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A Galerkin-RBF Approach for the
Streamfunction-Vorticity-Temperature Formulation of

Natural Convection in 2D Enclosured Domains
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Abstract: This paper reports a new discretisation technique for the streamfunc-
tion-vorticity-temperature (ψ −ω − T ) formulation governing natural convection
defined in 2D enclosured domains. The proposed technique combines strengths of
three schemes, i.e. smooth discretisations (Galerkin formulation), powerful high-
order approximations (one-dimensional integrated radial-basis-function networks)
and pressure-free low-order system (ψ −ω −T formulation). In addition, a new
effective way of deriving computational boundary conditions for the vorticity is
proposed. Two benchmark test problems, namely free convection in a square slot
and a concentric annulus, are considered, where a convergent solution for the for-
mer is achieved up to the Rayleigh number of 108.

Keywords: Integrated RBFNs, Galerkin approach, streamfunction-vorticity-tem-
perature formulation, natural convection.

1 Introduction

Radial-basis-function networks (RBFNs) have been widely used in the area of nu-
merical analysis. In the context of the numerical solution of partial-differential
equations (PDEs), RBFNs have received a great deal of attention from both scien-
tific and engineering research communities over the last 15 years. The first report
on this subject was presented by Kansa (1990). For Kansa’s method, a function
is first represented by an RBFN which is then differentiated to obtain approximate
expressions for its derivative functions. On the other hand, to avoid the reduc-
tion in convergence rate caused by differentiation, Mai-Duy and Tran-Cong (2001)
proposed an indirect/integrated RBFN (IRBFN) approach in which the highest-
order derivatives in the PDE are first decomposed into RBFs, and their lower-order
derivatives and the function itself are then obtained through integration. Numeri-
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cal experiments (e.g. [Mai-Duy and Tran-Cong (2001, 2003)]) showed that IRBFN
collocation methods yield better accuracy than differentiated RBFN (DRBFN) ones
for both the representation of functions and the solution of PDEs. Since the RBF
interpolation matrix is fully populated and its condition number grows rapidly with
respect to the increase of RBF centres and/or widths [Schaback (1995)], global
RBF methods are only able to work with relatively-low numbers of points. To over-
come this drawback, several treatments have been proposed, e.g. preconditioning
schemes [Kansa and Hon (2000); Ling and Kansa (2005)], local approximations
[Shu, Ding, and Yeo (2005); Shan, Shu, and Lu (2008); Kosec and Sarler (2008)]
and domain decompositions [Ingber, Chen, and Tanski (2004); Divo and Kassab
(2006)]. In the context of IRBFNs, collocation schemes, based on one-dimensional
(1D) IRBFNs and Cartesian grids, for the solution of 2D elliptic PDEs were re-
ported in, e.g. [Mai-Duy and Tran-Cong (2007)]. The RBF approximations at a
grid node involve only points that lie on the grid lines intersecting at that point
rather than the whole set of nodes. As a result, the construction process is con-
ducted for a series of small matrices rather than for a large single matrix (“local”
approximation).

Apart from the point-collocation formulation, RBFs have been employed as trial
functions in other formulations such as those associated with the finite-element,
finite-volume and boundary-element methods. Works in this research direction in-
clude [Atluri, Han, and Rajendran (2004); Wang and Wang (2006); Wang, Lim,
Khoo, and Wang (2007); Sellountos and Sequeira (2008); Orsini, Power, and Mor-
van (2008); Mohammadi (2008); Sellountos, Sequeira, and Polyzos (2009)].

Very recently, a discretisation technique, based on 1D-IRBFNs and Galerkin ap-
proximations, for the solution of linear Poisson equations was reported in [Mai-
Duy and Tran-Cong (2009)]. The boundary conditions are satisfied in a local sense
using the point collocation formulation, and the solution to the problem is satisfied
in a global sense using the Galerkin formulation. The use of integration to con-
struct the approximations generates some additional coefficients (i.e. the constants
of integration) that can be exploited for the effective implementation of Neumann
and multiple boundary conditions. The resultant system of algebraic equations is
often symmetric and has a relatively-low condition number, which facilitate the
employment of much larger numbers of nodes. Numerical results showed that this
technique yields accurate results, high rates of convergence, and especially similar
levels of accuracy for both types of boundary condition (i.e. Dirichlet only and
Dirichlet-Neumann).

Natural convection, which occurs in many engineering applications, presents a
strong coupling of heat transfer and fluid flow. Problems of this type have been
extensively studied by means of experimental and numerical simulations. Natural
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convection in a square slot and in an annulus have been widely considered as two
benchmark problems for the testing of new numerical schemes in CFD. For the
case of high Rayleigh (Ra) numbers, very thin boundary layers are formed, which
presents a great challenge for any numerical method. As a result, to simulate such
cases, low-order techniques such as finite-difference methods (FDMs) (e.g. [Saitoh
and Hirose (1989)]) and finite-element methods (FEMs) (e.g [Manzari (1999);
Wan, Patnail, and Wei (2001); Mayne, Usmani, and Crapper (2000, 2001)]) typ-
ically require a very fine mesh. This requirement is alleviated by employing high-
order methods such as pseudo-spectral methods (e.g. [Quéré (1991)]), discrete sin-
gular convolution (DSC) methods (e.g. [Wan, Patnail, and Wei (2001)]), meshless
diffuse approximation methods (DAMs) (e.g. [Sadat and Couturier (2000)]), and
mesh-free local RBF collocation methods (RBFCM) (e.g. [Sarler (2005); Kosec
and Sarler (2007)]). However, in general, there still exist some difficult problems
associated with convergence (e.g. relatively-few reports for the case of Ra > 106

for natural convection in a square slot) and accuracy (e.g. some discrepancies in
the prediction of the Nusselt number among published works).

