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An Integrated Finite Strip Solution for Box Girder Bridges
and Slab-on-girder Bridges

Moe M. S. Cheung1, Zhenyuan Shen2 and Ben Y.B. Chan3

Abstract: In view of the urgent need for an efficient and accurate structural anal-
ysis method in bridge design practice, this paper introduces a total integrated an-
alytical solution for multi-span, continuous slab-on-girder and box girder bridges,
by modeling the bridge deck and the piers together, using the finite strip method
(FSM). FSM has been well accredited for its efficiency in the structural analysis
of bridges, reducing the time required for data input and analysis without affecting
the degree of accuracy. By using a continuously differentiable smooth series in the
longitudinal direction, a complex 3D problem is reduced to a 2D problem using the
FSM. However, difficulties are encountered when components of different orienta-
tion, such as the piers, are included to the formulation. Thus, the analytical model
developed using the conventional FSM is limited to the super-structures, without
proper consideration of the interactions between the bridge deck (super-structure)
and piers (sub-structure).
In this regard, a cantilever type of pier strip element is formulated by the authors,
based on the spline finite strip concept, which is compatible with the well developed
spline finite strip bridge deck. In addition, by combining the piers and the bridge
deck altogether in a single finite strip formulation, with some appropriate connect-
ing boundary conditions, the time required for both static and dynamic analysis can
be significantly reduced.
In this paper, the development and verification of the vertical cantilever strip is in-
troduced and the overall integrated method of analysis is presented with the aid of
numerical examples. In addition, the efficiency of the proposed approach in seis-
mic analysis using the Pseudo Excitation Method (PEM) is also demonstrated as
an extension of its application.
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1 Introduction

The quasi-static analysis approach in bridge design has been used for over a cen-
tury. However, with the successful application of stiff and light-weight composite
materials in recent years, the clear span length of bridges nowadays are increasing
at a faster pace than ever. Consequently, the critical design criteria have shifted
from the static ultimate and serviceability considerations to the dynamic driven
failure mechanisms. It is becoming obvious that the dynamic characteristics of
these structures have become significant and the conventional design approach is no
longer appropriate. Nevertheless, the formulation of a FEM model and the setting
up of boundary conditions of a three dimensional (3D) bridge for dynamic analysis
is very complicated and time consuming, and this makes the dynamic analysis of
long span bridges extremely difficult in real design process. Besides, the conver-
gence rate of the conventional FEM in dynamic problems is usually slow, since the
nonlinearities associated with the flexible bridge structures lead to a significant re-
distribution of internal forces. One of the solutions for improving the convergence
rate is to use very small elements throughout the structure, resulting in a large
number of degrees of freedom. Although, some extended techniques, such as the
mesh-free approach [Dang and Sankar (2008) and Hagihara (2007)], have been de-
veloped recently to accelerate the FEM analysis, the difficulty for FEM to perform
large-scale problem is still quite obvious. In this regard, two streams of technique
were vigorously developed in recent years to reduce the computational demand: the
Boundary Element Method (BEM) and the Finite Strip Method. The BEM takes
advantage of the finite-part integrals to reduce the apparent dimension of the model.
With its absolute generality and the extended solver developed in recent years [He
et. al. (2008), Liu (2007), Owatsiriwong et. Al. (2008), etc.], the application of
BEM has been extended to shell problems [Albaguergue and Aliabodi (2008)] and
three-dimensional interface problems [Wang and Yao (2005, 2008)]. In addition,
BEM has also been proven to be able to perform crack and fracture analysis [Zhou
et. Al. (2008), Shiah and Tan (2000)]. However, the formulation for the BEM
problem is still quite complicated and is usually applied together with the FEM
[Liu and Yu (2008)].

