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Fast Searching Algorithm for Candidate Satellite-node Set
in NLMG

Yufeng Nie1, Ying Liu2, Yuantong Gu3 and Xiangkuo Fan1

Abstract: The Node-based Local Mesh Generation (NLMG) algorithm, which
is free of mesh inconsistency, is one of core algorithms in the Node-based Local
Finite Element Method (NLFEM) to achieve the seamless link between mesh gen-
eration and stiffness matrix calculation, and the seamless link helps to improve the
parallel efficiency of FEM. Furthermore, the key to ensure the efficiency and reli-
ability of NLMG is to determine the candidate satellite-node set of a central node
quickly and accurately. This paper develops a Fast Local Search Method based on
Uniform Bucket (FLSMUB) and a Fast Local Search Method based on Multilayer
Bucket (FLSMMB), and applies them successfully to the decisive problems, i.e.
presenting the candidate satellite-node set of any central node in NLMG algorithm.
Using FLSMUB or FLSMMB, the NLMG algorithm becomes a practical tool to
reduce the parallel computation cost of FEM. Parallel numerical experiments vali-
date that either FLSMUB or FLSMMB is fast, reliable and efficient for their suit-
able problems and that they are especially effective for computing the large-scale
parallel problems.

Keywords: local mesh generation, uniform bucket, multilayer bucket, linear
quadtrees, neighbor searching, satellite node

1 Introduction

The increasing solving scale of the discrete system by finite element methods and
the rapid development of the software and hardware for parallel computers have
made it to be valuable to pay much attention to the parallel techniques of finite
element methods [Shephard et al. (1997); Bielak, Ghattas and Kim (2005); Ha,
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Seo and Sheen (2006); Rao et al. (2004); Hassan et al. (2004); Hajjar and Abel
(1989); Santiago and Law (1996)]. But the parallel skills in many literatures and
monograph just focus on each function block such as mesh generation, global stiff-
ness matrix forming, linear equation system solving, etc. [Saad (1996); Cartwright,
Oliveira and Stewart (2001); Du and Wang (2006); Bern, Eppstein and Teng (1999)].
This kind of research model ignores the influence on parallel efficiency coming
from the seam link characteristic between the different function block. Compar-
ing with the potential parallel algorithm for the meshless method [Atluri (2004);
Sladek and Sladek (2006); Moulinec et al. (2008); Griebel and Schweitzer (2000);
Danielson and Adley (2000); Danielson et al. (2000)], this is a great shortcoming.
In order to improve the parallel efficiency of the finite element software system, the
parallel mechanism of Node-based Local Finite Element Method (NLFEM) has
been proposed recently by Nie, Chang and Fan (2007). This new parallel mecha-
nism implements naturally the seamless link between pre-processing and main pro-
cessing, and breaks through the serial characteristics between them. One of core
techniques of NLFEM is the Node-based Local Mesh Generation (NLMG) Algo-
rithm in which the mesh generation process is based on nodes independently and
concurrently[Nie, Fan and Yuan (2006), Chang and Nie (2005), Yagawa (2004),
Maus (1984), Nie and Chang (2006)]. The NLMG algorithm, which is free of
mesh inconsistency, improves the efficiency of the parallel computation of finite
element method (FEM) by achieving the seamless link between pre-processing and
main processing.

It lays the foundation for the NLMG algorithm that every row in the global stiffness
matrix is determined by the element patches (collar domain) which are generated
by the corresponding central node. Selecting quickly the candidate satellite-node
set of central node is the key of NLMG algorithm, which has definitive influence on
computational efficiency and reliability of NLMG algorithm. The papers by Chang
et al. (2005) and Nie et al. (2006) employed the optimal exploring circle method
to find the candidate satellite-node set of central node, which guarantees no loss
of the candidate satellite-nodes of central node, and resulting in the mesh consis-
tency [Yagawa (2004)]. However, the work appointed the same initial exploring
circle radius for every central node in practical computation to guarantee including
its all satellite-nodes for each central node, then all of the nodes in the inclusive
exploring circle were found by Local Search Method as the candidate node set of
searching satellite-nodes. This idea of giving unified radius resulted in the huge
computational cost. When nodes aren’t distributed uniformly, the problem will be-
come serious. In addition, it is also very hard to determine this unified radius in
practical computation.

It is necessary to design a fast local search method for searching the candidate
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satellite-node set for each circle node in the domain. If nodal distribution is rela-
tively uniform, the Fast Local Search Method based on Uniform Bucket (FLSMUB)
which introduces the data structure of uniform bucket for finding the candidate
satellite-node set of central node is very fast and has very good performance [Ya-
gawa (2004); Fan, Nie and Chang (2008)]; If nodal distribution is nonuniform, the
data structure of uniform bucket isn’t suitable. It is necessary to design a more
adaptive and effective algorithm. Therefore a Fast Local Search Method based on
Multilayer Bucket (FLSMMB) is proposed in this paper.

Local Search Method [Nie and Chang (2006)] made use of the data structure of
uniform bucket, but the major shortcoming is that the initial searching circle radius
must be assigned uniformly and it increases significantly computational cost. This
paper presents the FLSMUB which gives a rational method of assigning initial ex-
ploring circle radius, and improves remarkably computational efficiency. Yagawa
(2004) used multilayer bucket in NLMG algorithm , but they only combined mul-
tilayer bucket with gift-wrapping method [Su, Robert and Scot (1995)] in NLMG
algorithm. We know that the gift-wrapping method needs a known Delaunay edge
resulting in increase of computational complexity. In order to avoid this problem,
the FLSMUB is modified. Using the data structure of linear quadtree in NLMG
algorithm fits naturally the variety of node density and doesn’t need the exploring
circle in searching process, so the algorithm is simpler and more adaptive. When
nodal distribution is uniform, its efficiency is worse than that of NLMG algorithm
using uniform bucket’s efficiency [Fan, Nie and Chang (2008)]. However, it isn’t
distinct.

