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Solution of Incompressible Turbulent Flow by a Mesh-Free
Method

R. Vertnik1 and B. Šarler2

Abstract: The application of the mesh-free Local Radial Basis Function Col-
location Method (LRBFCM) in solution of incompressible turbulent flow is ex-
plored in this paper. The turbulent flow equations are described by the low - Re
number k-ε model with Jones and Launder [Jones and Launder (1971)] closure
coefficients. The involved velocity, pressure, turbulent kinetic energy and dissipa-
tion fields are represented on overlapping 5-noded sub-domains through collocation
by using multiquadrics Radial Basis Functions (RBF). The involved first and sec-
ond derivatives of the fields are calculated from the respective derivatives of the
RBF’s. The velocity, turbulent kinetic energy and dissipation equations are solved
through explicit time stepping. The pressure-velocity coupling is calculated itera-
tively, based on the Chorin’s fractional step method [Chorin 1967]. The adaptive
upwinding technique, proposed by the Lin and Atluri [Lin and Atluri (2000)] is
used because of the convection dominated situation. The solution procedure is rep-
resented in 2D. Three test cases have been performed: laminar flow in a channel
with Re = 100, turbulent flow in a channel with Re = 12300 and turbulent flow in a
channel with 1/6 backward facing step with Re = 5000. The solution is compared
with the analytical solution in the first case, with the experiment [Laufer (1948)]
and commercial code Fluent in the second case, and with the experiment [Jović
and Driver (1994)], commercial code Fluent and direct numerical simulation [Le,
Moin and Kim (1997)] in the third case. All numerical examples include non-
uniform spatial discretisation. A reasonably good agreement between the solutions
has been achieved. The advantages of the represented mesh-free approach are its
simplicity, accuracy, similar coding in 2D and 3D, and straightforward applicability
in non-uniform node arrangements.
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facing step

1 Introduction

In recent years, a number of mesh-free methods [Atluri and Shen (2002), Atluri
(2004), Liu (2003), Liu and Gu (2005)] have been developed to circumvent the
problem of polygonisation encountered in the classical numerical methods (finite
difference (FDM) and finite volume (FVM) method, finite element method (FEM),
boundary domain integral method (BDIM)). In mesh-free methods, approximation
is constructed entirely in terms of a set of nodes. There exist a number of meshless
methods such as the Element free Galerkin methods, the Meshless local Petrov-
Galerkin method, the Point interpolation method, the Point assembly method, the
Finite point method, the Finite difference method with arbitrary irregular grids,
Smoothed particle hydrodynamics, Reproducing kernel particle method, etc. A
class of such methods is based on collocation with radial basis functions [Šarler
(2007)]. These functions [Buhmann (2000)] have been first under intensive re-
search in multivariate data and function interpolation [Franke (1982)]. Kansa used
them for scattered data approximation [Kansa (1990a)] and than for the solution of
partial differential equations [Kansa (1990b)]. The key point of the Radial Basis
Function Collocation Method (RBFCM) or Kansa Method (KM) for solving the
PDEs is the approximation of the fields on the boundary and in the domain by a
set of global approximation functions. The discretization is, respectively, repre-
sented only by grid-points (poles of the global approximation functions) in contrast
to FEM and BDIM methods where appropriate polygonisation needs to be gener-
ated in addition, or FDM, where points are constrained to the coordinate lines. The
main advantage of using the RBFCM for solution of partial differential equations
is its simplicity, applicability to different PDEs, and effectiveness in dealing with
arbitrary dimension and complicated domains. The method recently started to be
applied in many scientific and engineering disciplines. It has been first used in the
heat transport context by [Zerroukat, Power and Chen (1998)]. The method has
been afterwards applied to the classical De Vahl Davis natural convection problem
by asymmetric collocation in [Šarler, Perko, Chen and Kuhn (2001)] and addition-
ally by the symmetric and modified collocation in [Šarler (2005)]. The method was
used for solution of the Stefan problems [Kovačević, Poredoš and Šarler (2003)],
wave equations [Haq, ul-Islam and Ali (2008)] and solid mechanics problems [Mai-
Duy, Khennane and Tran-Cong (2007), Le, Mai-Duy, Tran-Cong and Baker (2008)]
as well. The method has been formulated instead of deriving the RBF’s by integrat-
ing the partial derivatives [Mai-Duy, Tran-Cong (2003)] and applied to transient
problems [Mai-Cao and Tran-Cong (2005)] fluid flow [Mai-Duy, Mai-Cao, Tran-
Cong (2007)] and moving boundaries [Mai-Cao and Tran-Cong (2008)]. Several



Solution of Incompressible Turbulent Flow 67

other special developments of the method have been deduced such as the improved
treatment of the Neumann boundary conditions [Libre, Emdadi, Kansa, Rahimian
and Shekarchi (2008)].