In this paper, we present a new high-order Galerkin technique, which is based on
1D-IRBFNs and Cartesian grids, for the simulation of natural convection in two di-
mensions. Advantages of using 1D-IRBFNs over 2D-IRBFNs are (i) the construc-
tion cost is much lower (“local” approximations), (ii) the matrix condition number
is greatly improved and (iii) the system matrix becomes sparse. However, their
disadvantage is that tensor products are required to construct the approximations
over the whole domain. Coordinate transformations are thus needed to handle non-
rectangular domains. Unlike FD and Chebyshev interpolation schemes, IRBFNs
can work well with nonuniform and uniform Cartesian grids. The streamfunction-
vorticity-temperature (ψ −ω − T ) formulation will be adopted here to take the
following advantages: (a) the continuity equation is satisfied automatically, (b) its
implementation is easier as the pressure variable is eliminated, and (c) its matrix
condition number (second-order system) is significantly improved over that of the
streamfunction-temperature formulation (fourth-order system). However, when us-
ing the ψ −ω − T formulation, the classical difficulties lie in the treatment of
boundary condition for the vorticity. A new effective boundary scheme is pro-
posed, where computational boundary conditions for the vorticity are derived in
a precise manner (i.e. approximations used on the boundary have the same order
as those for the interior points, and derivative values of the streamfunction on the
boundary are incorporated into the IRBFN approximations in an exact manner).
The present method is verified through the simulation of natural convection in 2D
enclosed domains. Two different geometries are considered: (i) a square slot and
(ii) a concentric annulus. It will be shown that convergent solutions are achieved
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for very high values of the Rayleigh number (i.e. up to 108 for the former and
7× 104 for the latter). Numerical results obtained are compared with those by
other techniques available in the literature.

The remainder of this paper is organised as follows. Section 2 briefly describes the
governing equations in both Cartesian and cylindrical coordinates. Our proposed
technique is presented in detail in section 3, including 1D-IRBFN representations
of the field variables, Galerkin discretisations of the PDEs and a new treatment for
the vorticity boundary condition. In section 4, the technique is verified through the
simulation of several benchmark test problems. Section 5 concludes the paper.

2 Governing equations

In this study, the governing equations are taken as the streamfunction-vorticity-
temperature formulation. Both Cartesian and cylindrical coordinate systems are
employed here. Using the Boussinesq approximation, the 2D dimensionless forms
of the governing equations can be written as
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for cylindrical coordinates, where

u =
1
r

∂ψ

∂θ
, v =−∂ψ

∂ r
.

In Eq. 3 and Eq. 6, Pr and Ra are the Prandtl and Rayleigh numbers defined as Pr =
ν /α and Ra = βg∆T L3

/
αν , respectively in which ν is the kinematic viscosity, α

the thermal diffusivity, β the thermal expansion coefficient, g the gravity, and L
and ∆T the characteristic length and temperature difference, respectively. In this
dimensionless scheme, the velocity scale is taken as U =

√
gLβ∆T for the purpose

of balancing the buoyancy and inertial forces.

The given velocity boundary conditions, u and v, can be transformed into two
boundary conditions on the streamfunction and its normal derivative

ψ = A, (7)
∂ψ

∂n
= B, (8)

where n is the direction normal to the boundary, and A and B given functions which
are simply zero here. For problems presented in this study, the boundary conditions
for the energy equation are prescribed with both Dirichlet and Neumann types.

3 The proposed technique

The problem domain is represented by a Cartesian grid. On each grid line, 1D-
IRBFNs are employed to approximate the field variables (i.e. ψ , ω and T ). The
governing equations are discretised by means of Galerkin approximations (i.e. the
residuals are set to zero in the mean). Vorticity boundary conditions are derived
globally.

3.1 One-dimensional IRBFN representations of the field variables

The system of PDEs under consideration here is of second order. Consider a η

grid line. Applying the integral RBF scheme [Mai-Duy and Tran-Cong (2003)], a
function f and its derivatives with respect to η can be represented as follows
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where Nη is the number of nodes on the grid line, {wi}Nη

i=1 the set of network

weights, and {gi (η)}Nη
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{

I(2)
i (η)

}Nη
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i (η)dη , and c1 and c2 are the constants of integration. In Eq. 9 -

Eq. 11, the function f can be used to represent the streamfunction, the vorticity or
the temperature, while the variable η is employed to denote the (x,y) coordinate
(Cartesian system), or (r,θ) coordinate (cylindrical system).

Evaluation of Eq. 9 - Eq. 11 at the grid nodes leads to
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α̂, (12)

d̂ f
dη
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and
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dηk and f j = f (η j) with j = {1,2, · · ·,Nη}.
The relations between the RBF-coefficient space α̂ and the physical space f̂ are
given by
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where ê = K̂ α̂ represents the extra information (e.g. normal derivative values at
the two end-points) and Ĉ the conversion matrix.