The structure of this paper is as follows. Section 2 introduces NLMG. The data
structure of uniform bucket and the linear quadtree structure of multilayer bucket
are given in section 3; Section 4 gives the details of the searching algorithm of
candidate satellite-node set in NLMG algorithm including the FLSMUB and the
FLSMMB; The capability and adaptability of the new developed algorithm are val-
idated in section 6 through variable numerical examples under parallel environment
of distributed memory MIMD system; At final, the conclusion is given in section
7.

2 NLMG algorithm

The traditional mesh generation algorithms such as the famous Bowyer-Watson
incremental algorithm by Bowyer (1981) and Watson (1981), Guiba-Stolf divide-
and-conquer method by Guiba and Stolf (1985), and Fortune sweepline algorithm
by Fortune (1987) have characteristics as follows. In the implementation procedure
of these algorithms, the topological relations of nodes aren’t decided until global
mesh generation is finished, and it is to say that the mesh generations have global
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feature. In these algorithms , the element set relating to some nodes isn’t decided
until global mesh generation finished, so the stiffness matrix isn’t computed and as-
sembled until pre-processing completes. This global feature makes them impossi-
ble to complete seamless connection between pre-processing and main processing.
However, the NLFEM algorithm requires a mesh generation algorithm with local
feature. That is the topological relations of nodes are decided in the local region,
and mesh can be generated on nodes independently and concurrently. Therefore
the Node-based Local Mesh Generation algorithm (NLMG) has been developed.

NLMG algorithm is the core technique of NLFEM, and the new finite element par-
allel mechanism developed based on it can achieve naturally seamless link between
pre-processing and main processing. An effective NLMG algorithm must guaran-
tee that the local mesh elements generated in local region of each circle node are
just a part of optimal mesh in global region. NLMG method can avoid mesh in-
consistency, guarantee mesh quality, and, therefore, form the theoretical foundation
for the reliability of NLFEM method. Nie et al. (2006) and Chang et al. (2005)
proposed an initial NLGM algorithm which satisfies the above-mentioned require-
ment. However, it used the data structure of the uniform bucket in searching the
candidate satellite-node set locally. This method is too coarse, requires a unified
exploring circle radius, and poor efficiency.

In fact, the final aim of NLMG is to find the satellite-node set of each central node
in order to complete its local partition. Therefore, the key of NLMG algorithm
is how to find the candidate satellite-node set quickly and exactly, then to get the
satellite-node set for computation. If the uniform bucket is used, because this kind
of buckets have no response to the variety of node density, the exploring circle
is needed[Chang and Nie (2005); Nie and Chang (2006)]. The data structure of
uniform bucket is used to confirm and refine the exploring circle radius for each
central node and, then, to get the candidate satellite-node set. If the multilayer
bucket is used, because it can represent the variety of the node density, there are
relatively more buckets in the region with high nodal density, and less buckets in
the region with low nodal density. Therefore, the algorithm is simple and efficient
without the notion of exploring circle as we will see in the following sections.

3 The data structures of uniform bucket and multilayer bucket

3.1 Uniform bucket

The data structure of uniform bucket is relatively simple, and its algorithm is fast
and compact. For the node set in a computational region, the data structure of
uniform bucket is built in this paper as follows. Let M be the cardinality of the
node set. The information of nodes is organized and includes node serial number,
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Figure 1: Linear quadtrees code norm Figure 2: Example of linear quadtree
coding

coordinates, etc. The node serial numbers are: 0, 1, . . ., M−1.

Algorithm 1: The algorithm of building the data structure of uniform bucket in
computational region

Step 1 Choose a box which is able to cover the computational region and is as
possible as small. Let el be the length of its edge, and coordinates of its lower
sinister corner are (Cx,Cy).
Step 2 Divide the box into uniform square grids, number and record the coordinates
of each grid which are called bucket also in this paper. Let’s assume that there are n
square grids, so the average node number of each bucket is M/n, and the length of
the edge of all of these buckets is el/

√
n. Then we number buckets from the bucket

in the lower sinister corner (number 0) to the upper dexter corner (number n−1) in
the order of from left to right and from bottom to top, and in the same time record
the location of each bucket, that is the coordinates of its the lower sinister corner.
For every bucket,let integer k (0≤ k≤ n−1) be its number. Its location (Ckx,Cky)
is:

(
Cx+

el√
n
×
(

k− k×
⌊

k√
n

⌋)
,Cy+

el√
n
×
⌊

k√
n

⌋)

Step 3 Build the node information for each node, that is all nodes in computational
region are distributed into buckets, and the data structure is organized well. For
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each node i, let its coordinates be (Cix,Ciy), and the number of its bucket is:⌊
Ciy−Cy
el/
√

n

⌋
×
√

n+
⌊

Cix−Cx
el/
√

n

⌋
Fig. 1 plots a example for this algorithm.

3.2 Multilayer bucket

Constructing the data structure of multilayer bucket is complex compared with that
of uniform bucket. Quadtree, specially linear quadtree, is an important method to
represent binary image, and is widely used in research areas of computer graphics,
image processing, computer vision, robot and so on. The linear quadtree struc-
ture of multilayer bucket is constructed in this paper by recursion, and succeeds in
deciding the candidate satellite-node set in NLMG algorithm with it.

