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Numerical Solution of Nonlinear Schrodinger Equations
by Collocation Method Using Radial Basis Functions

Sirajul Haq1,2, Siraj-Ul-Islam3 and Marjan Uddin1,4

Abstract: A mesh free method for the numerical solution of the nonlinear Schro-
dinger (NLS) and coupled nonlinear Schrodinger (CNLS) equation is implemented.
The presented method uses a set of scattered nodes within the problem domain as
well as on the boundaries of the domain along with approximating functions known
as radial basis functions (RBFs). The set of scattered nodes do not form a mesh,
means that no information of relationship between the nodes is needed. Error norms
L2, L∞ are used to estimate accuracy of the method. Stability analysis of the method
is given to demonstrate its practical applicability.

Keywords: RBFs; Nonlinear Schrodinger equations (NLS), Coupled nonlinear
Schrodinger (CNLS) equations; Mesh free collocation method.

1 Introduction

NLS equation is a model which has application in fluid mechanics, plasma physics,
nonlinear optics [Bialynicki (1979), Bullough (1979), Cowan(1986)]. Various nu-
merical methods have been used for the solution of NLS equation [Chang (1999),
Dag (1999), Karkashian (1998), Pathria (1990), Sheng (2001), YanXu, ChiWang
(2005)]. The coupled nonlinear Schrodinger equation (CNLS) equations derived
by [Benny and Newell (1967)] is a model for two interacting nonlinear packets in
a dispersive and conservative system. CNLS equation has been solved numerically
by many authors [Yan Xu and Chi Wang (2005), M. S. Ismail (2008), Ismail and
Taha (2001), Ismail and Taha (2007)]

The multiquadric method was first introduced by [Hardy (1971)] to approximate
two-dimensional geographical surfaces. [Kansa (1990)] derived a modified mul-
tiquadric scheme for the numerical solution of PDEs. [Micchelli (1986), Madych
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(1990), Frank and Schaback (1998)] worked on existence, uniqueness, and conver-
gence of the RBFs approximation. The importance of shape parameter c in the MQ
method was examined by [Tarwater (1985)]. [Micchelli (1986)] has shown that the
system of equations obtained with this approach is always solvable for distinct in-
terpolation points. The idea of applying the MQ technique to PDEs was proposed
by [Kansa (1990)], which was extended by [Golberg (1996)] later on. [Hon and
Mao (1998)] extended the use of MQ for numerical solutions of various ordinary
and partial differential equations including nonlinear Burgers’ equation with shock
waves. Very recently a number of papers have been published on RBFs collocation
methods. [Sirajul Haq et.al (2008), Marjan Uddin et.al (2009)] have used mesh free
collocation method for different types of PDEs. [Nicolas ali libre et.al (2008)] have
used an adaptive scheme for nearly singular PDEs, [Emdadi et. al (2008)] proposed
a stable PDE solution method for large multiquadric shape parameters whereas a
modified meshless control volume method was proposed by [P. Orsini, H. Power
(2008)]. [G. Kosec and B. Sarler (2008)] have used local RBF collocation method
for Darcy flow. [S.N. Atluri et.al (2004)] have developed a meshless finite volume
method through MLPG mixed approach. [S, Chantasiriwan (2006)] has used Mul-
tiquadric Collocation method for solving Lid-driven Cavity flow problem and [C.
Shu, H. Ding (2005)] have used this approach to solve the Navier-Stokes equation.

In this work, we propose a mesh free collocation method based on the radial basis
functions, MQ (ψ(r) = (r2 + c2)1/2, where c is a shape parameter), TPS (r4 logr)
and spline basis (r5), for the numerical solution of the following types of equations.

i) Nonlinear Schrodinger equation(NLS)[Yan Xu and Chi-Wang Shu (2005)]

iwt +wxx +2|w|2w = 0, −∞ < x < ∞, t > 0. (1)

ii) The coupled CNLS equations [Benny and Newell (1967)] are

i(w1)t +
1
2
(w1)xx +(|w1|2 +β |w2|2)w1 = 0 (2)

i(w2)t +
1
2
(w2)xx +(β |w1|2 + |w2|2)w2 = 0

and

i(w1)t + iα(w1)x +
1
2
(w1)xx +(|w1|2 +β |w2|2)w1 = 0 (3)

i(w2)t − iα(w2)x +
1
2
(w2)xx +(β |w1|2 + |w2|2)w2 = 0.
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In the above equations w = v1 + iv2, w1 = u1 + iu2, w2 = u3 + iu4 are complex
valued functions of the spatial coordinate x, t stands for time variable, α and β are
real parameters.