On the other hand, FSM seems to have provided an ideal solution for bridge anal-
ysis, by reducing the input-output time requirement and the computational loading
demand. Pioneered by Cheung [Cheung (1976), Cheung et. al. (1982)] and the
first author [Cheung and Cheung (1970), (1971), (1972)], FSM is a well-known
numerical method in structural analysis and has been well-recognized as one of
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the most efficient tools for the analysis of bridge super-structures due to its semi-
analytical nature as well as its pre-set boundary conditions [Cheung, Li and Chidiac
(1996)]. Early versions of the FSM, devised in the 1960s, were restricted to regular
prismatic structures only. However, the robustness of the approach attracted many
bridge engineers to extend the application in the past few decades. Since the devel-
opment of the B3 spline function and spline finite strips by Prenter (1975), FSM has
been extended for the analysis of more complex structures and problems. Among
such problems are buckling and vibration analysis of composite laminated plates
[Yuan and Dawe (2004)], nonlinear analysis of Mindlin plates, fracture problems
[Cheung and Jiang (1996)] as well as the analysis of double curvature laminated
shells and buckling of thin-walled shell structures [Cheung and Kong (1995)]. The
semi-analytical FSM is effective in reducing the computational effort needed for
relatively simple structures with regular geometries, and made of isotropic or or-
thotropic materials; while the Spline Finite Strip Method (SFSM) is efficient and
flexible in handling structures with complex boundary conditions, anisotropic mate-
rial properties, as well as complicated loading conditions. Wang and Zhang (2004)
summarized the advantages and constraints of FSMs in a recent review. The FSM
is an ideal approach for analyzing the dynamic properties of bridge deck structures,
especially when dealing with slab-on-girder and box girder structures that have
pre-set boundary conditions.

In spite of the large number of publications on the use of FSM in superstructure
analysis, the application of the existing FSM in full-bridge analysis is limited. The
FSM adopts a continuously differentiable smooth series in the longitudinal direc-
tion, and difficulties are encountered in combining different types of structural com-
ponents in different directions. It is not possible to insert an extra component at an
intermediate point within a strip, from the finite strip point of view. Therefore, the
analytical model developed using the conventional finite strip method is limited to
super-structures with the piers of the bridge replaced by some assumed boundary
conditions. However, this assumption is limited to quasi-static analysis, in which
only the stress distribution along the girders and slab of the bridge super-structures
is required. Without physical piers being included in the finite strip model, the in-
teractions between the bridge deck and the piers cannot be properly investigated.
An alternative solution for considering the pier effect is to combine the finite strip
bridge deck with piers modeled by other types of element, such as the boundary
elements, and the interactions between the bridge deck and the piers can be ob-
tained via an iterative process. Nevertheless, this approach is effective for simple
structures under static/quasi-static loading only. When complicated structures or
structures under dynamic excitation, such as non-uniform seismic analysis, are be-
ing considered, such simplification can no-longer be adopted. For instance, the
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ground excitations are transmitted from the piers to the super-structure and the dy-
namic characteristics of the piers play an important role in the prediction of the
bridge responses. It has also been demonstrated in several major earthquake events
that many cases of seismic damage to bridges were caused by the excessive defor-
mation of the piers.

In this paper, a general integrated framework is developed to solve the static and
dynamic structural problems in an efficient and vigorous manner, under the FS
environment. In order to achieve a full bridge model with high accuracy, the authors
have reformulated the conventional spline finite strip element to describe the piers
in a finite strip formulation and have developed an integrated procedure to connect
the pier strips to the deck strips, considering the interactions between them. The
details for the modeling of piers connecting to bridge super-structures in the FS
formulation, including the development of the vertical-cantilever pier strips and
the combination technique for strips in different orientation, are covered in the
following sections. In addition, the efficiency and effectiveness of the approach is
discussed using some real bridge numerical examples.

2 Formulation of the piers in finite strip environment

The original idea for the FSM was to reduce the dimensions of a long span structure
via the implementation of an analytical solution along the longitudinal direction.
Therefore, the formulation of the conventional strip elements is limited to some
common boundary conditions for the bridge deck only. To provide a total solution
for bridge analysis in the finite strip formulation, with consideration of the piers, a
special type of strip element is derived from the principle of the finite strip concept.
To maintain compatibility and uniqueness throughout the whole structure, the more
general B3 spline finite strip function in the longitudinal direction is adopted as
the basis for the development of the cantilever pier strip’s displacement field. In
the transverse direction, a cubic polynomial is applied to represent the variation
of the vertical displacement, whereas linear interpolation is adopted for the in-
plane displacements. The B3 spline function is a piecewise cubic polynomial with
continuity over the entire interval up to the second derivative. For a conventional
B3 spline finite strip, in order to interpolate an arbitrary function f (y) by the spline
functions, f (y) is divided into several sections, known as knots. For an equally
spaced spline function Φm(y)with the center at y = ym, the B3 spline function is
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defined as [Prenter (1975)]:

 
(1)

in which h is the width of these equal sections.