The main disadvantage of the mentioned method represent the related full matrices
that are very sensitive to the choice of the free parameter in RBFs and are diffi-
cult to solve for problems of the order of 103 unknowns or larger. The solution of
related problem has been attempted by domain decomposition [Mai-Duy and Tran-
Cong (2002)], multi-grid approach and compactly supported RBFs [Chen, Ganesh,
Golberg and Cheng (2002)] which all represent a substantial complication of the
original simple method. The radial basis functions have been first put into context
of porous media flow by [Šarler, Gobin, Goyeau, Perko and Power (2000)] where
the natural convection problem in Darcy porous media, and later Darcy-Brinkman
porous media [Šarler, Perko, Gobin, Goyeau and Power (2004)] have been solved
by the dual reciprocity boundary element method (DRBEM). This method belongs
to the semi-mesh-free methods, because the domain fields are approximated by the
global interpolation with the RBFs and the boundary fields by the boundary ele-
ments (polygons). The truly mesh-free RBFCM has been for the first time used
for solution of Darcy porous media in [Šarler, Perko and Chen (2004)]. A sub-
stantial breakthrough in the development of the RBFCM was its local formulation,
LRBFCM. This formulation was first developed for diffusion problems [Šarler and
Vertnik (2006)], than to convection-diffusion problems with phase-change [Vertnik
and Šarler (2006)], to industrial application of direct chill casting of aluminum al-
loys [Vertnik, Zalonik and Šarler (2006)], continuous casting of steel [Vertnik and
Šarler (2008)], to solid-solid phase transformations [Kovačević and Šarler (2005)]
and to solution of Navier Stokes equations [Divo and Kassab (2007), Kosec and
Šarler (2008a)] and porous media flow [Kosec and Šarler (2008b)]. A similar, local
quadrature based RBF approach, was developed by [Shu, Ding and Yeo (2005)].
The main issue of the local version of the RBFCM is the collocation on a sub-set
of, in general, overlapping sub-domains, which drastically reduces the collocation
matrix size on the expense of solving many small matrices instead of a large one.
Since the method does not experience significant accuracy drawback in compari-
son with the global version, it represents a practical choice also for solving very
large problems. The main goal of this work is to upgrade the LRBFCM for solv-
ing complex engineering turbulence models, which is by the best knowledge of the
present authors, a pioneering effort in the development of the meshless methods.
In the last century, a lot of research has been devoted towards understanding of
the turbulent flows. In spite of those attempts, a general physical theory still does
not exist. Numerically, those flows could be very well predicted by the direct nu-
merical simulation (DNS) of the Navier-Stokes equations. Unfortunately, in the
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DNS very fine spatial discretization has to be used in order to model and track all
eddies of the flow, especially the smallest ones. The applicability of the DNS is
currently limited to very simple geometries and for turbulent flows with moderate
Reynolds (Re) numbers [Le, Moin and Kim (1997)]. Other turbulent models are
mainly derived through the time-averaging of the Navier-Stokes (N-S) equations.
Due to the nonlinearity of the time-averaged N-S equations, a closure problem
arises (more unknowns than equations), which puts these family of models into the
category of semi-empirical ones. Various models were proposed [Wilcox (1993)],
which are rather old, but still in use nowadays. Probably the most known and rep-
resentative is the family of two-equation k-ε models, which are further divided into
two groups, standard and low-Re models. The standard k-ε models use the wall-
functions, while the low-Re models use special closure coefficients to correctly
predict the turbulent boundary layers. Better predictions are obtained with the low-
Re models, but a very fine disretization near the walls is required. In this work,
the low-Re k-ε model is used with the closure coefficients proposed by [Jones and
Launder (1971)].