3.2.1 Code of linear quadtree

Because linear quadtree is partitioned by recursion, each box which does not satisfy
the requirement is divided into four sub-boxes. The codes of the four sub-buckets
are 0, 1, 2, 3 respectively, as shown in Fig. 3.

The code of linear quadtree has the following characteristics:

(1) Directionality. According to the size of the code in Fig. 3, the code increases
from west to east and from north to south.

(2) Hierarchy. After the mth partition, the quaternary code of the sub-bucket of the
mth level is:

q1q2 · · ·qm qi ∈ {0,1,2,3}, i = 1,2, · · · ,m.

(3) Compressibility. If the code is stored in quaternary form, it will need m digits
for a mth level sub-bucket. To save memory space, the quaternary code is trans-
formed into decimal code.

(4) Convertibility. When the quaternary code of a sub-bucket is known, its decimal
code and quaternary code can be converted reciprocally, i.e. the transformation is
both surjection and injection. That is one quaternary code is corresponding with
one decimal code and one lever number of primary quaternary code.

There are two kinds of neighbor for sub-bucket: one kind is sharing adjacent edge,
called edge neighbor; the other kind is sharing adjacent angle, called angle neigh-
bor. As Fig. 4 shown, sub-bucket 21 is a edge neighbor of sub-bucket 30 with
similar size, and sub-bucket 30 is a edge neighbor of sub-bucket 33 with differ-
ent size; sub-bucket 30 is a angle neighbor of sub-bucket 33 with similar size, and
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sub-bucket 30 is a angle neighbor of sub-bucket 231 with different size. The neigh-
bor searching technique of linear quadtrees is a important role in finding candidate
satellite-node set of central node with multilayer bucket.

Figure 3: Linear quadtrees code norm Figure 4: Example of linear quadtree
coding

3.2.2 Building the linear quadtree structure of multilayer bucket

The linear quadtree structure is used in finding the candidate satellite-node set in
NLMG algorithm. Let’s assume that the number of nodes is M, and the node serial
numbers are: 0, 1, . . ., M−1. The information of nodes is organized which includes
node serial number, coordinates, etc. The ending condition of recursion of bucket
partition is that the number of nodes in the bucket is no more than a positive integer
p.

For the convenience of searching, let the global variable bknum record the se-
rial number of the bucket which satisfies the requirement of partition according
to the order(starts with 0). The global array T codim[M][1] stores each node’s
bucket number, and its row number is equal to node number. The global array
in f ormbk[M][5 + p] stores the bucket information, and its row number is equal to
bucket number. Their implementation steps is following:

Algorithm 2: The algorithm of building the linear quadtree structure of multilayer
bucket in the computational region

Step 1 Choose the smallest square region which can covers the computational re-
gion, and call it as initial bucket. Let ed be the length of its edge, and (Dx,Dy) be
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the coordinates of the lower sinister corner. Then the bucket’s central coordinates
are (Dx + ed/2,Dy + ed/2). The list nodelist stores all node serial numbers, and
the lists getcode0, getcode1, getcode2 and getcode3 record the buckets’ quaternary
code after partition.

Step 2 Divide the bucket region into four sub-buckets, i.e. bucket 0, bucket 1,
bucket 2, bucket 3. The lists nodelist0, nodelist1, nodelist2 and nodelist3 store the
serial numbers of the nodes of bucket 0, 1, 2 and 3 respectively. The nodenum0,
nodenum1, nodenum2 and nodenum3 variables denote the numbers of the nodes in
bucket 0, 1, 2 and 3 respectively. It is valuable to notice that one node belongs to
one and only one bucket, especially for the nodes which locate just on the segments
of the dividing line of the sub-buckets, additional regulations are needed to satisfy
the above-mentation rule.

Step 3 For each new bucket(bucket 0, 1, 2 and 3), take bucket 0 for example, its
location of the lower sinister corner is (Dx,Dy+ed/2), and its edge length is ed/2.
Its current number 0 is putted in the getcode0 list. If the number of nodes nodenum0
included in bucket 0 is bigger than p, the bucket must be partitioned further, turn
back to Step 2; otherwise the bucket meets the partition requirement, the partition
stops, and go to the next step.

Step 4 For the buckets meeting the partition requirement,their quaternary codes are
transformed into decimal numbers. Row bknum of in f ormbk[M][5 + p] records
all the information corresponding to a bucket: the row number bknum denotes the
serial number of the bucket, the bucket decimal code, the bit size of quaternary
code, the bucket’s location(coordinates of the lower sinister corner), the node list
including in bucket. For each node belonging to the bucket, let its code be i(0 ≤
i < M), then the i row of array T codim[M][1] stores the bucket number.

Step 5 bknum⇐ bknum+1.

According to above steps, the data structure which is suitable for the quadtree struc-
ture of the candidate satellite-node set in NLMG algorithm can be built quickly and
effectively. Finally the value of bknum is the biggest bucket number.

The number of nodes in the multiply connected region in Fig. 2 is 880, where there
are 107 boundary nodes, and the nodal distribution is nonuniform. Let p = 5 be
the ending condition. The initial bucket location is (−1,−1), and its size is 2.
According to the recursive partition method as above, the value of bknum is 363,
this denotes the biggest bucket number is 363, and the number of buckets is 364.
The global array in f ormbk[M][5 + p] records the buckets’ information as Table 1
shows. The local array T codim[M][1] records the bucket number of each node as
Table 2 shows.
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Table 1: Bucket information recorded in global array, i.e. informbk[M][5+p]

Number Decimal value Level Location size nodes included
0 0 4 (-1.000000,0.875000) 0.125000 14 877
1 1 4 (-0.875000, 0.875000) 0.125000 15 867
2 2 4 (-1.000000,0.750000) 0.125000 13 868
3 3 4 (-0.875000, 0.750000) 0.125000 851
4 1 3 (-0.750000, 0.750000) 0.250000 16 827 828 849 850
...

