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Consistent Boundary Conditions for 2D and 3D Lattice
Boltzmann Simulations
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Abstract: Consistent formulations of 2D and 3D pressure and velocity boundary
conditions along both the stationary and non-stationary plane wall and corner for
lattice Boltzmann simulations are proposed. The unknown distribution functions
are made function of local known distribution functions and correctors, where the
correctors at the boundary nodes are obtained directly from the definitions of den-
sity and momentum. This boundary condition can be easily implemented on the
wall and corner boundary using the same formulation. Discrete macroscopic equa-
tion is also derived for steady fully developed channel flow to assess the effect of the
boundary condition on the solutions, where the resulting second order accurate cen-
tral difference equation predicts continuous distribution across the boundary pro-
vided the boundary unknown distribution functions satisfy the macroscopic quan-
tity. Three different local known distribution functions are experimented to assess
both this observation and the applicability of the present formulation, and are scru-
tinized by calculating two-dimensional Couette-Poiseuille flow, Couette flow with
wall injection and suction, lid-driven square cavity flow, and three-dimensional
square duct flow. Numerical simulations indicate that the present formulation is
second order accurate and the difference of adopting different local known distri-
bution functions is as expected negligible, which are consistent with the results
from the derived discrete macroscopic equation.
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1 Introduction

Lattice Boltzmann method (LBM) [Chen, Chen, Martinez, and Matthaeus (1991);
Qian, d’Humieres, and Lallemand (1992); Chen and Doolen (1998)] has been
successfully applied to various hydrodynamic problems[Chen, Martinez, and Mei
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(1996); Chen, Chang, and Sun (2007); Han, Feng, and Owen (2007); Chen, Lin,
and Lin (2007); Chang, Liu, and Lin (2009)] and the major advantages of the LBM
are explicit, easy to implement, and natural to parallelize. The LBM consists of
two essential steps: collision step and streaming step. The collision step models
interactions among fluid particles and the streaming step simply moves particles
from one lattice to the other according to their velocities. It has been shown that
at low Mach numbers the LBM solves fluid problems with second order accuracy
both in space and time.

However, a successful LBM simulation rests on the correct implementation of the
boundary conditions, where unknown distribution functions originated from the
undefined nodes external to the flow domain are encountered during the streaming
operation. The bounce-back scheme is the most popular method to handle station-
ary no slip wall boundaries. If the bounce-back boundary condition is implemented
on the boundary nodes, where the wall resides, the bounce-back boundary condition
only gives first order accuracy. However, if the bounce-back boundary condition
is employed with the wall located at half-grid-spacing between a flow node and a
bounce-back node, the scheme is shown to produce second-order accuracy. Never-
theless, the bounce-back scheme generates the nonzero velocity on wall boundary
as long as τ 6= 1 [He, Zou, Luo, and Dembo (1997)].

To obtain the unknown distribution function at the boundary, there are many ap-
proaches available [Skordos (1993); Noble, Chen, Georgiadis, and Buckius (1995);
Inamuro, Yoshino, and Ogino (1995); Maier, Bernard, and Grunau (1996); Chen,
Martinez, and Mei (1996); Zou and He (1997); Junk and Yang (2005)]. For ex-
ample, Skordos [Skordos (1993)] proposed to calculate the boundary distribution
functions using the gradients of the fluid velocity and density. In Noble et al.’s ap-
proach [Noble, Chen, Georgiadis, and Buckius (1995)], the unknown distribution
functions at the boundary node are obtained directly from the definitions of density
and momentum without approximations using D2Q7 lattice. On the other hand, to
ensure no slip wall condition, Inamuro et al. [Inamuro, Yoshino, and Ogino (1995)]
assumed that the unknown distribution functions equals the equilibrium distribution
function modified with a counter slip velocity component. Both pressure and ve-
locity boundary conditions were proposed by Maier et al. [Maier, Bernard, and
Grunau (1996)], however different methodologies were employed for the velocity
and pressure boundary. An extrapolation scheme was adopted by Chen et al. [Chen,
Martinez, and Mei (1996)], where by adding one more layer outside the boundary,
the distribution functions at this outside layer are extrapolated from internal nodes.
Pressure and velocity boundary conditions were also put forward by Zou and He
[Zou and He (1997)], who extended the work of Noble et al. to 2D (D2Q9) and 3D
(D3Q15) flows. Due to the lattice structure adopted (D2Q9 and D3Q15), the num-
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bers of unknown distribution functions exceed the number of constraint equations,
therefore the bounce-back rules were assumed to be valid for the non-equilibrium
distribution functions. For 3D flow, extra constraint from Maier et al. was also
employed. The numerical results were shown to be approximately second-order
accurate. One point boundary condition was proposed by Junk and Yang [Junk and
Yang (2005)], where a correction to the bounce back boundary condition improves
the accuracy of pressure and velocity.