The present paper is structured in the following way. The governing equations
of the incompressible turbulent flow are presented first. The general initial and
boundary conditions for the velocity, pressure, turbulent kinetic energy k and dissi-
pation ε are described. The explicit solution procedure of the governing equations
is proposed, where the fractional step method [Chorin (1967)] is used to couple
the velocity and pressure fields. The discretization is made by the LRBFCM by
using multiquadrics on five-noded sub-domains. Due to the convection-dominated
problems, the adaptive upwind technique (AUT) is introduced. At the end, the pro-
posed numerical method is assessed through three numerical examples: laminar
two-dimensional channel flow, turbulent two-dimensional channel flow, and turbu-
lent flow over a backward-facing step. The results are compared with the analytical
solution, experiments, DNS and the most recent version 6.3 of the commercial soft-
ware Fluent.

2 Governing equations

Consider a connected fixed domain Ω with boundary Γ filled with a fluid that ex-
hibits incompressible turbulent flow. The flow is described (in a two-dimensional
Cartesian coordinate system with base vectors iς ;ς = x,y and coordinates pς ;ς =
x,y, i.e. position of point p is determined as p = iς pς ; ς = x,y) by the following
time-averaged Reynolds equations for mass conservation, and momentum conser-
vation in x and y directions

∂vx

∂ px
+

∂vy

∂ py
= 0, (1)
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∂vy

∂ t
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∂vy
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=
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, (3)

with vx and vy standing for the time averaged velocity components in x- and y-
direction, respectively, and p, t, ρ , ν and νt standing for pressure, time, den-
sity, molecular kinematic viscosity and turbulent kinematic viscosity, respectively.
Molecular kinematic viscosity is defined as

ν =
µ

ρ
(4)

where µ is molecular dynamic viscosity. Turbulent kinematic viscosity is defined
as

νt = cµ fµ

k2

ε
. (5)

In Eq. (5) cµ and fµ are closure coefficients of the turbulence model, and k and ε are
the turbulent kinetic energy and dissipation, calculated by the following transport
equations

∂k
∂ t

+ vx
∂k
∂ px

+ vy
∂k
∂ py

=

∂

∂ px

(
ν +

νt

σk

)
∂k
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+
∂

∂ py

(
ν +
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)
∂k
∂ py

+Pk− ε +D, (6)
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∂ py
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σε

)
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∂
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(
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)
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∂ py
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ε

k
+E, (7)

where Pk, D and E are the shear production of turbulent kinetic energy, source term
in k equation and source term in ε equation, respectively. They are given by

Pk = νt

(
2

(
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∂ px

)2

+2

(
∂vy

∂ py

)2

+
(

∂vx
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)2
)

, (8)
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√

k
∂ px

)2

+

(
∂
√

k
∂ py

)2
 , (9)

E = 2ννt

(∂ 2vx

∂ p2
y

)2

+
(

∂ 2vy

∂ p2
x

)2
 , (10)

In Eqs. (5) and (7), the closure coefficients cµ , fµ , c1ε , f1, c2ε , f2, σk and σε of the
low-Reynolds turbulent model [Jones and Launder (1971)] are defined as

cµ = 0.09, (11)

fµ = exp

(
−2.5

1+Ret/50

)
, (12)

c1ε = 1.45, (13)

f1 = 1.0, (14)

c2ε = 2.00, (15)

f2 = 1−0.3exp
(
−Re2

t

)
, (16)

σk = 1.0, (17)

σε = 1.3. (18)

The turbulent Reynolds number Ret (used in Eqs. (12) and (16)) is defined as

Ret =
k2

νε
(19)

In order to determine the turbulent flow, the system of Eqs. (1), (2), (3), (6) and (7)
has to be solved.
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3 Solution procedure

We seek the solution of the x and y velocity components, pressure field, k and ε

fields at time t + t0 by assuming known fields vx, vy, p, k and ε at time t0 and known
boundary conditions. The coupled set of mass conservation Eq. (1) and momentum
conservation Eqs. (2), (3) are solved by the fractional step method [Chorin (1967)],
where the continuity of the mass Eq. (1) is considered by constructing and solving
the pressure Poisson equation. At every time step, the following explicit numerical
algorithm is used

Step 1: The intermediate velocity components v∗x and v∗y are calculated first, without
considering the pressure gradient

v∗x = vx0 +
ρ

∆t[
−vx
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− vy
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0

,

(20)

v∗y = vy0 +
ρ

∆t[
−vx

∂vy

∂ px
− vy

∂vy

∂ py
+

∂

∂ py
(ν +νt)

(
2

∂vy

∂ py

)
+

∂

∂y
(ν +νt)

(
∂vy

∂ px
+

∂vx

∂ py

)]
0

,

(21)

where index 0 represents initial conditions at time t = t0.