The structure of the paper is organized as follows. In Section 2, we discuss the
mesh free method. In Section 3, stability analysis of the scheme is presented. In
Section 4, we test the method on problems related to the NLS and CNLS equations.
In Section 5, the results are concluded.

2 Description of the technique

Consider an n-dimensional (n = 1,2,3) time dependent boundary value problem

ut +L u = f (x, t), x ∈Ω, Bu = g(x, t), x ∈ Γ, (4)

where L and B are derivative and boundary operators respectively. Ω and Γ stand
for interior of the domain and boundary of the domain respectively.

The initail condition is given by

u(x,0) = u0. (5)

For spatial derivatives, we use the following θ -weighted scheme

u(n+1)−u(n)

δ t
+θL u(n+1) +(1−θ)L u(n) = f (x, t(n+1)), 0≤ θ ≤ 1. (6)

In above equation δ t is time step, u(n) (n is non-negative integer) is the solution at
time t(n) = n δ t and {xi}N

i=1 ∈Ω∪Γ are collocation points.

Approximate solution of Eq. (4) in terms of RBF is given by

u(n)(xi) =
N

∑
j=1

ψ(ri j)λ
(n)
j , i = 1(1)N. (7)

In the above eqution ψ(ri j) represent RBFs, ri j = ‖Qi−Q j‖ is Euclidean norm

between the points Qi, Q j and λ
(n)
j ( j = 1(1)N) are constants to be determined.

Matrix form of the system (7) can be written as:

u(n) = Aλ
(n), (8)

where A = [ψ(ri j)]N×N , λ = [λ1,λ2, . . . ,λN ]T .

From Eqs. (6) and (7), we can write

N

∑
j=1

(
ψ(ri j)λ

(n+1)
j −ψ(ri j)λ

(n)
j

δ t
+θL [ψ(ri j)]λ

(n+1)
j +(1−θ)L [ψ(ri j)]λ

(n)
j

)
= f (xi, t

(n+1)), i = 1(1)Nd , (9)
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N

∑
j=1

B(ψ(ri j))λ
(n+1)
j = g(xi, t

(n+1)), i = Nd +1(1)N. (10)

Eqs. (9) and (10) can be written in the matrix form as

Gλ
(n+1) = Hλ

(n) +F(n+1), (11)

where

G =
[

ψ(ri j)+δ tθL [ψ(ri j)]
Bψ[(ri j)]

]
, H =

[
ψ(ri j)−δ t(1−θ)L [ψ(ri j)]

0

]
,

F(n+1) =
[

δ t f (n+1)

g(n+1)

]
.

Eliminating λ
(n)
j ( j = 1(1)N) from Eqs. (8) and (11) we obtaine the solution at

time level n+1

u(n+1) = AG−1HA−1u(n)+AG−1F(n+1).

For numerical calculation we use θ = 0.5. For distinct collocation points, A is
always invertible [Micchelli (1986)]. It was shown by [Schaback (1998)] that the
matrix G is invertible provided the matrix G is symmetric.