The spline functions centered at all the knots comprise a series of functions that can
be used to interpolate an arbitrary function, and the series can be expressed as:

f (y) =
r+1

∑
m=−1

amΦm(y) (2)

in which the values of am are coefficients determined by the required boundary
conditions.

The solution of each section is in connection with the four spline functions, which
are the functions centered at the two ends of the section and the two knots next
to those ends, respectively. Thus, two additional knots are needed to complete the
interpolation of the whole function. For a strip divided into r sections, r + 3B3

spline functions are needed.

In the formulation of SFSM, it is better to have the location of the supports and the
concentrated load coinciding with the knots on the nodal lines, in order to obtain
satisfactory results. Therefore, in the case of unequally spaced knots being adopted,
the spline function centered at ym can be expressed as:

Φm(y) =



0 y < ym−2

f1 ym−2 ≤ y < ym−1

f2 ym−1 ≤ y < ym

f3 ym ≤ y < ym+1

f4 ym+1 ≤ y < ym+2

0 ym+2 ≤ y

(3)
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where

f1 =
(y− ym−2)

3

(ym+1− ym−2)(ym− ym−2)(ym−1− ym−2)

f2 = f1−
(ym+2− ym−2)(y− ym−1)

3

(ym+2− ym−1)(ym+1− ym−1)(ym− ym−1)(ym−1− ym−2)

f3 = f4−
(ym+2− ym−2)(ym+1− y)3

(ym+1− ym−2)(ym+1− ym−1)(ym+1− ym)(ym+2− ym+1)

f4 =
(ym+2− y)3

(ym+2− ym−1)(ym+2− ym)(ym+2− ym+1)

(4)

Considering the situation with the bridge deck resisting in-plan stresses and bend-
ing, the flat shell spline finite strip [Cheung and Fan (1983)] is chosen to model the
deck, as shown in Fig. 1. For each knot, four degrees of freedom, three translational
degrees-of-freedom (u, v, w) and one rotational degree-of-freedom (θ = dw/dx),
were assigned respectively.

 

Figure 1: Flat shell spline finite strip

Defining x, y and z as the transverse, longitudinal and vertical directions of the
shell strip, respectively, the corresponding displacements u, v and w were chosen,
to satisfy the preset boundary conditions [Cheung and Li (1990); Cheung, Li and
Jaeger (1992)]:
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(5)

where X = x/b, b is the width of the strip; r is the total number of longitudinal
sections on a nodal line; uim, vim, wim and θ im are the displacement parameters of
the knot m on nodal line i; Φm (y) is the B3 spline function centered at ym.

As shown in Eq. 5, the in-plane displacements u and v are modeled by linear
functions in the transverse direction, while the spline functions are assigned in
the longitudinal direction. Similarly, the bending displacements and shapes are
modeled by a cubic Hermite polynomials in the transverse direction and by spline
functions in the longitudinal direction. The formulation procedure for the pier strip
is similar to the conventional spline finite strip.

To develop a strip for the formulation of the piers, it is necessary to start by achiev-
ing a continuous shape function which satisfies the bending behavior and the bound-
ary conditions for a cantilever-behaved pier. Consider a vertical cantilever strip,
fixed at one end while leaving the other end free, as shown in Fig. 2.

 

Figure 2: Vertical cantilever strip element

The global z-direction of the column strip is similar to the local v-direction in the
conventional spline finite strip, and is controlled by the in-plane stiffness in the
corresponding direction. Similarly, the global v-direction of the column strip is
similar to the local z-direction of the conventional spline finite strip. According
to the above information, the displacement function for the column strip can be
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expressed as:

 
(6)

With the assumed displacement functions and the preset boundary conditions, the
shape function of the column strip, N, can be developed using the traditional finite
element concepts. It should be noted that all strip elements in the finite strip method
must come with the preset boundary conditions. Therefore, the strip developed for
the piers must satisfy the fixed-free boundary condition, as for a vertical cantilever.
Once the shape function is defined, the stiffness matrix ([Kc]) and the mass matrix
([Mc]) of the vertical-cantilever pier strip can be calculated using the following
equations:

[Mc]mn =
∫

ρh [N]Tm [N]n dA (7)

[Kc]mn =
∫

[B]Tm [D] [B]n dA (8)

in which ρ is the density of the strip and h is the thickness of the strip; [D] and [B]
are the elastic matrix and the strain matrix respectively; [N] is the shape function
matrix.