Making use of Eq. 16, the values of f and its derivatives at an arbitrary point η on
the grid line will be computed by
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ê

)
, (18)

∂ 2 f (η)
∂η2 =

(
I(2)
1 (η) , I(2)

2 (η) , · · · , I(2)
Nη

(η) ,0,0
)
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ê

)
. (19)

They can be rewritten in compact form
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where {ϕi}Nη+2
i=1 is the set of IRBFN basis functions in the physical space.
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One can take products of integrated RBFs in each direction as basis functions for
the interpolation of f over the entire 2D domain. The IRBFN approximation is
defined everywhere in the domain. It is easy to get the value of f at any point in
the domain. Since the streamfunction and vorticity transport equations are subject
to Dirichlet boundary conditions only, the matrix K̂ and the vector ê in Eq. 15 are
simply set to null.

In the case of Cartesian coordinate system, approximate expressions for ψ and ω

will take the form
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where Nx and Ny are the numbers of grid lines in the y and x directions, respectively.

The energy equation is subject to both types of boundary conditions. Assume that
Dirichlet and Neumann boundary conditions are prescribed on the two vertical and
two horizontal walls, respectively. The integral approach allows one to incorporate
Neumann boundary conditions into the IRBFN approximations through integration
constants. For each y grid line, the matrix K̂ and the vector ê in Eq. 15 will become
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In Eq. 23 - Eq. 25, ψi, j, ωi, j and Ti, j are the values of the ψ , ω and T variables at
the intersection of the ith horizontal grid line and jth vertical grid line; the prod-
ucts ϕ

(x)
i ϕ

(y)
j are usually referred to as the trial/basis/approximating functions; and

∂Ti,1
/

∂y and ∂Ti,Ny

/
∂y are nodal boundary derivative values.

In the case of cylindrical coordinates, the independent variables x and y in Eq. 23 -
Eq. 25 will be replaced with r and θ .
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3.2 Derivation of computation boundary conditions for the vorticity

This section presents a new treatment for the vorticity boundary condition in the
discretisation of the ψ−ω−T formulation. Boundary conditions are over-specified
for the streamfunction equation Eq. 1/Eq. 4, but under-specified for the vorticity
transport equation Eq. 2/Eq. 5. There is the need to derive boundary conditions for
the vorticity. In practice, the vorticity boundary values are usually derived from
their definitions Eq. 1/Eq. 4 and boundary conditions for the streamfunction. Sat-
isfaction of computational boundary conditions for the vorticity will have a strong
influence on the accuracy of the final solution.

In the context of FDMs, Thom’s formula and its variations have been widely used
to obtain the vorticity boundary condition (e.g. [Roache (1982); Weinan and Liu
(1996); Spotz (1998)]. These formulae are derived according to a local relation of
the vorticity at the boundary. Although their implementations are quite straight-
forward, results by these formulae are observed to be uncertain in some cases
(e.g. lower-order formulae may give better accuracy than high-order ones [Spotz
(1998)]). Many other techniques such as the local radial point interpolation method
(LRPIM) [Wu and Liu (2003)] and the local RBF-based differential quadrature
method (RBF-DQM) [Shu, Ding, and Yeo (2003)] have also applied these bound-
ary FD schemes, where grids near and including the boundary are required to be
orthogonal.

In this study, two vorticity boundary schemes, which are global, are discussed.
Taking into account the streamfunction boundary values (i.e. ψ = 0), expressions
for the vorticity on the boundaries will reduce to

ω =
∂ 2ψ

∂n2 , (26)

where n is the local direction normal to the wall. The two schemes presented below
are different in the sense that ∂ψ/∂n is incorporated differently into the RHS of
Eq. 26.

Approach 1: Consider a x grid line. Firstly, the RHS of Eq. 26 is expressed in
terms of ∂ψ/∂x
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Î (1)

)−1 ∂̂ψ

∂x
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in which ∂̂ψ ip

/
∂x and

(
∂ψ1

/
∂x,∂ψNx

/
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)

are the values of ∂ψ/∂x at the in-
terior points (x2, · · · ,xNx−1) and at the two boundary points (x1,xNx), respectively.
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Secondly, the given values of ∂ψ1/∂x and ∂ψNx/∂x are substituted into Eq. 27,
leading to

∂̂ 2ψ

∂x2 = Ĝx
∂̂ψ ip

∂x
+ k̂x, (28)

where Ĝx is the known differentiation matrix in the physical space, and k̂x is the
known vector whose components are functions of derivative boundary conditions.
Thirdly, the first derivative values are written in terms of the nodal streamfunction
values
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)−1
ψ̂ = Î (1)

(
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)−1




ψ̂ip

ψ1

ψNx


 , (29)

in which ψ̂ip and (ψ1,ψNx) are the values of the streamfunction at the interior points
and at the boundary points, respectively. Finally, by substituting Eq. 29 into Eq. 28,
one will obtain computational boundary conditions for the vorticity, which are de-
pendent on the nodal values of ψ at the interior points and at the two end-points of
the grid line. For more details, the reader is referred to [Mai-Duy, Mai-Cao, and
Tran-Cong (2007)].