...
...

...
...

...
272 47 3 (-0.250000,-1.000000) 0.250000 void
273 192 4 (0.000000,-0.125000 ) 0.125000 void
274 772 5 (0.125000,-0.062500) 0.062500 void
275 3092 6 (0.187500,-0.031250) 0.031250 56 105 155

...
...

...
...

...
...

363 255 4 (0.875000,-1.000000) 0.125000 42 879

Table 2: Information that each node belongs to a bucket is recorded in global array
Tcodim[M][1]

Code number 0 1 2 3 . . . 381 382 383 394 . . . 876 877 878 879
Bucket number 260 258 253 187 . . . 67 196 198 204 . . . 103 0 260 363

4 Fast local searching method of the candidate satellite-node set in NLMG
algorithm

The main purpose of NLMG algorithm without mesh inconsistency is to find the
satellite-node set of each central node accurately and quickly. In this sections
the fast searching methods based on the two data structures as previous devel-
oped, which are named as the Fast Local Search Method based on Uniform Bucket
(FLSMUB) and the Fast Local Search Method based on Multilayer Bucket (FLSM-
MB), are given. They are the major work of this paper.

4.1 Fast Local Search Method based on Uniform Bucket (FLSMUB)

When the node distribution is relatively uniform, using the uniform bucket struc-
ture is the best choice. FLSMUB is used to refine the initial circle radius and to
search for the candidate satellite-node set by uniform bucket. It is more efficient
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and practical compared with the unified circle radius method [3,6] to determine the
candidate satellite-node set.

After constructing the data structure of uniform bucket, each present computational
node A is called central node. The flow chart of the FLSMUB is plotted in Fig. 5,
and its detailed steps are given as follows.

Figure 5: The flow chart of the FLSMUB

Algorithm 3: The algorithm of FLSMUB

Step 1 Determine the initial circle radius r∼A of node A, and get the initial candidate
satellite-node set ∑

∼
A .

Step 2 Check whether the initial circle radius contains the whole region Ω or not. If

Ω⊆
{

x
∣∣∣||x−A||2 ≤ r∼A

}
, the candidate satellite-node set ∑A is the initial candidate

satellite-node set ∑
∼
A , and return.
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Step 3 Get optimal exploring circle radius rA by the optimization algorithm of the
initial exploring circle radius.

Step 4 If rA < r∼A , the initial candidate satellite-node set ∑
∼
A is used as the candidate

satellite-node set ∑A of the central node A, and return.

Step 5 Redefine the candidate satellite-node set ∑A using the exploring circle radius
rA and the data structure of uniform bucket, and return.

The theory by Nie and Chang (2006) ensures that the candidate satellite-node set
which is got by the above algorithm includes all the satellite nodes of the central
node. Only when the refined rA is greater than the initial circle radius, we rede-
fine its candidate satellite-node set by uniform bucket; otherwise, we still use the
unified circle radius. In addition, the refined rA is usually smaller than the initial
circle radius. So this fast algorithm is more efficient, and the results of numerical
examples in next section confirm this conclusion clearly.

As shown in Fig. 5, there are two steps using the uniform bucket technique. One is
the uppermost block diagram corresponding to Step 1 to define the initial exploring
circle radius and the candidate satellite-node set of the central node A, the other is
the last second block diagram corresponding to Step 5 using the refined radius rA to
redefine the candidate satellite-node set of the central node A, which will be used
as the final candidate satellite-node set ∑A of the central node A. The algorithm
details of Step 1 and Step 5 are given as follows:

Algorithm 4: (Step 1 of algorithm 3) The algorithm of the initial exploring circle
radius and the candidate satellite-node set of the central node A

Step 1 List MList records the order number of the outer layer bucket, and its initial
value is the order number of the bucket in which the central node A lies(i.e. the
central bucket); variable MR is a flag which states whether the candidate satellite-
node set ∑

∼
A meets the partition requirement or not [3]; the initial values MR =

f alse, ∑
∼
A = , the bucket layer Lp = 1.

Step 2 Put all the nodes in the bucket indicated by list MList into the candidate
satellite-node set ∑

∼
A .

Step 3 Check whether ∑
∼
A meets the partition requirement or not. Set MR = true

and turn to Step 5 if meets, or MR = f alse.

Step 4 Compute the outer adjacent buckets of he buckets indicated by MList. And
use the order numbers of these adjacent buckets to cover the original value of list
Mlist. Set the bucket’s level Lp = Lp+1. Turn back to Step 2.

Step 5 Remove the central node A from ∑
∼
A . Compute the initial searching circle

radius r∼A = (Lp+1)×d, and d is the edge length of each uniform bucket. Return.

Algorithm 5: (Step 5 of algorithm 3) The algorithm of using the refined radius rA
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to redefine the candidate satellite-node set of the central node A

Step 1 If Ω ⊆
{

x
∣∣∣||x−A||2 ≤ r∼A

}
, All the nodes in Ω is used as the candidate

satellite-node set ∑A (∑A = ∑), and return.

Step 2 According to the exploring circle radius r, define the exploring layer of
bucket Lp, the bucket layer counts from the central bucket(there is the central node

in it). Let d be the edge length of bucket, then Lp =
⌊

r
d

⌋
+2

Step 3 Search for all the buckets whose layer number does not exceed Lp counting
from the central bucket. Record these buckets as set Br

A. Its region covers fully the
searching circle of node A.

Step 4 Compute ∑A =
{

S
∣∣∣||S−A||2

∣∣∣,∀S ∈ U,U ∈ Br
A

}
\{A}, and be used as the

candidate satellite-node set of node A. That is, for every node included in each
bucket U of Br

A, it is a candidate node if the distance between the node and node A
is not bigger than the exploring radius r.