3 Parametric study of the pier modeled by FSM

To investigate the accuracy of the proposed pier model, a full parametric study has
been performed. The study tried to look at the accuracy of the finite strip pier, com-
pared with the FEM solution, for columns with different dimensions and different
loading combinations. Concrete columns of different dimension ratios (height [h]:
width of strip [b]: strip thickness [t]) were investigated, with h ranging from 5m to
30m, while both b and t ranged from 0.5m to 3 m, respectively. To investigate the
top deflection of the columns in different directions, five different load cases were
considered, including the combined effect of axial and bending forces, as shown in
Fig. 3. For the FEM solutions, models were constructed in SAP2000 using general
shell elements for b/t ratios larger than 1.5 or frame elements for b/t ratios less than
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Figure 3: Column Strip – configuration for parametric study

1.5. Besides, the FEM models were finely meshed in all directions to achieve a
more accurate result.

The result of the parametric study demonstrated that the finite strip columns can
accurately model all types of column behaved pier structures for all loading condi-
tions except load case number 5. In general, the difference increases as the height
of the column decreases, but the absolute difference between the two methods is
less that 2% in all trials. On the other hand, the percentage error for a combination
of axial load and lateral load in the x-direction (load case number 5 with combined
axial and lateral actions), as shown in table 1, suggests that the proposed strip is
still capable of modeling the deflection for most columns. However, as the column
becomes extremely short, with a very large sectional area, the percentage differ-
ence between the FSM and the FEM solution increases. When a very stiff short
column under axial and bending forces is being considered, the deflection is highly
restrained and influenced by the boundary condition and the preset shape function
of the cantilever strip cannot accurately represent the actual deflection behavior in
such a case. Nevertheless, a pier with height less than 6m and having a sectional
area larger than 6m2 is relatively unlikely in reality.

4 Deck-pier connectivity

As discussed in the previous sections, the beauty of the FSM is the ability to reduce
a 3D problem into a sectional 2D problem by introducing an analytical solution in
the longitudinal direction. In the longitudinal direction, a strip is ideally defined
by the preset boundary conditions at the two ends and some intermediate knots
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Table 1: Difference in top drift between FEM and FSM for columns (Ax-
ial+Lateral)

Col. Size (m)
% Diff.

Col. Size (m)
% Diff.

b t h b t h
0.5 0.5 5 1.143 3 0.5 5 1.892
0.5 0.5 5.5 1.000 3 0.5 5.5 1.746
0.5 0.5 6 0.887 3 0.5 6 1.108
0.5 0.5 7 0.728 3 0.5 7 0.597
0.5 0.5 8 0.620 3 0.5 8 0.237
0.5 0.5 10 0.486 3 0.5 10 0.159
0.5 0.5 15 0.345 3 0.5 15 0.476
0.5 0.5 30 0.253 3 0.5 30 0.438
0.5 1 5 0.375 3 1 5 0.300
0.5 1 5.5 0.383 3 1 5.5 0.277
0.5 1 6 0.398 3 1 6 0.522
0.5 1 7 0.394 3 1 7 0.507
0.5 1 8 0.407 3 1 8 0.907
0.5 1 10 0.419 3 1 10 0.687
0.5 1 15 0.444 3 1 15 0.717
0.5 1 30 0.450 3 1 30 0.499
0.5 3 5 0.767 3 3 5 23.095
0.5 3 5.5 0.717 3 3 5.5 20.452
0.5 3 6 0.750 3 3 6 15.278
0.5 3 7 0.460 3 3 7 12.267
0.5 3 8 0.619 3 3 8 4.124
0.5 3 10 0.370 3 3 10 6.289
0.5 3 15 0.437 3 3 15 3.368
0.5 3 30 0.454 3 3 30 1.131