Approach 2: Here, we propose that the incorporation of ∂ψ/∂n into the RHS of
Eq. 26 is carried out with the help of the constants of integration. Consider a x grid
line. Owing to the fact that the present coefficient vector is larger, one can add two
extra equations representing ∂ψ1/∂x and ∂ψNx/∂x to the conversion process
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]
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in which K̂ is the matrix made up of the first and last rows of Î (1), i.e.
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]
.

It can be seen from Eq. 30 that, despite the presence of nodal derivative values, the
approximate solution ψ is collocated at the whole set of centres on the grid line.

The second derivatives of ψ at the two boundary points can now be expressed in
terms of the values of ψ at every point on the grid line and the values of ∂ψ

/
∂x at
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the two boundary points (x1,xNx)
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where D̂ is the sub-matrix of Î (2) (i.e. the first and last rows)
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and Ĉ is defined in Eq. 30.

It can be seen that the IRBFN approximations for ∂ 2ψ
/

∂x2 at the boundaries sat-
isfy exactly the prescribed derivative boundary values. With Eq. 31, we can obtain
the computational boundary conditions for the vorticity. On a y grid line, the pro-
cess can be taken in a similar fashion. These boundary derivation processes are also
applicable to the cylindrical coordinate system.

3.3 Galerkin discretisations of the PDEs

The discretisation process for Eq. 1 - Eq. 3 is similar to that for Eq. 4 - Eq. 6. For
brevity, only the former is presented in detail here.

A distinguishing feature of the present method is that the IRBFNs approximations
satisfy a priori not only the Dirichlet boundary conditions but also the Neumann
boundary conditions. As a result, the Galerkin weighting process applied to Eq. 1
- Eq. 3 over the domain Ω simply produces the following results (without the
boundary-integral terms)

∫

Ω
W

(
∂ 2ψ

∂x2 +
∂ 2ψ

∂y2 +ω

)
dΩ = 0, (32)

∫

Ω
W

∂ω

∂ t
dΩ+

∫

Ω
W

(
u

∂ω

∂x
+ v

∂ω

∂y

)
dΩ−

√
Pr
Ra

∫

Ω
W

(
∂ 2ω

∂x2 +
∂ 2ω

∂y2

)
dΩ−

∫

Ω
W

∂T
∂x

dΩ = 0, (33)

∫

Ω
W

∂T
∂ t

dΩ+
∫

Ω
W

(
u

∂T
∂x

+ v
∂T
∂y

)
dΩ−

1√
RaPr

∫

Ω
W

(
∂ 2T
∂x2 +

∂ 2T
∂y2

)
dΩ = 0, (34)
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where W are the weighting/test functions which are taken from the set of trial func-
tions (i.e. W = ϕ

(x)
i ϕ

(y)
j , where the values of i and j depend on the equation under

consideration as will be shown later). Substituting Eq. 23 - Eq. 25 into Eq. 32 -
Eq. 34, one will obtain the following three sets of algebraic equations

Aψ {ψ}+Mω {ω} = 0, (35)

Mω {ω̇}+(KUω +KVω){ω}−
√

Pr
Ra

Aω {ω}+{Fω} = 0, (36)

MT
{

Ṫ
}

+(KUT +KVT ){T}− 1√
RaPr

AT {T} = 0, (37)

where ω̇ = ∂ω
/

∂ t, Ṫ = ∂T
/

∂ t, {ψ} and {ω} the vectors of interior nodal values
of ψ and ω , respectively, {T} the vector of nodal values of T at the interior points
and the Neumann boundary points, and

(
Aψ

)
i, j =

∫

Ω
ϕ

(x)
m (x)ϕ

(y)
n (y)

(
Nx

∑
i=1

Ny

∑
j=1

∂ 2ϕ
(x)
i (x)

∂x2 ϕ
(y)
j (y)+

Nx

∑
i=1

Ny

∑
j=1

ϕ
(x)
i (x)

∂ 2ϕ
(y)
j (y)

∂y2

)
dΩ,

(38)

(Mω)i, j =
∫

Ω
ϕ

(x)
m (x)ϕ

(y)
n (y)dΩ, (39)

(KUω)i, j = ui, j

∫

Ω
ϕ

(x)
m (x)ϕ

(y)
n (y)

(
Nx

∑
i=1

Ny

∑
j=1

∂ϕ
(x)
i (x)
∂x

ϕ
(y)
j (y)

)
dΩ, (40)

(KVω)i, j = vi, j

∫

Ω
ϕ

(x)
m (x)ϕ

(y)
n (y)

(
Nx

∑
i=1

Ny

∑
j=1

ϕ
(x)
i (x)

∂ϕ
(y)
j (y)
∂y

)
dΩ, (41)

(Aω)i, j =
∫

Ω
ϕ

(x)
m (x)ϕ

(y)
n (y)

(
Nx

∑
i=1

Ny

∑
j=1

∂ 2ϕ
(x)
i (x)

∂x2 ϕ
(y)
j (y)+

Nx

∑
i=1

Ny

∑
j=1

ϕ
(x)
i (x)

∂ 2ϕ
(y)
j (y)

∂y2

)
dΩ,

(42)
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{Fω}i, j =
∂Ti, j

∂x

∫

Ω
ϕ

(x)
m (x)ϕ

(y)
n (y)dΩ, (43)

(KUT )i, j = ui, j

∫

Ω
ϕ

(x)
m (x)ϕ

(y)
l (y)