In this paper, consistent 2D and 3D pressure and velocity boundary conditions for
LBGK model are presented. The unknown distribution functions are made func-
tion of local known distribution functions and correctors. The correctors at the
boundary nodes are obtained directly from the definitions of density and momen-
tum. The present formulations can be applied to both stationary and non-stationary
plane walls and corners. To assess the effect of the boundary condition on the
solutions, discrete macroscopic energy equation is also derived for steady fully de-
veloped channel flow. The validity and accuracy of the new boundary condition
are scrutinized by computing two-dimensional Poiseuille flow, Couette flow with
mass injection and suction, and lid-driven square cavity flow. Moreover, to validate
its consistent formulation to three-dimensional problem, a 3-D square duct flow
is also simulated. The results show that the proposed boundary conditions can be
implemented easily, and the second order accuracy is also satisfied.

2 The lattice Boltzmann equation

The lattice Boltzmann method adopting a uniform lattice with Bhatnagar-Gross-
Krook collision model [Chen, Chen, Martinez, and Matthaeus (1991); Qian, d’Humieres,
and Lallemand (1992); Chen and Doolen (1998)] can be expressed as,

f +
i (~x, t) = fi(~x, t)−

1
τ
[ fi(~x, t)− f eq

i (~x, t)] (1)

fi(~x+~eidt, t +dt) = f +
i (~x, t) (2)

where fi is the particle distribution function along the particle speed direction~ei and
f +
i is the post collision particle distribution function. τ is the single relaxation time

that controls the rate approaching equilibrium. The above two equations represent
collision and streaming operations, respectively.

Based on the particle distribution functions, the macroscopic density and velocity
are defined as:

ρ = ∑
i

fi (3)

ρ~u = ∑
i

fi~ei (4)
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The equilibrium distribution functions, which depend on the local density and ve-
locity, are given by the form [Qian, d’Humieres, and Lallemand (1992)],

f eq
i = ωiρ[1+

3
c2~ei ·~u+

9
2c4 (~ei ·~u)2− 3

2c2~u ·~u] (5)

where c = dx/dt is the lattice speed, and dx and dt are the lattice width and time
step, respectively. ωi is a weighting factor. The speed of sound is Cs = c/

√
3 and

the corresponding kinematic viscosity is ν = (τ−0.5)C2
s dt.

For the present 2D and 3D applications, D2Q9, D3Q15 and D3Q19 models are
adopted. For example, the particle speed ~ei adopting D2Q9 model are defined as,

~e0 = 0 (6)

~ei = (cos[π(i−1)/2],sin[π(i−1)/2])c
i = 1,2,3,4 (7)

~ei = (cos[π(i−4−1/2)/2],sin[π(i−4−1/2)/2])
√

2c

i = 5,6,7,8 (8)

and the weighting factors are ω0 = 4/9,ωi=1,2,3,4 = 1/9,ωi=5,6,7,8 = 1/36.

3 Discrete forms of the macroscopic momentum and temperature equations

Before proceeding to the discussions of the boundary conditions of the lattice Boltz-
maan methods, it is beneficial here to derive first the discrete forms of the macro-
scopic momentum and temperature equations based on the lattice Boltzmann equa-
tions, i.e. Eqs. 1 to 5. Since general discrete forms are difficult to derive, the focus
here is concentrated on the D2Q9 steady fully developed channel flow driven by a
fixed body force (G) with periodic boundary conditions.