2.1 The NLS equation

The decomposed form of the NLS Eq. (1) is given as

(−1)k−1(vk)t +(v3−k)xx +2(vk)2v3−k +2v3
3−k = 0, k = 1,2. (12)

The boundary conditions are

vk(a, t) = gak(t), vk(b, t) = gbk(t), t > 0, k = 1,2 (13)

and initial conditions

vk(x,0) = gk(x), k = 1,2 and a≤ x≤ b. (14)

Applying scheme (6) to Eqs. (12), we get

(vk)(n+1) = (vk)(n)

+(−1)k
δ t
[
((v3−k)xx)(n) +2(v2

kv3−k)(n) +2(v3
3−k)

(n)
]
, k = 1,2. (15)
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The RBF approximations of vk, k = 1,2, for Eqs. (12) are given by

(vk)(n)(x) =
N

∑
j=1

ξ
(n)
k j ψ(r j), k = 1,2. (16)

Using Eqs. (16) in Eqs. (15) along with the boundary conditions (13), in matrix
form we can write

Aξk
(n+1) = Aξk

(n)

+(−1)k
δ t
[
((v3−k)xx)

(n) +2
(
v2

kv3−k
)(n)

+2
(
v3

3−k

)(n)
]
+g(n+1)

k , k = 1,2. (17)

where ξk
(n) =

[
ξ

(n)
k j

]T

N×N
, g(n+1)

k =
[

g(n+1)
ak ,0,0, ...,g(n+1)

bk

]T
, k = 1,2.

In more compact form Eq. (17) can be written as

ξk
(n+1) = ξk

(n) +A−1G(n+1)
k , k = 1,2 (18)

where

G(n+1)
k = g(n+1)

k +(−1)k
δ t
[
((v3−k)xx)

(n) +2
(
v2

kv3−k
)(n)

+2
(
v3

3−k

)(n)
]
, k = 1,2.

The solution can be obtained from the above two equations and Eq. (16) at each
time level n.

2.2 CNLS equations

Decomposed form of the CNLS Eq. (3) is given by

(uk)t +α(uk)x +
(−1)k−1(u3−k)xx

2
+(−1)k−1

[
2

∑
j=1

(
u2

j +βu2
j+2

)]
u3−k

= 0, k = 1,2

(uk)t −α(uk)x +
(−1)k−1(u7−k)xx

2
+(−1)k−1

[
2

∑
j=1

(
βu2

j +u2
j+2

)]
u7−k

= 0, k = 3,4 (19)

along with the boundary conditions

uk(a, t) = fak(t), uk(b, t) = fbk(t), k = 1(1)4, t > 0, (20)
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and initial conditions

uk(x,0) = fk(x), k = 1(1)4, a≤ x≤ b. (21)

Using Eq. (6) in system of Eqs. (19), we can write

u(n+1)
k +

αδ t
2

(uk)
(n+1)
x = u(n)

k −δ t

[
α

2
(uk)

(n)
x +

(−1)k−1(u3−k)
(n)
xx

2

]

+(−1)k
δ t

[{
2

∑
j=1

(
(u2

j)
(n) +β (u2

j+2)
(n)
)}

(u3−k)(n)

]
, k = 1,2 (22)

u(n+1)
k − αδ t

2
(uk)

(n+1)
x = u(n)

k +δ t

[
α

2
(uk)

(n)
x +

(−1)k(u7−k)
(n)
xx

2

]

+(−1)k
δ t

[{
2

∑
j=1

(
β (u2

j)
(n) +(u2

j+2)
(n)
)}

(u7−k)(n)

]
, k = 3,4. (23)

The RBF approximations for uk, k = 1(1)4 of the system (19) are given by

u(n)
k (x) =

N

∑
j=1

λ
(n)
k j ψ(r j), k = 1(1)4. (24)

After the use of Eq. (24), the system of Eqs. (22) and (23) along with the boundary
conditions (20) can be written in matrix form as[

A+
αδ t

2
D1

]
λ

(n+1)
k =

[
A− αδ t

2
D1

]
λ

(n)
k +(−1)k δ t

2
(u3−k)

(n)
xx

+(−1)k
δ t

[
2

∑
j=1

(
(u2

j)
(n) +β (u2

j+2)
(n)
)]

(u3−k)(n) + f(n+1)
k , k = 1,2 (25)

[
A− αδ t

2
D1

]
λ

(n+1)
k =

[
A+

αδ t
2

D1

]
λ

(n)
k +(−1)k δ t

2
(u7−k)

(n)
xx

+(−1)k
δ t

[
2

∑
j=1

(
β (u2

j)
(n) +(u2

j+2)
(n)
)]

(u7−k)(n) + f(n+1)
k , k = 3,4 (26)
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where

λ
(n)
k =

[
λ

(n)
k j

]T

N×N
, D1 = [ψ ′(ri j)]N×N , f(n+1)

k =
[

f (n+1)
ak ,0,0, ..., f (n+1)

bk

]T
, k =

1(1)4.