only. The physical properties in the longitudinal direction of the strip are modeled
by continuously smooth functions and the concept of elements or nodes dose not
exist. Thus, without the nodal concept, the piers and the superstructure cannot
be connected under the conventional finite strip formulation, and this is becoming
the major obstacle for the application of FSM in real practice. Although the the
FSM has been widely recognized as an efficient tool in structural analysis, it is
still limited to a narrow range of applications, without an effective approach for
combining strips with different orientations in a single finite strip formulation.
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Under the concept of the spline finite strip, there are some pre-defined continuously
smooth functions in the longitudinal direction, and the knots available within the
strips are points for spline interpolation only. Unlike the nodal definition in FEM,
the properties of each knot in SFSM is a function of the properties of surrounding
knots , and a minimum of 2 extra knots is required to define the properties of a
particular knot. Although it is impossible to connect an extra element to a particular
knot, it is made possible by introducing a tiny rigid element to connect two knots
in each strip for force and displacement transfer.

Fig. 4 demonstrates a typical cross-shaped transition section, defined in such a
way that h is much smaller than H. By connecting two knots on each side, the
displacement of the internal knots within the rigid transition section can be defined.
Thus, compatibility for the displacements of the deck and pier is achieved, and the
integrated system of the spline finite strip model can be constructed. Depending on
the structure complexity, one may choose different values of h to meet the required
accuracy. The numerical study shows that, in most of the cases, h/H=0.001 is good
enough to achieve an acceptable tolerance of error (less than 0.5%), for engineering
analysis.

 

(a)                                                  (b) 

 Figure 4: (a) Typical transition section; (b) Transition section between Deck and
Pier

5 Accuracy of the finite strip full bridge model

To verify the accuracy and efficiency of the proposed integrated finite strip solution,
a concrete slab bridge model, as shown in Fig. 5, is presented here. The modulus
of elasticity E = 3.0× 104MPa, Poisson’s ratio is 0.2 and the material density is
2500 kg/m3. Both SFSM and FEM are adopted to model the static and dynamic
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behavior of the structure, and the results from the different methods are compared.

 
Figure 5: A Simple Slab Bridge: (a) 3D bridge model; (b) SFSM Model.

5.1 Accuracy

Three numerical methods were adopted to model the static behavior of the struc-
ture, the proposed integrated SFS model with piers, the coarsely meshed FE model
and the finely meshed FE model.

For the integrated SFS model, a FS full bridge model is constructed, using B3 spline
finite strip for the deck, vertical-cantilever strip for the piers and transition elements
for the bearings, as illustrated in the previous sections. The deck is divided into four
equal strips, while the pier is divided into two cantilever strips. Each deck strip is
composed of 32 sections as well as two additional transition sections. Each pier
strip is composed of 4 sections, as well as one transition section. For the coarsely
meshed FE model, the mass and stiffness of the bridges is constructed with five
degrees-of-freedom shell elements throughout the structure. The shell element is
derived from a combination of an in-plane element with translation in the local x
and y directions, and a bending element with translation is the local z direction,
plus bending above the local x and y directions. The deck is meshed with 32 by 4
elements, and the pier is meshed with 4 by 2 elements. For the finely meshed FE
model, which is an indicator for a more accurate solution, finely meshed standard
shell elements are employed to construct the model, with six degrees-of-freedom
at each node.

For the static analysis, the ability of the transition element to transfer loading be-
tween the deck strip and the CS is assessed. Four load cases, with constant 1000kN
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point forces acting on different structure components and in different directions,
were assigned to the models as shown in Fig. 5b. The vertical and horizontal
drifts along different nodal lines, determined from the three numerical methods,
are summarized in tables 2 to 5. It is seen that the displacements calculated from
the integrated approach agree well with the FEM results for all loading conditions,
which indicates that the proposed approach can successfully model a full bridge
structure in the finite strip environment, taking the pier-bearing-deck interaction
into consideration. Besides, it can be observed from the static analysis result that
the displacement determined from the integrated method is in better agreement with
the finely meshed FE model. It is suggested that, even with similar node definitions
as the coarsely mesh FE model, the proposed integrated approach generates a more
accurate result than the FE method.