The discrete Navier Stokes equation for steady fully developed channel flow has
been derived by He et al. [He, Zou, Luo, and Dembo (1997)] and is expressed as,

u j+1v j+1−u j−1v j−1

2δx
=

2τ−1
6

δx2

δ t︸ ︷︷ ︸
ν

u j−1−2u j +u j+1

δx2 +G

+
τ−1

δ t
[u j−1−u j−1 +u j+1−u j+1]−

2τ2−2τ +1
τδ t

[u j−u j] (9)

where u and v are streamwise and transverse velocity, respectively and j is the
discrete index in the transverse direction. It should be noted, however, that u and
u are defined in Eqs. 4 and 5, respectively. Except in the boundary, u = u. Thus
the equation reduces to the second order accurate central difference equation. For
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steady fully developed channel flow without transverse wall injection (v = 0), the
equation predicts exact parabolic profiles.

The influence of the boundary condition can be verified by considering the above
equation next to the lower wall, i.e.

u3v3−u1v1

2δx
=

2τ−1
6

δx2

δ t︸ ︷︷ ︸
ν

u1−2u2 +u3

δx2 +G+
τ−1

δ t
[u1−u1] (10)

where index j = 1 locates the lower wall. u1 is no slip wall velocity and u1 is
computed by the wall distribution function, i.e. ρu1 = C( f j=1

1 + f j=1
5 + f j=1

8 −
f j=1
3 − f j=1

6 − f j=1
7 ). It is clear that f j=1

2 , f j=1
5 and f j=1

6 are to be determined at
the wall. He et al. [He, Zou, Luo, and Dembo (1997)] concluded that, slip velocity
is zero as long as u1 = u1 regardless of the formulation of f j=1

2 , f j=1
5 and f j=1

6 .
This provides a guide to determine the unknown density population at the wall to
be addressed in the next section. Also, since Eq. 10 involves one inhomogeneous
direction only, therefore further numerical tests are adopted to asses whether this
assertion is still valid for flows with two inhomogeneous directions.

4 Boundary conditions

Along the boundary, fi(~x, t) due to the inward streaming operations may originate
from the undefined nodes external to the flow domain, therefore measures have
to be taken to prescribe these unknown particle distribution functions, which are
denoted as fi=p(~x, t). Obviously, fi 6=p(~x, t) = f +

i 6=p(~x−~eidt, t − dt), as shown in
equation 2.

The unknown particle density distribution functions along the boundary are ex-
pressed as a combination of the local known value and a corrector,

fi(~x, t) = f ∗i (~x, t)+
ωi

C
~ei · ~Q (11)

where ~Q is the force like corrector to enforce the required momentum. This resem-
bles the modification of momentum due to the presence of a body force, though this
only applies to the unknown particle density distribution functions along the bound-
ary. This formulation is similar to that proposed by Maier et al. [Maier, Bernard,
and Grunau (1996)] for determining the velocity boundary conditions, though with
slight variation. However, as will be shown next, the present formulation can be
equally applied to velocity or mixed pressure-velocity boundary and even corner
for 2D and 3D flows.

For instance, consider a node at the top boundary as shown in Fig. 1, where the
unknown density distribution functions are ( f4, f7, f8), ( f4, f8, f10, f11, f13) and,
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Figure 1: The 2D and 3D Lattice Boltzmann models.