In more compact form we can write Eqs. (25)-(26) as

λ
(n+1)
k = M−1Nλ

(n)
k +M−1F(n+1)

k , k = 1,2, (27)

λ
(n+1)
j = N−1Mλ

(n)
j +N−1F(n+1)

j , j = 3,4. (28)

where

M =
[

A+
αδ t

2
D1

]
, N =

[
A− αδ t

2
D1

]
,

F(n+1)
k = f(n+1)

k +(−1)k δ t
2

(u3−k)
(n)
xx

+(−1)k
δ t

[
2

∑
j=1

(
(u2

j)
(n) +β (u2

j+2)
(n)
)]

(u3−k)(n), k = 1,2

F(n+1)
k = f(n+1)

k +(−1)k δ t
2

(u7−k)
(n)
xx

+(−1)k
δ t

[
2

∑
j=1

(
β (u2

j)
(n) +(u2

j+2)
(n)
)]

(u7−k)(n), k = 3,4.

Matrix forms of Eq. (24) is

u(n)
k = Aλ

(n)
k , k = 1(1)4. (29)

Using Eq. (29) in Eq. (27), we obtain

u(n+1)
j =

[
AM−1NA−1

]
uj

(n) +[AM−1]F(n+1)
j , j = 1,2, (30)

u(n+1)
k =

[
AN−1MA−1

]
uk

(n) +
[
AN−1

]
F(n+1)

k , k = 3,4.

3 Stability Analysis

Stability of the scheme for the CNLS equations (3), using spectral norm of the
amplification matrix, is discussed in this section. Let uk and u∗k be respectively nu-
merical and exact solutions of Eq. (19). The error vectors are denoted and defined
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by ε
(n)
k = uk

(n)− u∗k
(n), (k = 1(1)4). Using Eq. (30), we arrive at the following

equations

ε
(n+1)
k = u(n+1)

k −u∗k
(n+1) = Ekε

(n)
k , (31)

Ek = AM−1NA−1, k = 1,2; Ek = AN−1MA−1, k = 3,4.

where Ek, k = 1(1)4, are the amplification matrices. For the scheme to remain

stable, ε
(n)
k must approach to zero as n −→ ∞ for k = 1(1)4 i.e ρ(Ek) ≤ 1, where

ρ(Ek) represent spectral radii of the matrices Ek. From Eqs. (27) and (31), we can
write[

I+
δ t
2

S1

]
ε

(n+1)
k =

[
I+

δ t
2

S2

]
ε

(n)
k , k = 1,2, (32)[

I+
δ t
2

S3

]
ε

(n+1)
k =

[
I+

δ t
2

S4

]
ε

(n)
k , k = 3,4,

where S1 = S4 = αD1A−1, S2 = S3 =−αD1A−1.

For stability, maximum eigenvalues of the matrices[
I+

δ t
2

S1

]−1[
I+

δ t
2

S2

]
and

[
I+

δ t
2

S3

]−1[
I+

δ t
2

S4

]
must be less or equal to unity i.e. to write∣∣∣∣1+(δ t/2)ηS2

1+(δ t/2)ηS1

∣∣∣∣≤ 1 and

∣∣∣∣1+(δ t/2)ηS4

1+(δ t/2)ηS3

∣∣∣∣≤ 1, (33)