4.2 The Fast Local Search Method based on Multilayer Bucket (FLSMMB)

4.2.1 The procedure of FLSMMB

The data structure of multilayer bucket is constructed in section 3.2. Let’s induce
a parameter bklayer which is used to express the bucket layer number starting
with the central bucket in the computation. Because the size of multilayer bucket
varies with node density, there are relatively many buckets in the region of rel-
atively high node density, and there are relatively few buckets in the region of
relatively low node density. This fact makes it possible to control the searching
region for satellite-nodes of a central node by using the value of variable bklayer
defined property instead of the exploring circle used in the uniform bucket case.
Thus FLSMMB algorithm can be simple and efficient. Its core part is searching the
neighbor of quadtree. The detailed steps of FLSMMB is as follows.

Now, let’s mark the present computing node as node B. Let i(0 ≤ i < M) be its
code, and the bucket is situated in be called as the central bucket.

Algorithm 6: The algorithm of FLSMMB

Step 1 Record the list of the outer layer buckets in list exbkList, the initial value is
the bucket number of the central bucket which stored in T codim[i][0]. Set the initial
candidate satellite-node set of control node B ∑

∼
B = φ , and the initial bucket layer

Ly = 1.

Step 2 Put all of the nodes of each bucket in exbkList into the candidate satellite-
node set ∑

∼
B .

Step 3 If Ly == bklayer, go to Step 5.
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Step 4 Find the outer bucket of ekbkList, which involve the neighbor searching of
a linear quadtree and will be introduced emphatically in section 4.2.2. Then using
the data of these new outer bucket to replace the original data in ekbkList. Let the
bucket layer Ly = Ly+1. Turn back to step 2 .

Step 5 Remove the central node from ∑
∼
B . Then the obtained ∑

∼
B is candidate

satellite-node set of node B ∑B, and return.

Now,let’s set exbkList.begin and exbkList.end be the first and the last element of
exbkList respectively. The step 2 in algorithm 6 can be done as follows.

Algorithm 7: The steps of putting the nodes of each bucket in exbkList into the
candidate satellite-node set ∑

∼
B

Step 1 listIter⇐ exbkList.begin.

Step 2 Because the row number of array im f ormbk[M][5 + p] denotes the bucket
number, all the nodes in the listIter bucket can be found to be the last p elements of
the array in f ormbk[listIter][5+ p]. And they put them into the candidate satellite-
node set ∑

∼
B .

Step 3 listIter⇐ listIter +1.

Step 4 If listIter == exbkList.end, ∑
∼
B is found. Or go back to Step 2.

Suppose that bkvisited, which is used to record the bucket visited, is a find of
variable of map< int,bool > type in Visual C++. Because the initial value of the
outermost layer bucket list exbkList is the bucket T codim[i][0] of the central node
B, the initial value of variable bkvisited is bkvisited[T codim [i][0]] = true. The
procedure of Step 4 is following.

Algorithm 8: The steps of computing the outer bucket of ekbkList and replacing
the original buckets in ekbkList

Step 1 listIter⇐ exbkList.begin.

Step 2 Compute the adjacent buckets of bucket listIter(only the edge adjacent buck-
ets), store them in neigbklist.

Step 3 iter⇐ neigbklist.begin.

Step 4 Check whether the bucket A iter is visited or not. If bkvisited[iter] ==
f alse, the bucket iter isn’t visited, then put it into the list tempbklist and be
recorded by not being visited, i.e. bkvisited[iter] = true.

Step 5 If iter! = neigbklist.end, iter⇐ iter + 1, and go back to Step 4 . Or the
bucket list tempbklist includes all of the buckets of the outer layer.

Step 6 exbkList⇐ tempbklist, and renew Ly = Ly+1.
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4.2.2 Searching edge neighbor in the data structure of linear quadtree

For the linear quadtree structure of the multilayer bucket, computing the buckets of
the outer layer, which involves searching neighbor of the linear quadtree, is needed
among the steps of FLSMMB algorithm. The algorithm of searching neighbor
is useful in binary graphic analysis, 3-D entity analysis, boundary definition, and
connectivity judgement and so on [Liu and Yan (1997); Liu, Qiu and Yang (2004);
Xiao, Gong and Xie (1998)]. There are two kinds of neighbor for buckets. They
are edge neighbor and angle neighbor. To define the candidate satellite-node set in
NLMG algorithm, only the algorithm of searching edge neighbor is needed because
the angle neighbor can be regarded as the edge neighbor of next layer. Moreover,
the methods of searching edge neighbor designed here include searching the same
size edge neighbor method and searching the different size edge neighbor method.
Searching the same size edge neighbor method is simple, and only scanning the last
several bits is needed. Searching the different size edge neighbor method needs the
combination between the same size edge neighbor computed and the hierarchy of
the quaternary code.

Let some bucket’s quaternary code be

C = q1q2 · · ·qn, qi ∈ {0,1,2,3}, i = 1,2, · · · ,n.

Let4C be the corresponding decimal code of the bucket. Then4C = Σn
l=1ql×4n−l .

1) The method for searching the same size edge neighbor

For searching the same size edge neighbor, firstly, we compute the possible edge
neighbor, then check whether the possible edge neighbor is in the bucket structure
constructed or not.