( f4, f8, f9, f12, f14) for D2Q9, D3Q15 and D3Q19 models, respectively. For D2Q9,
the unknown distribution functions f4, f7 and f8 can be expresses by Eq. 11, i.e.
f4 = f ∗4 −α4Qy, f7 = f ∗7 −α7(Qx +Qy) and f8 = f ∗8 +α8(Qx−Qy). Therefore, the
macroscopic velocity and density at the node using Eqs.(3) and (4), in conjunction
with Eq. (11), can be expressed as,

ρ = f0 + f1 + f2 + f3 +( f ∗4 −ω4Qy)+ f5 + f6

+( f ∗7 −ω7(Qx +Qy))+( f ∗8 +ω8(Qx−Qy))
ρu = f1 + f5 +( f ∗8 +ω8(Qx−Qy))− f3− f6− ( f ∗7 −ω7(Qx +Qy))
ρv = f2 + f5 + f6− ( f ∗4 −ω4Qy)

−( f ∗7 −ω7(Qx +Qy))− ( f ∗8 +ω8(Qx−Qy)) (12)

If velocities u and v are known at the boundary, Eq.(12) to (12) can be used to solve
for ρ , Qx, and Qy, and then f4, f7, and f8 are obtained. The explicit forms of the
unknown particle density distribution functions are shown as below.

ρ =
f0 + f1 + f3 +2( f2 + f5 + f6)

1+ v
(13)

f4 = f ∗4 −
2
3

ρv+
2
3
( f2− f ∗4 + f5− f ∗7 + f6− f ∗8 ) (14)
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f7 = f ∗7 −
1
2

ρu− 1
6

ρv+
1
2
( f1− f3)

+
1
6
( f2− f ∗4 )+

2
3
( f5− f ∗7 )− 1

3
( f6− f ∗8 ) (15)

f8 = f ∗8 +
1
2

ρu− 1
6

ρv− 1
2
( f1− f3)

+
1
6
( f2− f ∗4 )− 1

3
( f5− f ∗7 )+

2
3
( f6− f ∗8 ) (16)

The local known f ∗i is still yet to be decided. As indicated from Eq. 10, as long
as u and u, the no slip boundary condition can be ascertained. Here, three different
forms of f ∗ are experimented to asses this assertion, i.e. (a) : f ∗i (~x, t) = f (~x,−~ei, t),
(b) : f ∗i (~x, t) = f (~x,~ei, t−dt) and (c) : f ∗i (~x, t) = f eq(~x,~ei, t). This is to investigate
whether in the present formulation by satisfying the momentum, the influence of
the choice of the local known distribution function f ∗ is negligible. For formulation
(a), the present form recovers the form by Zou and He[Zou and He (1997)], and is
adopted here.

The same procedure can be applied to D3Q15 and D3Q19, and the explicit forms
for ( f4, f8, f10, f11, f13) and, ( f4, f8, f9, f12, f14), are respectively as:

For D3Q15 model,

ρ =
f0 + f1 + f2 + f5 + f6

1+ v
+2

f3 + f7 + f9 + f12 + f14

1+ v
(17)

f4 = f ∗4 −
2
3

ρv+
2
3
( f3− f ∗4 + f7− f ∗8 + f9− f ∗10

+ f12− f ∗11 + f14− f ∗13) (18)

f8 = f ∗8 −
1
4

ρu− 1
12

ρv− 1
4

ρw+
1
4
( f1− f2)+

1
4
( f5− f6)+

1
12

( f3− f ∗4 )

+
7
12

( f7− f ∗8 )+
1
12

( f9− f ∗10)

− 5
12

( f12− f ∗11)+
1
12

( f14− f ∗13) (19)

f10 = f ∗10−
1
4

ρu− 1
12

ρv+
1
4

ρw+
1
4
( f1− f2)−

1
4
( f5− f6)+

1
12

( f3− f ∗4 )

+
1
12

( f7− f ∗8 )+
7
12

( f9− f ∗10)

+
1
12

( f12− f ∗11)−
5
12

( f14− f ∗13) (20)
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f11 = f ∗11 +
1
4

ρu− 1
12

ρv+
1
4

ρw− 1
4
( f1− f2)−

1
4
( f5− f6)+

1
12

( f3− f ∗4 )

− 5
12

( f7− f ∗8 )+
1
12

( f9− f ∗10)

+
7
12

( f12− f ∗11)+
1
12

( f14− f ∗13) (21)

f13 = f ∗13 +
1
4

ρu− 1
12

ρv− 1
4

ρw− 1
4
( f1− f2)+

1
4
( f5− f6)+

1
12

( f3− f ∗4 )