where ηSi stand for eigenvalues of the matrices Si, for i = 1(1)4, respectively.
Above conditions will hold if ηS1 ≥ ηS2 and ηS3 ≥ ηS4 . It is evident from in-
equality (33), that the stability of the scheme (30) depends upon the parameters
δ t and eigenvalues of the matrices Si, i = 1(1)4 in addition to number of colloca-
tion points N and shape parameter c. In the case of free parameter RBFs like TPS
(r2n logr, n is positive integer) and Quintic (rn, n is odd positive integer), stability
also depends upon the same factors except shape parameter c. For an acceptable
distribution of collocation points, inequality (33) must hold. In computational ex-
periment we consider Problem 4, where behavior of minimum eigenvalues of the
matrices Si, i = 1,2 versus MQ shape parameter c is shown in Fig. 6. Also in Table
4, the error norms L∞ of the solutions are given for fixed number of collocation
points N. This table confirms the fact that mesh free collocation method produce
stable results when the shape c lies in the interval (0.1,1.7).
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4 Numerical examples

In this section, we apply the proposed method for the numerical solution of different
classes of coupled PDEs. The accuracy of the method is checked by error norms
L2, L∞ and the invariants of the NLS and CNLS equations. These error norms and
invariants are given as

L2 = ‖w∗−w‖2 =

[
δx

N

∑
j=1

(w∗−w)2

]1/2

,

L∞ = ‖w∗−w‖
∞

= max j|w∗−w|.

I1 =
∫

∞

−∞

|w1|2 dx,

I2 =
∫

∞

−∞

|w2|2 dx,

I3 =
∫

∞

−∞

i
2

∑
j=1

(w j(w j)x−w j(w j)x) dx,

I4 =
∫

∞

−∞

(
2

∑
j=1

1
2

∣∣(w j)x
∣∣2− 1

2

2

∑
j=1

∣∣w j
∣∣4− e|w1|2|w2|2

)
dx, (34)

where w∗ and w are used for exact and approximate solutions respectively. The
tested problems are given below.

Problem 1. Consider NLS equation

iwt +wxx +2|w|2w = 0 (35)

with exact solution [Yan Xu and Chi-Wang Shu (2005)]

w(x, t) = sech(x−4t)exp(2i(Cx− 3
2

t)). (36)

The error norms L∞ and L2 of vk,k = 1,2, are given in Table 1 for different values
t. The numerical results are obtained by using three radial basis functions MQ,
TPS (r4log(r)) and spline basis (r5). In all these computations, we use MQ shape
parameters c1 = c2 = 1, N = 76, δx = 0.4, δ t = 0.0001 and interval [−15,15].
From the table it is clear that the results of both vk,k = 1,2, obtained by spline
basis and MQ are better than that obtained by TPS.
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Table 1: Error norms for v1 and v2 when δx = 0.4, δ t = 0.0001 C = 1 and N = 76
in [−15,15] corresponding to Problem 1.

MQ v1 v2

Time L∞ L2 L∞ L2

0.1 4.270E-004 5.669E-005 5.794E-004 4.253E-005
0.2 6.063E-004 2.095E-005 6.844E-004 7.365E-005
0.4 7.909E-004 6.810E-005 8.927E-004 7.910E-005
0.6 1.167E-003 2.201E-004 9.145E-004 1.985E-004
0.8 1.297E-003 9.624E-004 1.195E-003 3.404E-004
1.0 1.487E-003 1.566E-003 1.848E-003 7.511E-004
r5 v1 v2

Time L∞ L2 L∞ L2

0.1 4.045E-004 9.547E-005 3.727E-004 7.918E-005
0.2 4.425E-004 2.255E-005 4.735E-004 1.906E-004
0.4 6.619E-004 3.254E-004 7.097E-004 2.944E-005
0.6 1.039E-003 1.692E-005 9.452E-004 4.795E-004
0.8 1.396E-003 1.336E-003 1.179E-003 8.586E-004
1.0 1.614E-003 2.469E-003 1.748E-003 8.738E-004
TPS v1 v2

Time L∞ L2 L∞ L2

0.1 7.413E-004 1.192E-004 8.700E-004 5.056E-004
0.2 1.761E-003 1.448E-004 1.878E-003 1.503E-003
0.4 3.709E-003 2.501E-003 3.416E-003 4.331E-003
0.6 4.528E-003 8.825E-003 5.096E-003 2.768E-003
0.8 6.692E-003 1.190E-002 6.587E-003 5.059E-003
1.0 8.054E-003 6.084E-003 7.764E-003 1.342E-002

For the soliton propagation of the NLS equation (35), the initial condition is given
by

w(x,0) = sech(x− x0)exp(2i(C(x− x0))). (37)

In the above condition x0 is center of soliton initially which is −10 here. In Fig. 1,
the numerical solutions in time interval [0,5] are shown. We use MQ shape param-
eters c1 = c2 = 1, N = 126, δx = 0.4 and δ t = 0.0001, interval [−25,25]. From the
figure it is clear that the single soliton is propagating as the time progresses.