If qn = 0, according to the standard code system, the decimal code of the possible
east neighbor is 4C + 1, and the decimal code of the possible south neighbor is
4C + 2. Computing the possible west neighbor and the possible north neighbor is
following: for the possible west neighbor, scan orderly from right to left until some
bit of code qi(i ∈ {1,2, · · · ,n−1}) is equal to 1 or 3 for the first time. The bucket
of code q1q2 · · ·qi is on the left side of its father bucket of code q1q2 · · ·qi−1. Firstly,
subtract 1 from qi, add 1 to each qi+1,qi+2, · · · ,qn, and the values of q1,q2, · · · ,qi−1

are kept invariable. So the new code q
′
1q
′
2 · · ·q

′
n is the code of the computed neigh-

bor. Let ∆W be its decimal code. Then the difference between the codes of the two
buckets ∆C−W is:

∆C−W = 4n−i−
n−i−1

∑
l=0

4l.
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And the decimal code of the possible west neighbor is:

∆W = ∆C−∆C−W = ∆C−
(

4n−i−
n−i−1

∑
l=0

4l
)
.

If the qi(i∈ {1,2, · · · ,n−1}) to be 1 or 3 can’t be found, the possible west neighbor
does not exist. Similarly, for the possible north neighbor, scan from the last bit of
the code qn, orderly from right to left, until some bit of code q j( j ∈ {1,2, · · · ,n−
1}) is equal to 2 or 3 for the first time. The bucket of code q1q2 · · ·q j is on the south
side of its father bucket of code q1q2 · · ·q j−1. Firstly, subtract 2 from q j, add 2 to
each q j+1,q j+2, · · · ,qn, and the values of q1,q2, · · · ,q j−1 are kept invariable. So the
new code is the code of the computed north neighbor. Then the difference between
the new codes of this bucket and the bucket C = q1q2 · · ·qn is:

∆C−N = 2×4n− j−
n− j−1

∑
l=0

2×4l.

And the decimal code of the possible north neighbor is:

∆N = ∆C−∆C−N = ∆C−
(

2×4n− j−
n− j−1

∑
l=0

2×4l
)
.

If qi(i ∈ {1,2, · · · ,n−1}) to be 2 or 3 can’t be found, the possible north neighbor
does not exist. For the other three cases, i.e. qn = 1,2 or 3, if the corresponding
possible neighbor of bucket C exist and qi(i ∈ {1,2, · · · ,n−1}) satisfying a special
location condition similarly as in the case qn = 0, the computing methods of the
neighbors are shown as follows.

If qn = 1, the decimal code of the possible west neighbor is 4C− 1, the possible
south neighbor is 4C + 2, the possible east neighbor is ∆C + 4n−i−∑

n−i−1
l=0 4l , and

the possible north neighbor is ∆C− (2×4n−i−∑
n−i−1
l=0 2×4l).

If qn = 2, the decimal code of the possible north neighbor is 4C− 2, the possible
east neighbor is4C +1, the possible south neighbor is ∆C− (2×4n−i−∑

n−i−1
l=0 2×

4l), and the possible west neighbor is ∆C− (4n−i−∑
n−i−1
l=0 4l).

If qn = 3, the decimal code of the possible west neighbor is 4C− 1, the possible
north neighbor is4C−2, the possible south neighbor is ∆C +(2×4n−i−∑

n−i−1
l=0 2×

4l), and the possible east neighbor is ∆C +(4n−i−∑
n−i−1
l=0 4l).

As above, the method of searching the same size edge neighbor is simpler, and only
the last several bits of the quaternary code of the buckets are needed to scan. And
the neighbor computing needs only the one-step arithmetic operation in half of the
situations. This benefit is owing to using the convertibility and hierarchy of the
linear quaternary code.
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2) The method of searching different size edge neighbor

The method of searching the different size edge neighbor, which is based on the
method of searching the same size edge neighbor, is simpler. Suppose the east,
south, west and north same size edge neighbors of the bucket C have been com-
puted, and their decimal codes are noted as 4E , 4S, 4W and 4N respectively.
Let bucket D = e1e2 · · ·em(ei ∈ {0,1,2,3}, i = 1,2, · · · ,m. m 6= n). Now we check
whether the bucket D is the different size edge adjacent bucket of the bucket C or
not. Its detailed steps is as follows:

If m > n, i.e. the layer number of bucket D is bigger than that of bucket C, bucket
D is smaller than bucket C. Intercepting the front n bits of that of bucket D’s qua-
ternary code, we can get one of its father buckets, denoted as Dn = e1e2 · · ·en(ei ∈
{0,1,2,3}, i = 1,2, · · · ,n). Its decimal code is ∆Dn = ∑

n
l=1 el×4n−l . The necessary

condition of adjacency bucket D and bucket C is that the father bucket Dn of bucket
D is one of the east, west, south or north same size edge adjacent buckets of bucket
C.

If ∆Dn is equal to ∆E , bucket Dn is the east same size edge neighbor of bucket C.
For the last m− n bits of the quaternary code of bucket D, if having ei =0 or 2,
for any ei(i = n+1,n+2, · · · ,m), bucket D is the east different size edge adjacent
bucket of bucket C.

If ∆Dn is equal to ∆S, bucket Dn is the south same size edge neighbor of bucket C.
For the last m−n bits of the quaternary code of bucket D, if having ei =0 or 1, for
any ei(i = n + 1,n + 2, · · · ,m), bucket D is the south different size edge adjacent
bucket of bucket C.

If ∆Dn is equal to ∆W , bucket Dn is the west same size edge neighbor of bucket C.
For the last m− n bits of the quaternary code of bucket D, if having ei =1 or 3,
for any ei(i = n+1,n+2, · · · ,m), bucket D is the west different size edge adjacent
bucket of bucket C.