(
Nx

∑
i=1

Ny

∑
j=1

∂ϕ
(x)
i (x)
∂x

ϕ
(y)
j (y)

)
dΩ, (44)

(KVT )i, j = vi, j

∫

Ω
ϕ

(x)
m (x)ϕ

(y)
l (y)

(
Nx

∑
i=1

Ny

∑
j=1

ϕ
(x)
i (x)

∂ϕ
(y)
j (y)
∂y

)
dΩ, (45)

(AT )i, j =
∫

Ω
ϕ

(x)
m (x)ϕ

(y)
l (y)

(
Nx

∑
i=1

Ny

∑
j=1

∂ 2ϕ
(x)
i (x)

∂x2 ϕ
(y)
j (y)+

Nx

∑
i=1

Ny

∑
j=1

ϕ
(x)
i (x)

∂ 2ϕ
(y)
j (y)

∂y2

)
dΩ,

(46)

(MT )i, j =
∫

Ω
ϕ

(x)
m (x)ϕ

(y)
l (y)dΩ, (47)

in which m = (2,3, ...,Nx−1) (Dirichlet boundary conditions), n = (2,3, ...,Ny−1)
(Dirichlet boundary conditions) and l = (1,2, ...,Ny) (Neumann boundary condi-
tions). It is noted that this discretisation process leads to symmetric matrices.

The above volume integrals can be evaluated using repeated integrals, for which
Gaussian points are employed along the grid lines.

3.4 Solution procedure

Due to the presence of convection terms (KUω , KVω , KUT and KVT ) in the vorticity
transport and energy equations, the resultant coupled sets of equations are nonlin-
ear. We will adopt a time-marching approach, where the diffusion and convection
terms are treated implicitly and explicitly, respectively. All equations involve the
Laplacian term and their discrete form remains unchanged during the solution pro-
cess. Moreover, the two matrices Aψ and Aω are identical. At each time level, the
three equations are solved separately for efficiency purposes. The solution proce-
dure can be summarised as follows.

1. Guess values of T , ψ , ω and their first-order spatial derivatives at time t = 0

2. Discretise spatial derivatives using 1D-IRBFNs, resulting in a high-order ap-
proximation scheme in space

3. Discretise time derivatives using Euler (forward difference) method, result-
ing in a first-order accurate scheme in time
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4. Compute the boundary values for ω and the convective terms

5. Solve the energy equation Eq. 37 for T , subject to Dirichlet and Neumann
conditions
Solve the vorticity equation Eq. 36 for ω , subject to Dirichlet conditions
Solve the streamfunction equation Eq. 35 for ψ , subject to Dirichlet condi-
tions

6. Check to see whether the solution has reached a steady state

√
∑N

i=1

(
T (k)

i −T (k−1)
i

)2

√
∑N

i=1

(
T (k)

i

)2
< ε, (48)

where k is the time level and ε is a prescribed tolerance

7. If it is not satisfied, advance time step and repeat from step 3. Otherwise,
stop the computation and output the results.

4 Numerical results

Several test problems are considered to validate the proposed technique. The first
problem is for the treatment of the vorticity boundary condition, while the last two
problems, namely natural convection in a square slot and a concentric annulus, are
employed to study the accuracy of the method. For all numerical examples, uniform
rectangular grids are used to represent the computational domain, and 1D-IRBFNs
are implemented with the multiquadric (MQ) function

gi (η) =
√

(η− ci)
2 +a2

i ,

where ci and ai are the centre and the width/shape-parameter of the ith MQ-RBF.
The MQ width is simply chosen to be the grid size.

4.1 Example 1 (vorticity boundary condition)

The two approaches, namely Approach 1 and Approach 2, for the treatment of
boundary conditions for the vorticity are investigated here numerically by employ-
ing test problems whose solutions are available in analytic form. Errors, which can
be measured exactly, are computed using the relative discrete L2 norm. Consider
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the following governing equations

∂ 2ψ

∂x2 +
∂ 2ψ

∂y2 = −ω, (49)

∂ 2ω

∂x2 +
∂ 2ω

∂y2 = f (x,y), (50)

with two cases of boundary condition.

Homogeneous boundary conditions: For this case, the problem domain is a unit
square (Ω = [0,1]× [0,1]) and the exact solution is taken as

ψ (x,y) = [1− cos(2πx)] [1− cos(2πy)] , (51)

from which one can easily derive analytic forms for ω(x,y) and f (x,y) on the RHSs
of Eq. 49 and Eq. 50, respectively. Values of ψ and ∂ψ/∂n are all zero along the
boundaries.

Numerical results for the solutions ψ and ω shown in Tab. 1 indicate that the pro-
posed treatment (Approach 2) results in a significant improvement in accuracy. It
can be seen that one order of magnitude better is generally observed for all grids
used. For example, at a grid of 61×61, relative L2 errors of ω are 2.0×10−4 and
3.9×10−5 for Approach 1 and Approach 2, respectively. Computational boundary
conditions for the vorticity thus have a strong influence on the accuracy of the final
solutions.