Step 2: The pressure Poisson equation is solved

∇2 p =
ρ

∆t

(
∂v∗x
∂ px

+
∂v∗y
∂ py

)
(22)

The pressure equation can be solved by converting it into a diffusion equation [Divo
and Kassab (2007)] or by solving the sparse matrix [Lee, Liu and Fan (2003)]. An
additional possibility represents the use of the local pressure correction [Kosec and
Šarler (2008)] which seems to be most efficient. However the last correction has
not been yet successfully tested for inflow and outflow situations. In this work, the
approach [by Lee, Liu and Fan (2003)] is used, where the solution of the sparse
matrix is solved by the direct method. In case of the fixed node arrangement, the
left-hand side of the sparse matrix can be L-U decomposed before the first time
step. This numerical approach significantly improves the performance, since only
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the back substitution is used to solve the pressure field at each time step. The
boundary conditions for the pressure equation are explicitly given in the Section 5.

Step 3: The intermediate velocity components are corrected through the calculated
pressure gradient at time t = t0 +∆t

vx = v∗x−
∆t
ρ

∂ p
∂ px

, (23)

vy = v∗y−
∆t
ρ

∂ p
∂ py

, (24)

Step 4: After the solution of the velocity field, given in steps 1÷3, the transport
Eqs. (6) and (7) of the turbulence model at time t = t0 +∆t are solved
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]
0

, (25)
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)
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νt
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)
∂ε

∂ py
+(c1ε f1− c2ε f2ε)

ε

k
+E

]
t=t0

. (26)

Step 5: The turbulent viscosity is updated from Eq. (5), and the solution is ready
for the next time step.

The block diagram of the described algorithm is schematically represented in Fig-
ure 3.1.

4 Initial conditions

It is well known that all involved four transport Eqs. (20), (21), (25) and (26) are
strongly coupled. So it is very important how we choose the initial conditions for
each transport variable. The initial conditions for velocity components are obtained
by solving the potential field

∇2
φ = 0 (27)

where φ stands for the velocity potential. Laplace Eq. (27) is solved by the same
approach as pressure Eq. (22). The following boundary conditions are used.
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Figure 3.1: Block diagram of the numerical algorithm. 

4 Initial conditions 

It is well known that all involved four transport Eqs. (20), 
(21),(25) and (26) are strongly coupled. So it is very 
important how we choose the initial conditions for each 
transport variable. The initial conditions for velocity 
components are obtained by solving the potential field 

2 0φ∇ =   (27) 

where φ  stands for the velocity potential. Laplace 
equation (27) is solved by the same approach as pressure 
equation (22). The following boundary conditions are 
used 

• At the inlet boundaries and solid walls, the Neumann 
boundary conditions for velocity potential are 
prescribed 
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• At the outlet boundaries, the Dirichlet boundary 
conditions for velocity potential are set to 
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This procedure guarantees the solenoidality of the initial 
velocity field. 
In order to prescribe the proper initial conditions for k  
and ε , two different techniques might be employed: 

• Use of the uniform profile for both k  and ε . A few 
thousand time steps must usually be performed with 
smaller time step to achieve the consistency between 
the velocity, pressure, turbulent energy and 
dissipation equation. When the large mismatch of the 
transport variables at initial times is reduced, larger 
time steps can be used. 

• Use of the assumption of turbulent equilibrium 
[Yoder and Georgiadis (1999)], where the production 
of turbulent kinetic energy equals the rate of 
dissipation. In order to use this technique, another 
turbulence model, usually algebraic model, is first 
run to get initial values of the turbulent viscosity. 

In this work, the turbulence transport variables are 
initialized by the first approach. 

5 Boundary conditions 

Four different types of boundaries are considered in the 
present paper: inlet, outlet, symmetry, and wall. The 
following boundary conditions are used at these 
boundaries: 

initialization of variables 

xv , yv , k , ε  and tν . 

solution of intermediate velocity, 
Eqs. (20) and (21) 

solution of pressure, Eq. (22) 
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Eqs. (23) and (24) 

solution of k  and ε , 
Eqs. (25) and (26) 

updating of the turbulent viscosity, 
Eqs. (5) and go to step 1 

1

2

3 

4 

5

set calculated values to initial values 

Figure 3.1: Block diagram of the numerical algorithm.