If ∆Dn is equal to ∆N , bucket Dn is the north same size edge neighbor of bucket C.
For the last m−n bits of the quaternary code of bucket D, if having ei = 2 or 3, for
any ei(i = n + 1,n + 2, · · · ,m), bucket D is the north different size edge adjacent
bucket of bucket C.

If m < n, i.e. the layer number of bucket D is smaller than that of bucket C, bucket
D is bigger than bucket C. So if bucket D is a edge adjacent bucket of bucket
C, bucket D must be the father bucket of the bucket which is the same size edge
adjacent bucket of bucket C. That is to say there must exist some same size edge
neighbor of bucket C which is included in bucket D. So for the east, west, south
and north same size edge adjacent buckets of bucket C, check the front m bits of
their quaternary codes. If any one of them, the front m bits of its quaternary codes
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is the same as the quaternary code of bucket D, bucket D is this neighbor’s father,
and bucket D is the different size edge adjacent bucket of bucket C.

3) The algorithm of searching edge neighbor

Now, we are ready to give the algorithm frame of searching edge neighbor by us-
ing the skill developed previously. Suppose that the serial number of bucket C
in the data structure is bkindex, its decimal code is in f ormbk[bkindex][0], and its
layer(the number of bits of its quaternary code) is in f ormbk[bkindex][1]. Variable
Iter denotes the traversal bucket at present, its initial value Iter = 0. List neigbklist
stores its adjacent buckets. Bknum is the biggest serial number of the buckets.

Algorithm 9: The algorithm of computing all edge neighbors of bucket C

Step 1 Compute the east, west, south and north same size edge adjacent buckets of
bucket C by the method of searching same size edge neighbor as above developed.

Step 2 If Iter! = bkindex and In f ormbk[Iter][1] == in f ormbk[bkindex][1], the
present bucket of the serial number Iter indicated has the same size as bucket C.
Check whether one of the east, west, south or north same size edge adjacent buck-
ets of bucket C is bucket Iter or not. If there exists, the bucket Iter is the same size
edge adjacent bucket of bucket C, and put its serial number into list neigbklist.

Step 3 If Iter! = bkindex and In f ormbk[Iter][1]! = in f ormbk[bkindex][1], the present
bucket of the serial number Iter has the different size with bucket C. Check whether
bucket Iter is the adjacent bucket of bucket C or not, by the method of searching
different size edge neighbor as above developed. If it is, put its serial number into
list neigbklist.

Step 4 If Iter < Bknum, Iter⇐ Iter + 1, turn back to step 2 .Or the list neigbklist
at present includes all adjacent buckets of bucket C.

5 Numerical examples

In this section, the following possion equation is used to demonstrate the newly
developed algorithm above.{

∂ 2u
∂x2 + ∂ 2u

∂y2 = f (x), (x,y) ∈Ω

u|∂Ω = 0, Ω is a 2-d arbitrary domain

The NLMG algorithm is applied because it is easy to perform the parallel calcu-
lation. The parallel models, which can be used, include the static allocation node
model, the manager/worker-based dynamic allocation node model, and adaption
model posed by Nie, Chang and Fan (2007). In different practical computational
situations, a appropriate parallel model is chosen.
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The parallel computing environment is the Hp rx2600 mustering system in the
High-Performance Computing and Development Center of Northwestern Polytech-
nical University, which is composed of 40 computing nodes and 2 managing nodes
(Here, each node is a HP rx2600 framework server ), and which makes the high
speed computing network via Myrinet network. The parallel programming mode is
the MPI and we use C++ for the programme realization.

                

Figure 6: The local area and candidate satellite-node set of the node 508

Example 1: Determining the candidate satellite-node set in FLSMMB

Fig. 2 shows this example’s computational domain, node distribution and the data
structure of multilayer bucket. The number of nodes is 880, in which there are 107
boundary nodes. The division standard takes p = 5. Taking bucket T codim[i][0]
of the central node B as example(the serial number of node B is 508, its bucket
number is i = 169), the candidate satellite-node set of node B is determined by
the Fast Local Searching Algorithm based on Multilayer Bucket. Let the searching
layer of the bucket bklayer be 3. The results are given as follows.

1) The serial number of the first layer bucket of node 508 is 169, and it can be
obtained by the quadtree structure of multilayer buckets that bucket 169 includes
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node 508.

2) The edge adjacent buckets of bucket 169 determined by algorithm 9: 163, 168,
171, 179.

3) The serial number of the second layer buckets: 163, 168, 171, 179.

The adjacent buckets of bucket 163: 161, 162, 169, 177; Store node 509 into list
Candlist.

The adjacent buckets of bucket 168: 162, 165, 169, 170; Store nodes 408 and 458
into list Candlist.

The adjacent buckets of bucket 171: 169, 170, 179, 300; Store node 507 into list
Candlist.

The adjacent buckets of bucket 179: 169, 171, 177, 180, 334; Store nodes 557, 607,
657 into list Candlist.

4) The serial number of the third layer buckets: 161, 162, 177, 165, 170, 300,
180, 344. That is all of the adjacent buckets of the second layer buckets except the
second layer buckets and the first layer buckets. The following nodes are stored
into list Candlist:

Nodes 559, 560 in bucket 161.

Node 459 in bucket 162.

Nodes 558, 608, 609, 658, 659 in bucket 177.

Node 358 in bucket 165.

Nodes 407, 457 in bucket 170.

Nodes 506, 555 in bucket 300.

Node 707 in bucket 180.

Nodes 594, 595, 644, 645, 695 in bucket 344 .

5) The shaded parts of Fig. 2, which is composed of three layers of buckets, show
the local region of central node 508 and the 26 nodes in candidate satellite-node set
Candlist. For convenience, the shaded parts of Fig. 2 are separated, and shown in
Fig. 6.