Table 1: Example 1 (homogeneous boundary conditions): Relative L2 errors of the
solution ψ and ω . Notice that a(-b) means a×10−b

Errors of ω Errors of ψ

Grid Approach 1 Approach 2 Approach 1 Approach 2
6×6 1.168(-1) 2.808(-2) 1.460(-1) 3.547(-2)

11×11 1.687(-2) 2.985(-3) 2.238(-2) 3.835(-3)
21×21 2.680(-3) 5.075(-4) 3.712(-3) 6.951(-4)
31×31 9.917(-4) 1.903(-4) 1.401(-3) 2.671(-4)
41×41 5.034(-4) 9.718(-5) 7.187(-4) 1.381(-4)
51×51 3.016(-4) 5.840(-5) 4.334(-4) 8.363(-5)
61×61 1.999(-4) 3.879(-5) 2.887(-4) 5.584(-5)
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Table 2: Example 1 (inhomogeneous boundary conditions): Relative L2 errors of
the solution ψ and ω . Notice that a(-b) means a×10−b

Errors of ω Errors of ψ

Grid Approach 1 Approach 2 Approach 1 Approach 2
6×6 6.096(-1) 1.845(-1) 2.137(0) 6.046(-1)

11×11 3.788(-2) 1.271(-2) 7.389(-2) 2.406(-2)
21×21 8.719(-3) 2.986(-3) 1.088(-2) 3.639(-3)
31×31 4.189(-3) 1.433(-3) 4.337(-3) 1.454(-3)
41×41 2.518(-3) 8.605(-4) 2.325(-3) 7.804(-4)
51×51 1.701(-3) 5.807(-4) 1.449(-3) 4.866(-4)
61×61 1.235(-3) 4.212(-4) 9.894(-4) 3.324(-4)

Inhomogeneous boundary conditions: For this case, the exact solution is taken
as

ψ (x,y) = sin(2πx)cos(2y)− cos(2πx)sinh(2y) , (52)

on domain Ω = [−1,1]× [−1,1]. Results obtained are given in Tab. 2. Again, Ap-
proach 2 outperforms Approach 1 regarding accuracy. Approach 2 is recommended
for use in practice. In the following, only Approach 2 is employed.

4.2 Example 2: Natural convection in a square slot

This problem is schematically defined in Fig. 1. The direction of gravity is par-
allel to the vertical walls. The problem is solved in Cartesian coordinates with
the governing equations being Eq. 1 - Eq. 3. All walls are stationary, leading to
ψ = ∂ψ/∂n = 0 on the boundaries. The two horizontal walls are adiabatic (i.e.
∂T/∂y = 0), while the two vertical walls are maintained at constant temperatures
(i.e. T = +0.5 (left wall) and T =−0.5 (right wall)).

Numerical results for this problem are extensive. A range of Ra from 103 to 106

has been widely used for the validation of new numerical schemes. Davis (1983)
provided finite-difference results which have been then often cited in the literature
for comparison purposes. Later on, there are increased levels of interest for higher
values of Ra, namely 107 and 108. Works reported include [Quéré (1991)] (the
pseudo-spectral method), [Wan, Patnail, and Wei (2001)] (FEM), [Mayne, Usmani,
and Crapper (2000, 2001)] (h−adaptive FEM), [Wan, Patnail, and Wei (2001)] (dis-
crete singular convolution (DSC) method), [Sadat and Couturier (2000)] (meshless
diffuse approximation method (DAM)), and [Kosec and Sarler (2007)] (mesh-free
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Figure 1: Natural convection flow in a square slot: geometry definition, boundary
conditions and discretisation

Figure 1: Natural convection flow in a square slot: geometry definition, boundary
conditions and discretisation

local RBF collocation method (RBFCM)). For this higher range, it has been gener-
ally observed that (i) the strength of boundary layers is significantly increased, (ii)
convergence becomes much more difficult, and (iii) significant discrepancies in the
Nusselt number occur in some cases (e.g. between the pseudo-spectral technique
[Quéré (1991)] and the DSC method [Wan, Patnail, and Wei (2001)]).

The Galerkin-IRBFN method is employed to study this problem for 103 ≤ Ra ≤
108. Results are presented in the form of contour plots for ψ , ω and T and through
the values of the following quantities

• The average Nusselt numbers on the vertical plane at x = 0 (left wall) and at
x = 1/2 (middle cross-section), which are defined by

Nu0 = Nu(x = 0,y),
Nu1/2 = Nu(x = 1/2,y),

in which

Nu(x,y) =
∫ 1

0

(
uT − ∂T

∂x

)
dy. (53)
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• The average Nusselt number throughout the cavity, which is defined by

Nu =
∫ 1

0
Nu(x,y)dx. (54)

• Maximum Nusselt number, Numax, on the plane x = 0 and its location

• Minimum Nusselt number, Numin, on the plane x = 0 and its location

It is noted that integrals Eq. 53 and Eq. 54 are computed here using Simpson’s rule.

Results for Ra from 103 to 106 are presented in Tab. 3 and Fig. 2, and they are
compared with those of Davis (1983). Denser grids are needed for higher val-
ues of Ra. When compared with low-order methods, the proposed technique re-
quires relatively-coarse grids for the same level of accuracy. Results concerning
the Nusselt numbers are shown in Tab. 3, where a fast convergence is observed.
Fig. 2 shows the distributions of the temperature, streamfunction and vorticity
fields, which are all in good qualitative agreement with the benchmark results. For
example, the three fields are skew-symmetric with respect to the centre of the slot,
and the isotherms are nearly horizontal in the core flow as the Rayleigh number
increases.