+
1
12

( f7− f ∗8 )− 5
12

( f9− f ∗10)

+
1
12

( f12− f ∗11)+
7
12

( f14− f ∗13) (22)

For D3Q19 model,

ρ =
f0 + f1 + f2 + f5 + f6 + f15 + f16 + f17 + f18

1+ v
+2

( f3 + f7 + f10 + f11 + f13)
1+ v

f4 = f ∗4 −
1
3

ρv

+
1
3
( f3− f ∗4 + f7− f ∗8 + f10− f ∗9

+ f11− f ∗12 + f13− f ∗14) (23)

f8 = f ∗8 −
1
2

ρu− 1
6

ρv

+
1
2
( f1− f2)+

1
2
( f15− f16)+

1
2
( f17− f18)

+
1
6
( f3− f ∗4 )+

2
3
( f7− f ∗8 )− 1

3
( f10− f ∗9 )

+
1
6
( f11− f ∗12)+

1
6
( f13− f ∗14) (24)

f9 = f ∗9 +
1
2

ρu− 1
6

ρv

− 1
2
( f1− f2)−

1
2
( f15− f16)−

1
2
( f17− f18)

+
1
6
( f3− f ∗4 )− 1

3
( f7− f ∗8 )+

2
3
( f10− f ∗9 )

+
1
6
( f11− f ∗12)+

1
6
( f13− f ∗14) (25)
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f12 = f ∗12−
1
6

ρv− 1
2

ρw

+
1
2
( f5− f6)+

1
2
( f15− f16)−

1
2
( f17− f18)

+
1
6
( f3− f ∗4 )+

1
6
( f7− f ∗8 )+

1
6
( f10− f ∗9 )

+
2
3
( f11− f ∗12)−

1
3
( f13− f ∗14) (26)

f14 = f ∗14−
1
6

ρv+
1
2

ρw

− 1
2
( f5− f6)−

1
2
( f15− f16)+

1
2
( f17− f18)

+
1
6
( f3− f ∗4 )+

1
6
( f7− f ∗8 )+

1
6
( f10− f ∗9 )

− 1
3
( f11− f ∗12)+

2
3
( f13− f ∗14) (27)

The same procedure can be applied to D3Q15 and D3Q19 models for a node at the
left boundary, and the unknown particle distribution functions are ( f1, f7, f9, f11,
f13) and, ( f1, f7, f9, f15, f17), respectively. It is possible to obtain explicit form of
the unknown particle distribution functions as shown below.

For D3Q15 model,

u = 1− f0 + f3 + f4 + f5 + f6

ρ

+2
f2 + f8 + f10 + f12 + f14

ρ
(28)

f1 = f ∗1 +
2
3

ρu

+
2
3
( f2− f ∗1 + f8− f ∗7 + f10− f ∗9

+ f12− f ∗11 + f14− f ∗13) (29)
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f7 = f ∗7 +
1
12

ρu+
1
4

ρv+
1
4

ρw

− 1
4
( f3− f4)−

1
4
( f5− f6)+

1
12

( f2− f ∗1 )

+
7
12

( f8− f ∗7 )+
1
12

( f10− f ∗9 )

+
1
12

( f12− f ∗11)−
5
12

( f14− f ∗13) (30)

f9 = f ∗9 +
1
12

ρu+
1
4

ρv− 1
4

ρw

− 1
4
( f3− f4)+

1
4
( f5− f6)+

1
12

( f2− f ∗1 )

+
1
12

( f8− f ∗7 )+
7
12

( f10− f ∗9 )

− 5
12

( f12− f ∗11)+
1
12

( f14− f ∗13) (31)

f11 = f ∗11 +
1

12
ρu− 1

4
ρv+

1
4

ρw

+
1
4
( f3− f4)−

1
4
( f5− f6)+

1
12

( f2− f ∗1 )

+
1
12

( f8− f ∗7 )− 5
12

( f10− f ∗9 )