Table 2: Load Case (a)

 

5.2 Efficiency

Taking advantage of the reduced matrix size in a finite strip formulation, the pro-
posed integrated approach can significantly reduce the computational effort de-
mand. The above computations were executed on a typical personal computer with
an Intel Core2 Duo CPU (1.66 GHz) and 3GB physical memory. The computer
times required by different methods are compared in table 6. It is clear that the
SFSM is more efficient and saves about 10% of the computer time. Considering it
is only the static analysis, the proposed SFSM will save even more time for compli-
cated dynamic analysis. Moreover, in order to achieve matching preconditions for
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Table 3: Load Case (b)

 

Table 4: Load Case (c)

 

analysis, similar meshes are chosen in the SFSM and the FEM models. However,
due to its semi-analytical property in the longitudinal direction, the number of sec-
tions for each strip in the SFSM model can be significantly reduced without losing
accuracy. Then the time for computation could be reduced, and greater efficiency
could be achieved.

6 Integrated Solution for Dynamics

In order to optimize the advantages of the integrated finite strip solution, in terms
of precision and efficiency, the authors adopted the Pseudo Excitation Method
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Table 5: Load Case (d)

 

Table 6: Computational time

Method SFSM Coarsely Meshed FEM
Computer time required
for static analysis

4.717s 5.296s

(PEM) for the dynamic analysis to obtain the response probability spectrum den-
sity (PSD) of the structure. The recently developed PEM is an accurate and highly
efficient dynamic analysis alternative for long-span structures [Lin (1992); Lin,
Sun, D.K., Sun, Y. and Williams (1997); Lin, Zhang and Li (2004); Zhang, Li, Lin
and Williams (2009)]. PEM is a modified response-spectrum method which has
demonstrated its high efficiency by considering less than 300 modes, making the
dynamic analysis process possible on a standard personal computer. Besides, the
PEM has been successfully applied to many practical engineering analyses and has
been proven to be effective and able to handle the seismic wave-passage effect in
long-span bridges.

With the characteristic property matrices well defined in the FS environment, the
conventional characteristic equation of motion can be constructed, and the dynamic
analysis procedure, using the same approach as for FEM, can be applied.

The dynamic motion equation of a discrete structure can be written as:

[M]{ü}+[C]{u̇}+[K]{u}= {p} (9)

where {u} is the relative displacement vector and {p} is the external force vector.

When the structure is subjected to uniform earthquake excitations, Eq. 9 can be
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modified as:

[M]{ü}+[C]{u̇}+[K]{u}=− [M]{r} üg(t) (10)

in which {r} is the vector indicating the DOFs, which is influenced by the ground
motion. üg(t) is the ground acceleration record of the excitation event.

Replacing the real excitation by the pseudo excitation, Eq. 10 can be rewritten as:

[M]{ü}+[C]{u̇}+[K]{u}=− [M]{r}
√

Süg(ω)eiωt (11)

in which Süg(ω) is the auto-PSD of the ground acceleration.

By applying the conventional response analysis method for multi-degree-of-freedom
systems, the pseudo displacement parameters of SFSM can be computed by the fol-
lowing equation:

{ũ(ω, t)}=
m

∑
j=1

γ jH j {ϕ} j

√
Süg(ω)eiωt (12)

H j =
1

ω2
j −ω +2iς jω jω

(13)

γ j =−{ϕ}T
j [M]{r} (14)

Here, ω j is the jth angular frequency associated with matrices M and K; {ϕ} j is
the corresponding normalized mode; ζ j is the jth damping ratio.

By substituting the pseudo displacement parameters into the displacement func-
tions (Eq. 5 & Eq. 6), the pseudo displacement responses

{
Ũ(ω, t)

}
are obtained.

Hence, the PSD matrix of the displacements can be computed from:

SU(ω) =
{

Ũ(ω, t)
}∗{

Ũ(ω, t)
}T

(15)

7 Numerical Examples

A typical three-span concrete box girder bridge model , as illustrated in Fig. 6, is
constructed by the proposed approach for further analysis. The deck and piers are
all modeled by four degrees-of-freedom B3 spline finite strips and the CSs respec-
tively. One transition section is adopted at each connection between the deck and
the pier. For all the components, the modulus of elasticity is E = 3.0× 104MPa,
Poisson’s ratio is 0.2, and the material density is 2500 kg/m3.
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(a) 

 

(b)                                                     (c) 

 

Figure 6: Three-span box girder bridge (a) 3D bridge model; (b) transverse cross-
section through the pier and deck; (c) numerical model.