Results for Ra from 107 to 108 are presented in Tab. 4 and Fig. 3. Tab. 4 shows a
comparison of the average Nusselt numbers between the present method and sev-
eral other methods. It can be seen that there are significant discrepancies among
various numerical techniques. For the case of Ra = 107, the DSC [Wan, Patnail, and
Wei (2001)] and FEM [Manzari (1999)] produced the values of 13.86 and 13.99 for
the average Nusselt number, while the pseudo-spectral [Quéré (1991)], FE [Wan,
Patnail, and Wei (2001)], DA [Sadat and Couturier (2000)] and RBFCM [Kosec
and Sarler (2007)] techniques yielded the following values: 16.523, 16.656, 16.59
and 16.92. The differences between the two groups are much wider for the case of
Ra = 108: 23.67 for the DSC method, and (30.225, 31.486, 30.94, 32.12) for the
second group. The Galerkin-IRBFN results are in close agreement with the second
group, particularly with the pseudo-spectral technique [Quéré (1991)]. Variations
of the local Nusselt number on the left and right walls are presented in Fig. 4. It is
clearly shown that the proposed technique is able to capture very stiff changes of
the local Nusselt number in the region close to the boundary. It can be seen from
Fig. 3, the present contour plots for the streamfunction, vorticity and temperature
variables look feasible when compared with those of the pseudo-spectral technique
[Quéré (1991)]. Very thin boundary layers are formed at these high values of Ra.
It is noted that iso-values used in these plots are the same as those used in [Quéré
(1991)].
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Ra = 103

Ra = 104

Ra = 105

Ra = 106

Figure 2: Natural convection flow in a square slot: Contour plots for the ψ (left),
ω (middle) and T (right) variables at four different values of Ra using a grid of
51× 51. Each plot draws 21 contour lines whose values vary uniformly from the
minimum to maximum values.
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Ra = 107 Ra = 108

Streamlines Streamlines

Iso-vorticity lines Iso-vorticity lines

Isotherms Isotherms

Figure 3: Natural convection flow in a square slot: Contour plots for the ψ , ω and
T variables at Ra = 107 and Ra = 108 using a grid of 91× 91. Iso-values used in
these plots are the same as those in [Quéré (1991)].



Galerkin-RBF Approach for Formulation of Natural Convection 239

Table 3: Natural convection flow in a square slot: Comparison of the Galerkin-
IRBFN results with the benchmark solution of Davis (1983) for 103 ≤ Ra ≤ 106

and Pr = 0.71

Characteristic values

Ra Grid size Nu Nu1/2 Nu0 Numax y Numin y

103 21×21 1.118 1.119 1.117 1.503 0.094 0.693 1

[Davis (1983)] 1.118 1.118 1.117 1.505 0.092 0.692 1

21×21 2.254 2.258 2.242 3.514 0.149 0.592 1

104 31×31 2.249 2.251 2.244 3.526 0.147 0.588 1

41×41 2.247 2.248 2.244 3.529 0.146 0.587 1

[Davis (1983)] 2.243 2.243 2.238 3.528 0.143 0.586 1

31×31 4.552 4.555 4.521 7.682 0.083 0.744 1

105 41×41 4.539 4.540 4.519 7.689 0.086 0.736 1

51×51 4.533 4.534 4.520 7.706 0.084 0.733 1

61×61 4.529 4.530 4.521 7.712 0.083 0.731 1

[Davis (1983)] 4.519 4.519 4.509 7.717 0.081 0.729 1

41×41 8.934 8.935 9.023 18.506 0.046 1.025 1

106 51×51 8.899 8.900 8.872 17.794 0.041 1.008 1

61×61 8.877 8.878 8.835 17.523 0.039 1.000 1

71×71 8.864 8.865 8.827 17.458 0.040 0.993 1

[Davis (1983)] 8.8 8.799 8.817 17.925 0.038 0.989 1

4.3 Example 3: Natural convection in a concentric annulus

Consider natural convection between two concentric cylinders that are separated by
a distance L, the inner cylinder is heated and the outer cylinder cooled. Most cases
have been reported with Pr = 0.71 and L/Di = 0.8, in which Di is the diameter of
the inner cylinder. These conditions are also employed in the present work.
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Table 4: Natural convection flow in a square slot: Comparison of the Galerkin-
IRBFN results with those of other techniques for the two highest values of Ra

Ra Technique Nu Nu1/2

107 Present study 16.661 16.661

(Grid size: 91×91)

[Quéré (1991)] 16.523 16.523

[Manzari (1999)] 13.99

[Sadat and Couturier (2000)] 16.59

[Wan, Patnail, and Wei (2001)] (FEM) 16.656

[Wan, Patnail, and Wei (2001)] (DSC) 13.86

[Kosec and Sarler (2007)] 16.92

108 Present study 30.548 30.525

(Grid size: 91×91)

[Quéré (1991)] 30.225 30.225

[Sadat and Couturier (2000)] 30.94

[Wan, Patnail, and Wei (2001)] (FEM) 31.486

[Wan, Patnail, and Wei (2001)] (DSC) 23.67

[Kosec and Sarler (2007)] 32.12

Since the flow is symmetric with respect to the vertical centreline, only half of the
domain is needed for analysis. We employ cylindrical coordinates to solve this
problem. Fig. 5 schematically shows the domain of analysis, the computational
domain, a typical dicretisation used and the boundary conditions. The governing
equations are employed in the form of Eq. 4 - Eq. 6, subject to the following bound-
ary conditions

• on the symmetry plane: ψ = 0, ω = 0 and ∂T/∂θ = 0,

• on the outer cylinder: ψ = 0, ∂ψ/∂ r = 0 and T = 0,

• on the inner cylinder: ψ = 0, ∂ψ/∂ r = 0 and T = 1.

