 0.3

√
cos2θ +

√
1.1− sin2 2θ 0≤ θ ≤ 2π (63)
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where (r,θ) is the usual polar coordinate. In this study, we perform Chebyshev
interpolation in a rectangular domain defined by [−0.45, 0.45]× [−0.18, 0.18].
Table III gives the RMSEs for this problem, which also performs nicely. This
result demonstrates the applicability of the proposed method for irregular domains.

RMSEs 5.58E-12 9.32E-14 9.34E-14 3.49E-11 5.54E-07

Table III: The RMSEs for Example 3
4Mα = 8Mα = 16Mα = 20Mα =12Mα =

 

9 Discussions

The method of particular solutions for problems of Reissner plate in bending under
arbitrary loading are developed. In the solution procedure, the arbitrary loading
term is approximated by Chebyshev polynomials in terms of monomials. Then, the
analytical particular solutions corresponding to the monomials are derived. In the
derivations of the analytical particular solutions, the three coupled second-ordered
governing equations are transformed into a single sixth-order PDE, whose analyti-
cal particular solutions have been found in the author’s previous study, by the Hör-
mander operator decomposition technology. In our implementation of the method
of particular solutions, no book keepings and matrix inverses are required.

After the particular solution is solved, the homogeneous solution is formally solved
by the method of fundamental solutions, in which the fundamental solutions are
also derived by the same framework for finding the analytical particular solutions.
Numerical examples are carried out to validate the proposed numerical scheme. By
the virtue of the exponential convergences of both the method of fundamental so-
lutions and Chebyshev interpolations, our numerical solutions are highly accurate.

Acknowledgement: The National Science Council of Taiwan is gratefully ac-
knowledged for providing financial support to carry out the present work under the
Grant No. NSC 97-2221-E-464-002.
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