Now to study the interaction of two soliton of the NLS equation (35) with initial
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Figure 1: Propagation of the single soliton |w| corresponding to Problem 1 in
[−25,25].

condition taken as

w(x,0) =
2

∑
j=1

sech(x− x j)exp(
1
2

iC j(x− x j)). (38)

The above equation corresponds to sum of two solitons, one initially located at
x1 =−10, moving to right, while the other located at x2 = 10 and is moving towards
left. The problem is solved on the interval [−25,25] for up to time t = 5 using the
MQ. The parameters are C1 = 4, C2 = −4 and the interaction profile is shown in
Fig. 2. It is noted that the two waves move toward each other, collide at time
t = 2.5, and then move away from each other after the interaction without change
of shape, and this agrees with [Yan Xu and Chi-Wang Shu (2005)]. The values of
the shape parameters used here are c1 = c2 = 1, δx = 0.4 and δ t = 0.0001.

Now, we consider the birth of soliton of the NLS equation (35) using Maxwellian
initial condition [Yan Xu and Chi-Wang Shu (2005)]

w(x,0) = Aexp(−x2). (39)

The interval [−45,45], with periodic boundary condition w(−45, t) = w(45, t) = 0
for up to time t = 4, is used to find solution of the problem by MQ. The soliton
profile is shown in Fig. 3(A). We note that the standing soliton is observed and this
result agrees with [Yan Xu and Chi-Wang Shu (2005)]. For computations, we use
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Figure 2: Interaction profile of two solitons, C1 = 4, C2 = −4, corresponding to
Problem 1

MQ shape parameters c1 = c2 = 1, δx = 0.4 and δ t = 0.0001, A = 1.78.
Lastly we show the birth of soliton of the equation (35) using a square well initial
condition [Yan Xu and Chi-Wang Shu (2005)] given by

w(x,0) = Aexp(−x2 +2ix). (40)

The problem is solved on the interval [−45,45], with periodic boundary condition
for up to time t = 4, using MQ. The soliton profile is shown in Fig. 3(B). We
observe a mobile soliton which is in agreement with the result of [Yan Xu and Chi
Wang Shu (2005)].

Problem 2. Here we consider the bound state solution of NLS equation

iwt +wxx +β |w|2w = 0 (41)

with initial condition

w(x,0) = sech(x). (42)
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Figure 3: Birth of standing soliton Fig. 3(A) and Birth of mobile soliton Fig. 3(B)
corresponding to problem 1.

It will produce a bound state of M solitons if β = 2M2 [Yan Xu and Chi-Wang Shu
(2005)]. The solution for M = 3 with periodic boundary condition in [−15,15] is
shown in Fig. 4 where we have used MQ shape parameters c1 = 0.5, c2 = 0.5, time
step size δ t = 0.0001 and δx = 0.1. The obtained results are in good agrement with
those given in [Yan Xu and Chi-Wang Shu (2005)].

Problem 3. In this problem, we consider the coupled nonlinear Schrodinger equa-
tions (CNLSE)

i(w1)t +
1
2
(w1)xx +

(
|w1|2 +β |w2|2

)
w1 = 0, −∞ < x < ∞ (43)

i(w2)t +
1
2
(w2)xx +

(
β |w1|2 + |w2|2

)
w2 = 0, −∞ < x < ∞

with the exact solution

w1(x, t) =

√
2α

1+β
sech

(√
2α (x− vt)

)
exp

[
i

{
vx−

(
v2

2
−α

)
t

}]
(44)

w2(x, t) =

√
2α

1+β
sech

(√
2α (x− vt)