+
7
12

( f12− f ∗11)+
1
12

( f14− f ∗13) (32)

f13 = f ∗13 +
1

12
ρu− 1

4
ρv− 1

4
ρw

+
1
4
( f3− f4)+

1
4
( f5− f6)+

1
12

( f2− f ∗1 )

− 5
12

( f8− f ∗7 )+
1
12

( f10− f ∗9 )

+
1
12

( f12− f ∗11)+
7
12

( f14− f ∗13) (33)

For D3Q19 model,

u = 1− f0 + f3 + f4 + f5 + f6 + f11 + f12 + f13 + f14

ρ

+2
f2 + f8 + f10 + f16 + f18

ρ
(34)
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f1 = f ∗1 +
1
3

ρu

+
1
3
( f2− f ∗1 + f8− f ∗7 + f10− f ∗9

+ f16− f ∗15 + f18− f ∗17) (35)

f7 = f ∗7 +
1
6

ρu+
1
2

ρv

− 1
2
( f3− f4)−

1
2
( f11− f12)−

1
2
( f13− f14)

+
1
6
( f2− f ∗1 )+

2
3
( f8− f ∗7 )− 1

3
( f10− f ∗9 )

+
1
6
( f16− f ∗15)+

1
6
( f18− f ∗17) (36)

f9 = f ∗9 +
1
6

ρu− 1
2

ρv

+
1
2
( f3− f4)+

1
2
( f11− f12)+

1
2
( f13− f14)

+
1
6
( f2− f ∗1 )− 1

3
( f8− f ∗7 )+

2
3
( f10− f ∗9 )

+
1
6
( f16− f ∗15)+

1
6
( f18− f ∗17) (37)

f15 = f ∗15 +
1
6

ρu+
1
2

ρw

− 1
2
( f5− f6)−

1
2
( f11− f12)+

1
2
( f13− f14)

+
1
6
( f2− f ∗1 )+

1
6
( f8− f ∗7 )+

1
6
( f10− f ∗9 )

+
2
3
( f16− f ∗15)−

1
3
( f18− f ∗17) (38)

f17 = f ∗17 +
1
6

ρu− 1
2

ρw

+
1
2
( f5− f6)+

1
2
( f11− f12)−

1
2
( f13− f14)

+
1
6
( f2− f ∗1 )+

1
6
( f8− f ∗7 )+

1
6
( f10− f ∗9 )

− 1
3
( f16− f ∗15)+

2
3
( f18− f ∗17) (39)
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The present boundary condition can also be applied to the corner nodes. Consider
the top left corner node (Figure 1) of a two dimensional domain, where the un-
known distribution functions are f1, f4, f5, f7 and f8. It is clear that the distribution
functions f5 and f7 do not stream from and into the flow domain, but it contributes
to the level of the density. Therefore, the density at this location must be specified.
Here for simplicity, f ∗i (~x,~ei, t) = fi(~x,−~ei, t) is adopted and similar procedure can
be applied to other schemes. Thus, the unknown distribution functions adopting
Eq. 11 are expressed as f1 = f3 + ω1Qx, f4 = f2−ω4Qy, f5 = f7 + ω5(Qx + Qy)
and f8 = f6 + ω8(Qx−Qy). f7 is solved as part of the solution to avoid recursive
computation, but f7 = f5−ω7(Qx + Qy) is still valid. Now, for known ρ , u and v,
then

f7 =
ρ−ρu+ 2

3 ρv− f0−2( f2 + f3 + f6)
2

f1 = f3 +
2
3

ρu, f4 = f2−
2
3

ρv

f5 = f7 +
1
6

ρu+
1
6

ρv, f8 = f6 +
1
6

ρu+
1
6

ρv (40)

As expected, for a stationary wall, i.e. u = v = 0, this result is the same at that
proposed by Zou and He [Zou and He (1997)]. However, the present method can
be applied to non-stationary corners. Similar treatments can be applied to other
corners for two and three-dimensional flows.