7.1 Static Analysis

In this part, two load cases with constant 1000kN point forces are assigned to the
structure (see Fig. 6a). For the SFSM, each nodal line has 12 sections. For the
FEM, two different meshes are adopted. One (tagged as FEM-1) uses the same
mesh as the SFSM, which means that the top flange is divided into 12×4 elements.
For the other mesh (tagged as FEM-2), the top flange is divided into 24×4 elements.
The deflections along different directions from different methods are summarized
in tables 7 and 8. It can be observed that the integrated finite strip solution is
more accurate than FEM for the same mesh size in this model. It also indicates
that for the analysis of bridges, especially for long-span bridges with complicated
geometry, the proposed finite strip solution will be much more efficient than FEM
when achieving the same precision.
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Table 7: Load Case (a)

 

Table 8: Load Case (b)

 

7.2 Dynamic Analysis

The free vibration frequencies are extracted prior to the dynamic analysis and the
first few natural frequencies from SFSM and FEM are given in table 9.

In this analysis, multiple support excitations, including the wave passage effect, are
considered. An artificial seismic wave, illustrated in Fig. 7, is selected with the
acceleration record acting in the transverse direction. The velocity of the seismic
wave along the longitudinal direction is assumed to be 100m/s.

The PSD curves of the displacement responses of selected points on the deck and
pier (see Fig. 6a) are illustrated in Fig. 8. Since PSD indicates the magnitude of the
energy, as a function of frequency, it can be observed that these curves capture the
characteristics of the structure response under the described seismic wave, which
include the peaks of the first few natural frequencies and the drop of energy after
about 10 Hz. The overall PSD curve of the pier is lower than that of the deck;
however, the dynamic response of the pier can be quite critical at some frequencies.
Moreover, for normal bridges, the piers are often stiffer than the deck, and the piers
are more likely to be damaged during an earthquake. That is the reason why the
pier must be considered in the dynamic analysis and has lead to the integrated finite
strip solution being developed.
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Table 9: Natural Frequency of Box Girder Bridge

Mode Number
Frequency

Mode Shape
SFSM FEM-2

1 4.4973 4.2073 Sway (deck) symmetrical
2 8.8128 9.1936 Sway (deck) antisymmetri-

cal
3 9.3038 9.3387 Heave (deck) symmetrical
4 9.6399 9.5630 Heave (deck) antisymmet-

rical
5 12.4600 11.9040 Heave (deck) symmetrical
6 18.8880 18.6550 Bending (pier) symmetrical
7 19.6140 19.2880 Bending (pier) antisym-

metrical
8 20.9200 21.1790 Bending (pier) symmetrical

+
Sway (deck) antisymmetri-
cal

 
Figure 7: PSD of acceleration

8 Conclusion

This study has introduced a framework for constructing a full bridge model in the
finite strip environment, by formulating a new type of strip element for the mod-
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Figure 8: PSD of displacement response in transverse direction

eling of piers, and developing a special transition section to combine strips of dif-
ferent orientation. The piers modeled by the proposed finite strip method precisely
describe the bending behavior of the pier structures in a spline finite strip environ-
ment. In addition, the full bridge model, constructed by combining the pier strip
and the deck strip in a single finite strip formulation, can significantly reduce the
input-output procedures and the computational effort required for both static and
dynamic analysis. In this paper, the accuracy and efficiency of the proposed inte-
grated finite strip solution has been demonstrated via two numerical examples

The strip combination technique introduced in this study has overcome the obsta-
cles for the development of FSM. This has opened the door for complex dynamic
analysis to be performed in the finite strip environment and has brought this ef-
ficient and effective method into a new era. Taken as a typical example for the
extended application of the proposed approach, an innovative combination of the
two very robust approaches, the proposed integrated finite strip method and the
PEM, is introduced for seismic analysis.
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