• At the inlet boundaries and solid walls, the Neumann boundary conditions
for velocity potential are prescribed

∂φ

∂ px
nx +

∂φ

∂ py
ny =−(v0xnx + v0yny) (28)

• At the outlet boundaries, the Dirichlet boundary conditions for velocity po-
tential are set to

φ = 0 (29)
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After solving the potential flow field, the velocity field in the domain is obtained
by the following relations

v0x =
∂φ

∂ px
, v0y =

∂φ

∂ py
(30)

This procedure guarantees the solenoidality of the initial velocity field.

In order to prescribe the proper initial conditions for k and ε , two different tech-
niques might be employed:

• Use of the uniform profile for both k and ε . A few thousand time steps
must usually be performed with smaller time step to achieve the consistency
between the velocity, pressure, turbulent energy and dissipation equation.
When the large mismatch of the transport variables at initial times is reduced,
larger time steps can be used.

• Use of the assumption of turbulent equilibrium [Yoder and Georgiadis (1999)],
where the production of turbulent kinetic energy equals the rate of dissipa-
tion. In order to use this technique, another turbulence model, usually alge-
braic model, is first run to get initial values of the turbulent viscosity.

In this work, the turbulence transport variables are initialized by the first approach.

5 Boundary conditions

Four different types of boundaries are considered in the present paper: inlet, outlet,
symmetry, and wall. The following boundary conditions are used at these bound-
aries:

• At the inlet boundary, the Dirichlet boundary conditions for velocity compo-
nents, k and ε are prescribed.

• At the outlet boundary, the Neumann boundary conditions for velocity com-
ponents, k and ε are prescribed and set to zero.

• At the symmetry line, the same Neumann boundary conditions as for the
outlet boundary are used, except for the velocity component, perpendicular
to the symmetry line, where the Dirichlet boundary conditions are prescribed
and set to zero.

• At the wall, the Dirichlet no-slip boundary conditions are set, which implies
that the velocity components, k and ε are all set to zero.
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Boundary conditions for pressure Eq. (22) at inlet, symmetry, and wall boundaries
are of the Neumann type, i.e.,

∂ p
∂ px

nx +
∂ p
∂ py

ny =
1
∆t

(ϕxnx +ϕyny) (31)

where the nx and ny are the components of the normal vector in x and y directions.
ϕx and ϕy have the following form

ϕx = v∗x− vw
x,0 (32)

ϕy = v∗y− vw
y,0 (33)

where v∗x and v∗y are intermediate velocities, solved by the Eqs. (20) and (21) at the
wall. In Eqs. (32) and (33), the vw

x,0 and vw
y,0 represents the wall velocities at t0. At

the outlet boundary, the Dirichlet boundary conditions for pressure are used and set
to zero.

6 Radial basis function collocation method

The representation of function Φ over a set of l (in general) non-equally spaced lN
nodes lpn; n = 1,2, . . . , lN is made in the following way

Φ(p)≈
lK

∑
k=1

lψk (p)lαk (34)

lψk stands for the shape functions, lαk for the coefficients of the shape functions,
and lK represents the number of the shape functions. The left lower index on en-
tries of Eq. (34) represents the domain of influence lω on which the coefficients

lαk are determined. The domains of influence lω can in general be contiguous
(overlapping) or non-contiguous (non-overlapping). Each of the domains of influ-
ence lω includes lN grid-points of which lNΩ are in the domain and lNΓ are on the
boundary. Typical domains of influence are shown in Figure 6.1.

The coefficients can be calculated from the nodal values in the domain of influence
in two distinct ways. The first way is collocation (interpolation) and the second way
is approximation by the least squares method. Only the more simple collocation
version for calculation of the coefficients is considered in this paper. Let us assume
the known function values lΦn in the nodes lpn of the domains of influence lω . The
collocation implies

Φ(lpn) =
lN

∑
k=1

lψk (lpn) lαk (35)



76 Copyright © 2009 Tech Science Press CMES, vol.44, no.1, pp.65-95, 2009

 
Figure 6.1: Typical corner, boundary, and interior 5-noded domains of influence.