)
exp

[
i

{
vx−

(
v2

2
−α

)
t

}]
In Table 2, we have listed the invariants, infinity error norms and comparison of
the results with [M. S. Ismail (2008)]. From the comparison we found that the
present method (MQ) is more accurate than Crank-Nicolson (CN) and Galerkin
methods (GM). It is noted that all the conserved quantities are nearly constant. The
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Figure 4: The bound state solution for M = 3 with periodic boundary condition in
[−15,15] for problem 2.

parameters used are c1 = 0.5, c2 = 0.5, δ t = 0.0001, δx = 0.2, v = 1, β = 1,α = 1
and the interval is [−10,40].
In order to study mobility of single soliton we choose the initial condition

w1 (x,0) =

√
2α

1+β
sech

(√
2αx

)
exp(ivx) (45)

w2 (x,0) =

√
2α

1+β
sech

(√
2αx

)
exp(ivx)

Fig. 5 shows that the single soliton is moving from left to right. Parameters for
computations are c = 0.5, δ t = 0.0001, δx = 0.2, v = 1, β = 1,α = 1 and interval
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Table 2: Infinity error norms and invariants for single soliton obtained by MQ
corresponding to Problem 3.

MQ CN (2008) GM (2008)
Time I1 I2 I3 I4 L∞ L∞ L∞

0.0001 1.414214 1.414214 -5.656853 0.471403 7.0637E-005 ... ...
5 1.414862 1.414862 -5.657559 0.469809 8.4346E-004 ... ...

10 1.415513 1.415513 -5.658263 0.468209 0.0027 0.037770 0.036107
15 1.416165 1.416165 -5.658965 0.466623 0.0058 ... ...
20 1.417652 1.417652 -5.657945 0.480803 0.0123 0.073790 0.070403

is [−10,40].
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Figure 5: Propagation of the single soliton |w1| corresponding to Problem 3 in
[−10,40].

Problem 4. Finally we consider the coupled nonlinear Schrodinger equations
(CNLSE)

i(w1)t + iα(w1)x +
1
2
(w1)xx +

(
|w1|2 +β |w2|2

)
w1 = 0, −∞ < x < ∞ (46)

i(w2)t − iα(w2)x +
1
2
(w2)xx +

(
β |w1|2 + |w2|2

)
w2 = 0, −∞ < x < ∞.
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The exact solution is given by

w1(x, t) =

√
2a

1+β
sech(

√
2a(x−Ct))exp

[
i

{
(C−α)x−

(
C2−α2

2
−a

)
t

}]
(47)

w2(x, t) =

√
2a

1+β
sech(

√
2a(x−Ct))exp

[
i

{
(C +α)x−

(
C2−α2

2
−a

)
t

}]
.

In Table 3 the error norms, L2 and L∞, of real part u1 and imaginary part u2 of a
single soliton w1, obtained by MQ, TPS (r4log(r)) and spline basis r5 in the interval
[−25,25], are given for δx = 0.2, δ t = 0.0001 C = 1, and N = 251. From the table
we can say that, the results obtained by MQ and r5 are better than those of TPS.
In Table 4, L∞ error norms for different values of MQ shape parameter are shown.
Here we observe that as value of the shape parameter c increases beyond 1.7, the
error norms are going to increase which gives the indication of instability. In other
words we can say that c = 1.7 is the critical value. In Fig. 6, behavior of eigenvalues
of matrices S1, S2 versus MQ shape parameter are shown corresponding to problem
4.
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Figure 6: Stability plots, figures A,B showing minimum eigenvalues values of the
matrices S1 and S2, when t = 0.1, δ t = 0.0001 δx = 0.2, C = 1, α = 0.5, β = 1
and d = 1 in [−25,25], corresponding to problem 4.

5 Concluding remarks

In this paper, a mesh free interpolation method using radial basis functions is im-
plemented to compute solution of NLS and CNLS equations. The performance of
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Table 3: Error norms of u1 and u2 when δx = 0.2, δ t = 0.0001 C = 1, and N = 251
in [−25,25] corresponding to Problem 4.