This problem was studied in detail by various techniques. Among them are FDM
[Kuehn and Glodstein (1976)], the differential quadrature (DQ) method [Shu (1999)]
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Figure 4: Natural convection flow in a square slot: Variations of the local Nusselt
number along the left and right walls.

and the RBF-based DQ method [Shu, Ding, and Yeo (2003); Shu and Wu (2007)]
whose results are utilised here for comparison purposes.

We study this problem for the following values of Ra: 102,103,3×103,6×103,104,5×
104 and 7× 104. Contour plots for the streamfunction and temperature are shown
in Fig. 6, which look feasible in comparison with those of Kuehn and Glodstein
(1976). When the Rayleigh number increases, the centre of rotation of the flows
is observed to shift upward and the pattern of the temperature field becomes more
complicated. At high values of Ra (5×104 and 7×104), thermal boundary layers
appear near the lower portion of the inner cylinder and the top of the outer cylinder.

Another important result is the average equivalent conductivity denoted by keq.
This quantity is defined as the actual heat flux divided by the heat flux that would
occur by pure conduction in the absence of the fluid motion:

keqi =
− ln

(
Ro
/

Ri
)

π
(
Ro
/

Ri−1
)
∫

π

0

∂T
∂ r

dθ , (55)

for the inner cylinder, and

keqo =
−
(
Ro
/

Ri
)

ln
(
Ro
/

Ri
)

π
(
Ro
/

Ri−1
)

∫
π

0

∂T
∂ r

dθ , (56)

for the outer cylinder, in which Ri and Ro are the radii of the inner and outer
cylinders, respectively. Tab. 5 summarises the Galerkin-IRBFN results for various
Rayleigh numbers using different grids and those of FDM [Kuehn and Glodstein
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Figure 5: Natural convection flow in an annulus: domain of interest (upper figure),
computational domain (lower figure), boundary conditions and discretisation

Figure 5: Natural convection flow in an annulus: domain of interest (upper figure),
computational domain (lower figure), boundary conditions and discretisation

(1976)] and DQM [Shu (1999)], which show good agreement between the methods
for both the outer and inner cylinders.

5 Concluding remarks

We have successfully implemented a Galerkin-IRBFN method for the simulation
of natural convection governed by the streamfunction-vorticity-temperature formu-
lation in two dimensions. Its attractive features include: (i) easy implementation,
(ii) effective treatment of the vorticity boundary condition, (iii) effective handling
of the Neumann boundary condition, and (iv) ability to capture very thin boundary
layers using relatively-coarse grids. Numerical experiments show that the proposed
method achieves very high Ra solutions. It appears that this work is one of the ear-
liest RBF reports which have successfully simulated the flow in a square slot at
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Ra = 103 Ra = 3×103

Ra = 6×103 Ra = 104

Ra = 5×104 Ra = 7×104

Figure 6: Natural convection flow in an annulus: Contour plots for the ψ (left) and
T (right) variables for six different Rayleigh numbers using a grid of 51×51.
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Table 5: Natural convection flow in an annulus: Convergence of the computed
average equivalent conductivities with grid refinement for 102 ≤ Ra≤ 7×104.

Ra Grid size Outer cylinder Inner cylinder
keqo keqi

102 11×11 1.000 1.000
21×21 1.001 1.001

[Kuehn and Glodstein (1976)] 1.002 1.000
[Shu (1999)] 1.001 1.001

31×31 1.077 1.079
103 41×41 1.078 1.080

51×51 1.079 1.080
[Kuehn and Glodstein (1976)] 1.084 1.081

[Shu (1999)] 1.082 1.082
31×31 1.373 1.379

3×103 41×41 1.378 1.384
51×51 1.381 1.387

[Kuehn and Glodstein (1976)] 1.402 1.404
[Shu (1999)] 1.397 1.397

31×31 1.676 1.689
6×103 41×41 1.684 1.697

51×51 1.690 1.701
[Kuehn and Glodstein (1976)] 1.735 1.736

[Shu (1999)] 1.715 1.715
104 41×41 1.937 1.959

51×51 1.945 1.964
61×61 1.953 1.967

[Kuehn and Glodstein (1976)] 2.005 2.010
[Shu (1999)] 1.979 1.979

41×41 2.794 2.938
5×104 51×51 2.835 2.943

61×61 2.866 2.946
[Kuehn and Glodstein (1976)] 2.973 3.024

[Shu (1999)] 2.958 2.958
41×41 2.970 3.174

7×104 51×51 3.027 3.180
61×61 3.070 3.182

[Kuehn and Glodstein (1976)] 3.226 3.308



Galerkin-RBF Approach for Formulation of Natural Convection 245

Ra = 108. This study further demonstrates the great potential of using RBFs in
CFD.
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