For the coefficients to be computable, the number of the shape functions has to
match the number of the collocation points lK = lN, and the collocation matrix
has to be non-singular. The system of Eqs. (35) can be written in a matrix-vector
notation

lψ lααα = lΦΦΦ; lψkn = lψk (lpn) ; lΦn = Φ(lpn) (36)

The coefficients lααα can be computed by inverting the system (36)

lααα = lψ
−1

lΦΦΦ (37)

By taking into account the expressions for the calculation of the coefficients lα ,
the collocation representation of function Φ(p) on domain of influence lw can be
expressed as

Φ(p)≈
lN

∑
k=1

lψk (p)
lN

∑
n=1

lψ
−1
kn lΦn (38)

The first partial spatial derivatives of Φ(p) in the domain of influence lw can be
expressed as

∂

∂ pς

Φ(p)≈
lN

∑
k=1

∂

∂ pς

lψk (p)
lN

∑
n=1

lψ
−1
kn lΦn; ς = x,y (39)
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The second partial spatial derivatives of Φ(p) in the domain of influence lw can be
expressed as

∂ 2

∂ pς pξ

Φ(p)≈
lN

∑
k=1

∂ 2

∂ pς pξ

lψk (p)
lN

∑
n=1

lψ
−1
kn lΦn;

ς ,ξ = x,y (40)

The radial basis functions, such as multiquadrics, can be used for the shape function

lψk (p) =
[

lr
2
k + c2]1/2

(41)

where c represents the shape parameter and lr0 the radial distance between two
points in the sub-domain. The lrk is scaled by the maximum distance between
sub-domain points in x and y direction

lr
2
k =

(
px− pkx

px max

)2

+
(

py− pky

py max

)2

(42)

where px max is the maximum distance between any of the sub-domain points in
the x direction and py max is the maximum distance between any of the sub-domain
points in the y direction.

The shape parameter c is fixed for all sub-domains, and set to 32 [Šarler and Vertnik
(2006), Vertnik and Šarler (2006)] in all numerical examples of the present paper.
The accuracy of the results increases with increased value of the shape parame-
ter, however the condition number of the collocation matrix worsens. The chosen
value 32 represents a reasonable balance between both trends. All sub-domains are
chosen to contain five nodes as depicted in Figure 6.1.

7 Adaptive upwind technique

The turbulent flows belong to the convection dominated problems. If the spatial
discretization is not sufficiently fine, the solution becomes instable or oscillatory.
Without any additional numerical efforts, the LRBFCM on uniform node spac-
ing, gives similar oscillations as the central FDM discretization on uniform node
spacing, i.e. the solution starts to oscillate when the Péclet number (based on the
node spacing) is greater than two. To stabilize the numerical solution, the adap-
tive upwind technique [Lin and Atluri (2000)] is used, where the adaptive upwind
displacement is constructed based on the local Péclet number. This technique was
already found to be very useful in the numerical modeling of the heat transfer in
the continuous casting of steel [Vertnik, Šarler, Bulinski and Manojlović (2007)].
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In the adaptive upwind support technique, the expansion coefficients are first calcu-
lated by the LRBFCM. The derivatives of the convection terms are then calculated
in the point pς∆, shifted by the central offset distance ∆pς in the opposite direc-
tion of the current velocity, see Figure 7.1. The position of the shifted point p∆ς is
defined as

p∆ς = pς −∆pς ; ς = x,y (43)

The central offset distance is calculated by

∆pς = sign(vx)δ
h
2

; ς = x,y (44)

where δ is the upwind function and h is the maximal distance between the central
point and the neighboring point in the opposite direction of the velocity, as shown
in Figure 7.1. The upwind function, represented in Figure 7.2, is defined as

δ = coth
∣∣Peς

∣∣− 1∣∣Peς

∣∣ ; ς = x,y (45)

and the local Péclet number as

Pe =
vx (p+

x − p−x )
ν +νt

(46)

 
Figure 7.1: Adaptive upwind support in x-direction.
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Figure 7.2: Upwind function.

8 Numerical examples

Three numerical examples are represented in the present work. The first example
shows the ability of the developed numerical method to solve the laminar incom-
pressible flows. The second example employs the same geometry as the first ex-
ample, but with included turbulence. The last example represents a well known
test for various turbulence models: a 1/6 backward-facing step channel flow. In all
three examples, the time step ∆t is equal to 10−3 s and kept constant through the
entire simulation.