Example 2: Mesh parallel generation

For the rectangular region as shown in Fig. 1, because its nodal distribution is rel-
atively uniform, we build the data structure of uniform buckets, the mesh parallel
experiment is carried out in the large scale cluster system, according to FLSMUB
proposed in this paper. Its mesh generation result is shown in Fig. 7.

For the region as shown in Fig. 2, because its nodal distribution is nonuniform,
we build the data structure of multilayer buckets, the mesh parallel experiment is
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carried out in the large scale cluster system, according to FLSMMB proposed in
this paper. Its mesh generation result is shown in Fig. 8.

Figure 7: Apply FLSMUB to mesh par-
allel generation

Figure 8: Apply FLSMMB to mesh par-
allel generation

Example 3: The computational cost of FLSMUB and FLSMMB

The time costs of uniform bucket and multilayer bucket in the computational region
are different and can be test with the serial time. For uniform bucket, the number
of buckets can reflect accurately the topological relations of the data structure. Be-
cause the sizes of multilayer buckets are different, the number of buckets can’t
reflect the topological relations of the data structure. So during the construction of
multilayer bucket by recursion, the terminal condition of the recursion is that the
buckets contain no more than p nodes.

Here two types of nodal distribution are employed. 10000 uniformly distributed
nodes and 10000 unevenly distributed nodes(including 5000 uniformly distributed
nodes and 5000 nodes obeying normal distribution). The computational cost of
FLSMUB or FLSMMB is obtained and compared in Fig. 9 and Fig. 10.

From these figures, we can conclude:

1) Fig. 9 shows that when FLSMMB is used for two types of nodes, their compu-
tational cost has little difference, when the situation of unevenly distributing nodes
is slightly better. As shown in Fig. 10, when FLSMUB is used for two types of
nodes, it performs much better for the case of uniformly distributed nodes than for
the case of unevenly distributed nodes. But FLSMMB is suitable for both uniformly
and unevenly distributed nodes cases.
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Figure 9: Single processor serial time
corresponding to applying FLSMMB

Figure 10: Single processor serial time
corresponding to bucket number apply-
ing FLSMUB

2) The variety of computational cost of FLSMMB decreases firstly and then in-
creases with the value p, and the variety of serial time of FLSMUB follows the
same trend as that of FLSMMB. For two types of node distribution, whether by
FLSMUB or by FLSMMB, the serial time cost of uniformly distributing nodes is
sensitive to the change of the parameter p: decreases quickly, and increases quickly.
Certainly, there are optimal parameters to lead to the lowest computational cost.

Example 4: The performance in the large-scale parallel computation

Different with example 3, in this study, there are 100000 nodes in a rectangular
domain. The serial time costs of FLSMUB and FLSMMB are listed in Table 3.
The data in Table 3 prove again that FLSMUB is only suitable to the uniformly
distributed nodes, but FLSMMB is more effective for both cases.

Table 4 and Table 5 present the parallel time cost of FLSMUB and FLSMMB in
the cluster system, including computational time, speed-up ratio and parallel effi-
ciency. The parallel computation model in this paper is the manager/worker-based
dynamic allocation node model in combination with manager participating in com-
putation[Nie, Chang and Fan (2007)]. Considering the problem scale, 2, 4, 6 and
8 processors are used respectively to test the parallel performance. It has proven
that FLSMUB and FLSMMB are powerful for the large-scale parallel computation.
This is due to the two better data structure, local searching method with high speed,
and NLMG algorithm suitable for parallel computation naturally.

It should be noted that serial algorithm is used to construct the data structure, that
is, each processor builds the same data structures. This affects the efficiency of
parallel computation. However, because the time cost of building the data structure
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Table 3: Serial computing time applying FLSMUB and FLSMMB

FLSMUB FLSMMB
Distribute uniformly 100000 nodes 44.4971 64.8614
Distribute non-uniformly 100000 nodes 144.8948 78.7826

Table 4: The parallel computing results for the case that nodes are distributed uni-
formly

The Number computational time(s) Speed-up ratio parallel efficiency
of processers FLSMUB FLSMMB FLSMUB FLSMMB FLSMUB FLSMMB

2 21.504 32.86 1.97190 1.97387 98.60 98.69
4 11.4463 17.5586 3.70459 3.694 92.61 92.35
6 8.25344 12.4227 5.13771 5.2212 85.63 87.02
8 6.623231 9.6843 6.40228 6.69758 80.03 83.72

is relatively smaller, this effect can be neglected in most of cases. Only when the
computation scale is small, or the processors are too many, the effect is distinct.

6 Conclusions

NLMG algorithm developed successfully is the precondition to ensure the paral-
lel efficiency of NLFEM. Here both FLSMUB and FLSMMB are developed and
applied successfully to the NLMG algorithm, and thus the algorithm becomes prac-
tice.

FLSMUB performs well in the case of uniform distribution nodes. FLSMMB is
suit to much more situations compared with FLSMUB. To improve calculational
efficiency, according to different problems, we should select FLSMUB, FLSMMB
or their combination.
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Table 5: The parallel computing results for the case that nodes are not distributed
uniformly

The Number computational time(s) Speed-up ratio parallel efficiency
of processers FLSMUB FLSMMB FLSMUB FLSMMB FLSMUB FLSMMB

2 73.2099 40.0074 1.9804 1.9692 99.02 98.46
4 38.3233 21.2444 3.7832 3.7084 94.58 92.71
6 26.7687 14.7649 5.4162 5.3358 90.27 88.93
8 21.0416 11.5449 6.8904 6.8240 86.13 85.30
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