MQ u1 u2

Time L∞ L2 L∞ L2

0.1 7.809E-005 1.136E-005 1.280E-004 1.014E-005
0.2 8.694E-005 1.711E-005 1.267E-004 3.910E-005
0.4 8.824E-005 5.879E-006 1.578E-004 1.388E-004
0.6 1.332E-004 2.366E-004 1.710E-004 1.482E-004
0.8 1.149E-004 2.558E-004 2.401E-004 3.791E-004
1.0 1.584E-004 4.878E-004 2.733E-004 4.473E-004
r5 u1 u2

Time L∞ L2 L∞ L2

0.1 8.694E-005 9.814E-006 9.982E-005 5.807E-006
0.2 9.966E-005 1.031E-005 9.561E-005 2.445E-005
0.4 1.038E-004 6.756E-006 1.107E-004 7.601E-005
0.6 1.725E-004 3.028E-004 1.349E-004 2.822E-004
0.8 1.128E-004 3.920E-005 1.110E-004 1.806E-004
1.0 1.209E-004 4.491E-005 1.248E-004 2.214E-004
TPS u1 u2

Time L∞ L2 L∞ L2

0.1 7.592E-004 2.446E-004 7.970E-004 1.371E-005
0.2 1.255E-003 3.976E-004 1.522E-003 9.199E-005
0.4 1.955E-003 7.570E-004 2.376E-003 7.819E-004
0.6 2.251E-003 1.845E-003 3.996E-003 2.331E-003
0.8 2.521E-003 3.528E-003 5.489E-003 3.099E-003
1.0 4.078E-003 6.875E-003 6.372E-003 3.471E-003

the technique is in excellent agreement with exact solution and with earlier work
[YanXu and ChiWang (2005), M. S. Ismail (2008)]. Stability analysis is estab-
lished. As a whole the present method produces better results with ease of imple-
mentation. The technique used in this paper provides an efficient alternative for the
solution of nonlinear partial differential equations. This method is mesh free con-
trary to the traditional methods, like FDM and FEM. Accuracy of the technique can
be increased by changing value of shape parameter, for fix number of collocation
points. It is observed that time marching process reduces accuracy of the solution
due to the time truncation errors. From application point of view the implementa-
tion of the method is very simple and straightforward.
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Table 4: Error norms of the solutions u1, u2, v1, v2 for different values of the shape
parameter c, at time t = 0.1, δ t = 0.0001 δx = 0.2, C = 1, α = 0.5, β = 1, d = 1
in [−25,25].

u1 u2 v1 v2

c L∞ L∞ L∞ L∞

0.10 1.411E-002 4.696E-002 2.790E-002 5.470E-002
0.20 9.861E-004 3.793E-003 1.955E-003 4.184E-003
0.30 5.519E-005 2.650E-004 6.827E-005 2.388E-004
0.40 7.459E-005 1.185E-004 1.150E-004 1.474E-004
0.50 7.809E-005 1.393E-004 1.280E-004 1.774E-004
0.60 7.913E-005 1.409E-004 1.292E-004 1.800E-004
0.70 7.927E-005 1.410E-004 1.293E-004 1.800E-004
0.80 7.929E-005 1.410E-004 1.293E-004 1.800E-004
0.90 7.929E-005 1.410E-004 1.293E-004 1.799E-004
1.00 7.929E-005 1.410E-004 1.293E-004 1.799E-004
1.10 7.929E-005 1.410E-004 1.293E-004 1.799E-004
1.20 7.929E-005 1.410E-004 1.293E-004 1.799E-004
1.30 7.929E-005 1.410E-004 1.293E-004 1.799E-004
1.40 7.930E-005 1.409E-004 1.293E-004 1.799E-004
1.50 7.938E-005 1.411E-004 1.293E-004 1.799E-004
1.60 7.916E-005 1.419E-004 1.292E-004 1.799E-004
1.70 7.779E-005 1.248E-004 1.305E-004 1.993E-004
1.80 1.160E+000 8.866E+001 1.289E+000 1.184E+002
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