8.1 Laminar 2D channel flow

The physical domain is a 2D channel with length L and height D. In our computa-
tions, only one half of a channel with height H = D/2 is considered, as shown in
Figure 8.1. The length of the channel is large enough to achieve the fully developed
flow at the channel outlet. The density and the inlet velocity are both equal to unity,
while the kinematic viscosity ν is calculated from the Reynolds number

Re =
vx ·H

ν
. (47)

The computation was performed with ReH = 100, where H = 1.0 m. The irregular
node arrangement with 4137 nodes (41x101 nodes without 4 corner nodes) was
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Figure 8.1: Geometry of the 2D channel flow.

 
Figure 8.2: The node arrangement with 4137 nodes.

 

Figure 8.3: The detailed view of the node arrangement. Points - interior nodes,
circles - boundary nodes.
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Figure 8.4: Horizontal velocity vx at the channel outlet. Solid line - present method,
symbols * – analytical solution.

used. The arrangement is shown in Figure 8.2 and Figure 8.3. The calculated ve-
locity vx at the channel outlet was compared with the following analytical solution

vx,ana (y) =
3
2

vx,inlet

(
1−
(

2y
D

)2
)

(48)

The comparison is shown in Figure 8.4. An excellent agreement is observed be-
tween both solutions.

8.2 Turbulent 2D channel flow

The same geometry and node arrangement as used in the previous example is used
in this example as well. Additionally, the turbulence model is included. The com-
putation was performed with Reynolds number ReH = 12300. The turbulent quan-
tities at the inlet are defined by the following relations

kin =
3
2

(i0 · vx,in)
2 , ε0 = C3/4

µ

k3/2
in

0.07H
(49)

where i0 is the turbulent intensity, set to 4 %. The results are compared with the
experiments [Laufer (1948)] and with the results obtained by the commercial soft-
ware Fluent. In Fluent, the calculation was performed by the uniform mesh with
64000 quadrilateral cells, and the k-ε turbulent model with standard wall functions
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was set. The results are shown in Figure 8.5, where the normalized velocity vx at the
channel outlet is shown. Numerical values of both numerical methods, evaluated at
the experiment positions, are tabulated in Table 1.

 
Figure 8.5: Normalized velocity vx at the channel outlet. Solid line – present
method, dashed line – Fluent, and symbols * – measurements.

8.3 Backward facing step

The geometry of the physical domain is taken from the experiment by [Jović and
Driver (1994)] and shown in Figure 8.6. The experiment is characterized by the
step height H = 1.0, the channel length after the step L = 30H and by the Reynolds
number ReH = 5000, which determines the inlet conditions at the step. The com-
putational domain considers only the physical domain after the step. In the experi-
ment, the fully developed flow was achieved at the 3H distance before the step with
the Reynolds number based on the momentum thickness Reθ = 610. The Reθ is
defined as

Reθ =
θ · vxΓ

ν
(50)

where θ is the momentum thickness and vxΓ is the inlet velocity of the air, measured
in the channel far away upstream of the step. Both quantities are taken directly from
the experiment and have values θ = 0.12 cm and vxΓ = 7.72m/s.

In order to achieve the same inlet conditions at the step as in the experiment, the
fully developed flow was first calculated with the 2D channel numerical simulation,
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Table 1: Tabulated normalized velocity vx at the channel outlet

y(m) experiment∗ present method Fluent♣

0.040 0.5498 0.5541 0.5107
0.070 0.6615 0.6367 0.5897
0.105 0.6956 0.6943 0.6477
0.150 0.7449 0.7448 0.7002
0.230 0.7998 0.8067 0.7660
0.308 0.8434 0.8515 0.8134
0.387 0.8737 0.8884 0.8524
0.464 0.9000 0.9190 0.8845
0.545 0.9229 0.9468 0.9136
0.624 0.9456 0.9691 0.9383
0.703 0.9703 0.9858 0.9596
0.781 0.9759 0.9951 0.9770
0.861 0.9968 0.9988 0.9905
0.949 1.0000 0.9998 0.9982
1.000 1.0000 1.0000 1.0000

* [Laufer (1948)]
♣ Fluent, version 6.3

as described in the second example of this paper. The calculated profiles of vx, vy,
k, ε and νt were considered as the inlet conditions of the channel at the step. Other
boundary conditions are the same as in the second example. The node arrangement
was generated with adaptation near the walls, see Figure 8.7. The detailed view of
the node arrangement near the walls is shown in Figure 8.8.