5 Numerical Results

5.1 2-D Poiseuille and Couette-Poisueille flows

Fully developed flow in a channel is a typical case to examine the accuracy of
boundary conditions. The Reynolds number is defined as Re = U0(2L)/ν in a
channel of height 2L, and U0 is the maximum velocity. The analytical solution of
Poiseuille flow and the maximum relative error are defined as

Uexact = U0(1−
y2

L2 ) (41)

Errmax = max(

√
(u−Uexact)2

U0
) (42)

Here, the flow driven by a force with periodic boundary condition is examined
first, where the proposed velocity boundary conditions are applied on the upper
and lower plates of the channel. For this arrangement, the predicted velocity should
equal to the exact velocity and the maximum relative error is 6.06448× 10−11 at
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most for the lattice sizes (8×4,16×8,32×16,64×32,128×64). The response of
the present boundary condition to the variation of relaxation time τ is also examined
using lattice density 4× 8. Figure 2 shows the predicted results in comparison
with the analytic solution. No slip boundary condition is clearly satisfied and no
observable difference among schemes A, B and C exists, which is consistent with
the results from Eq. 9.
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Figure 2: The predicted velocity pro-
files of Poiseuille flow with different
relaxation times.
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Figure 3: Maximum predicted veloc-
ity relative error of Poiseuille flow by
D2Q9 model.

Further, pressure driven Poiseuille channel flow is also computed, where mixed
pressure velocity boundary conditions are used at the channel inlet and outlet and
no slip boundary conditions are applied along the channel walls. The pressure
gradient is set as G = 2ρνU0/L2. Five uniform lattices are used, i.e. (8× 4,16×
8,32×16,64×32,128×64). Figure 3 shows the predicted results and the second-
order accuracy is achieved. It is also interesting to note that the differences among
the three schemes A, B and C are negligible.

Then, to highlight capability of the present boundary condition with non-stationary
corner, a Couette-Poiseuille flow is simulated. The Reynolds number is defined
as Re = U0(2L)/ν in a channel of height 2L, and U0 is the velocity defined based
on the imposed pressure gradient, i.e. G = 2ρνU0/L2. Besides, the top wall of
the channel is moving at a constant velocity Utop = 0.8U0 and the bottom wall is
stationary. Therefore, the top left and the top right corners both have a velocity
of Utop. The analytical solution of this Couette-Poiseuille flow and the maximum
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relative error are defined as

Uexact =
1
2

Utop(1+
y
L

)+U0(1−
y2

L2 ) (43)

Errmax = max(

√
(u−Uexact)2

Utop
) (44)

Four uniform lattices are used, i.e. (16× 8,32× 16,64× 32,128× 64). Here,
Scheme A is applied along wall and corner boundaries. Figure 4 shows the pre-
dicted streamwise velocity at the channel inlet and outlet with two Reynolds num-
bers. As expected, the predicted results agree quite well with the analytic solutions.
Also, the maximum relative errors, as shown in Figure 5, indicate that the present
non-stationary corner treatment is second order accurate.
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Figure 4: Predicted velocity profiles
of Couette-Poiseuille flow.
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Figure 5: Maximum predicted veloc-
ity relative error of Couette-Poiseuille
flow.

5.2 Couette flow with wall injection

Next, attention is directed to the Couette flow with wall injection. Here, the channel
top wall is moving at a constant velocity U and bottom wall is stationary. Fluid is
injected from the bottom wall into the channel and extracted from the top moving
wall with a vertical component V0. No slip boundary conditions (scheme B) are
applied along the channel walls and periodic boundary condition is applied at the
inlet and outlet.

The Reynolds number is defined based on the injection velocity V0 and channel
height L, i.e. Re = V0L/ν . Five different lattice densities in the y direction are
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Figure 6: Predicted velocity profiles
of Couette flow with wall injection
and suction.
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Figure 7: Maximum predicted veloc-
ity relative error of Couette flow with
wall injection and suction.

adopted, (10, 20, 40, 80, and 160), to determine the convergence rate in space.
Figure 6 presents the results compared with the available analytical solution,

Uexact = U(
e(Re y/L)−1

eRe−1
) (45)

The influence of the injection velocity can be observed at high Reynolds number
case, where at the bottom wall the flow is obstructed by the inward jet. To examine
the convergence, equation (42) is used to determine the maximum relative error
using different lattices. Figure 7 shows the predicted results are second order ac-
curate for the Reynolds numbers investigated, which is consistent with the results
from Eq. 9.

5.3 Lid-driven square cavity flow

2-D lid driven cavity flow is also widely adopted to examine the accuracy of the
numerical schemes, where the flow is bounded by a square enclosure and driven by
the uniform velocity of the lid. The Reynolds number is defined as Re = U0L/ν ,
where U0 is the lid velocity and L is the cavity height. The proposed boundary
condition (scheme B) is applied to all boundaries to model the flow, where the
domain is covered by a lattice size of 256× 256. Simulations are conducted at
Re = 100,400 and 1000. Predicted horizontal and vertical velocities along the
horizontal and vertical wall bisectors are shown in Figures 8 and 9. The simulated
results are contrasted with the benchmark solutions of Ghia et al.[Ghia, Ghia, and
Shin (1982)] and the agreements are satisfactory.
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Figure 8: Predicted horizontal veloci-
ties of lid-driven cavity flows
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Figure 9: Predicted vertical velocities
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5.4 3-D Poiseuille flow in a square duct

The capability of the proposed boundary condition to model three-dimension prob-
lem is examined. Here, a pressure driven 3-D square duct flow is simulated by
D3Q15 and D3Q19 model. Mixed pressure velocity boundary conditions are ap-
plied at the duct inlet and outlet boundary, and no-slip condition is imposed along
the bounding walls. The corner treatment is similar to its 2D flow counterpart and
is not repeated here. The size of the square duct is 0 ≤ x ≤ 4L,−L ≤ y ≤ L and
−L≤ z≤ L, where L is half of the duct height, with x being the flow direction. The
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lattice sizes are Nx×Ny×Nz: 8×4×4,16×8×8,32×16×16,64×32×32. The
analytic velocity profile is available for comparison as [White (1991)],

ux(y,z) =
16a2

µπ3 (−d p
dx

)

∞

∑
i=1,3,5,...

(−1)(i−1)/2[1− cosh(iπz/2L)
cosh(iπL/2L)

]
cos(iπy/2L)

i3
(46)

Two Reynolds numbers are simulated, i.e Re = 10 and Re = 0.1. The predicted
maximum relative errors are shown in Figures 10 and 11. Again, the differences of
the adopted schemes are marginal and the results also show second order accuracy.
It should be noted, however, that the maximum relative error of D3Q19 is lower
than that obtained by D3Q15 model.

6 Conclusion

In this paper, consistent formulations of 2D and 3D pressure and velocity boundary
conditions along both the stationary and non-stationary plane walls and corners for
lattice Boltzmann simulations are proposed. The unknown distribution functions
along the boundary are made function of local known distribution functions and
correctors, where the correctors at the boundary nodes are obtained directly from
the definitions of density and momentum. In addition, the proposed boundary con-
ditions can be implemented easily for wall and corner boundary using the same
formulation. Discrete macroscopic equation is derived for steady fully developed
channel flow, and the resulting equation is second order accurate central difference
equation, which also implies that the equation produces continuous distribution
across the boundary provided the boundary unknown distribution functions satisfy
the macroscopic boundary level. Three different boundary condition variants are
experimented to assess this assertion and the applicability of the present formu-
lation, and are examined by computing two-dimensional Poiseuille and Couette-
Poiseuille flows, Couette flow with wall injection and suction and lid-driven cavity
flow and three-dimensional Poiseuille flow within square duct. For the cases in-
vestigated, second order accurate solutions are obtained, and the differences of the
three boundary formulations are as expected negligible, which is consistent with
the discrete macroscopic equation. Thus, the choice of the local known function
can be arbitrary, as long as the macroscopic quantity is satisfied.
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