The results are compared with the measurements [Jović and Driver (1994)] (JD),
with the results obtained by the direct numerical simulation (DNS) of turbulent
flow [Le, Moin and Kim (1997)], and with the results obtained by the commercial
software (FLUENT).

In Fluent, the calculation was performed by the uniform mesh with 288000 cells
(mesh 1200×240 cells) and with the same turbulent model as in the first example.
With this very fine mesh, a reasonable mesh-independence of the results has been
achieved. The same boundary conditions and material properties were set as in the
LRBFCM calculations.

The calculated velocity vx at different x/H positions is compared with the results
obtained by other methods. For better insight of the obtained results, the velocity
vx profile at each x/H position is plotted into its own figure: at x/H = 4 in Figure
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Figure 8.6: The physical domain of the backward-facing step.

 

Figure 8.7: Node arrangement with 14267 nodes for geometry in Figure 8.6 (rotated
for 90 deg.).

8.10, at x/H = 6 in Figure 8.11, at x/H = 10 in Figure 8.12, at x/H = 15 in Figure
8.13 and at x/H = 19 in Figure 8.14. Below each figure, the numerical and exper-
imental velocity values vx are also tabulated in Table 2, 3, 4, 5 and 6. The small
differences between all methods and experiment are more clearly visible from the
tabulated values. There are several reasons, why those differences are expected.
The prevailing one is in using different turbulence models, where each model has
its own advantages and weaknesses. DNS should probably be the most accurate,
since the Navier-Stokes equations are directly solved.

The important quantity in the backward-facing step simulations is the reattachment
length, were the fluid separates. The reattachment position can be obtained based
on the horizontal velocity vx at the first inner point, closest to the bottom wall. The
separation is at the position were the velocity vx is equal to zero. The separation po-
sition at x/H = 6.28 is obtained with the present method. The related reattachment
positions obtained by experiment and other numerical methods are represented in
Table 7.
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Figure 8.8: The detailed view of the node arrangement. Points - interior nodes,
circles - boundary nodes.

 

Figure 8.9: Streamlines calculated with the LRBFCM (rotated for 90 deg.).

8.4 Global continuity calculation

The global continuity of the RBF collocation method was checked for internal flows
in [Kosec and Šarler (2008a)]. In this paper, the global continuity is checked for
discussed three types of channel flows by calculating the mean velocity across the
inlet

V̄in =
1

∆yin

∫
yin

vx (y)dy+
1

∆yin

∫
yin

vy (y)dy, (51)
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Figure 8.10: The normalized velocity vx at x/H = 4. Solid line – LRBFCM, dashed
line – FLUENT, ∆ – DNS and * – JD.

 
Figure 8.11: he normalized velocity vx at x/H = 6. Solid line – LRBFCM, dashed
line – FLUENT, ∆ - DNS and * - JD.
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Table 2: Normalized velocity vx at x/H = 4.

experiment∗ present method DNS∆ FLUENT♣

0.025 -0.0764 -0.0634 -0.1164 -0.0621
0.097 -0.1373 -0.1463 -0.1647 -0.0546
0.194 -0.1192 -0.1193 -0.1314 -0.0272
0.388 -0.0233 -0.0419 -0.0299 0.0532
0.582 0.1321 0.0731 0.1230 0.1655
0.776 0.3368 0.2448 0.3153 0.3083
0.970 0.5181 0.4894 0.5129 0.4759
1.164 0.6723 0.7108 0.6857 0.6450
1.358 0.7811 0.8000 0.7928 0.7644
1.552 0.8420 0.8584 0.8537 0.8319
1.746 0.8860 0.9081 0.9012 0.8845
1.940 0.9158 0.9511 0.9433 0.9300
2.134 0.9417 0.9733 0.9730 0.9516
2.425 0.9559 0.9747 0.9816 0.9535
2.910 0.9534 0.9728 0.9770 0.9571
3.880 0.9598 0.9729 0.9716 0.9569

* [Jović and Driver (1994)]
∆ [Le, Moin and Kim (1997)]
♣ Fluent, version 6.3

and the outler surfaces

V̄out =
1

∆yout

∫
yout

vx (y)dy+
1

∆yout

∫
yout

vy (y)dy. (52)

Ideally, the scaled difference η

η =
V̄in−V̄out

V̄in
·100%. (53)

between both average velocities should be zero to maintain the mass continuity. In
the laminar flow case, depicted in Figure 8.4: η = 0.56%, in the turbulent flow
case, depicted in Figure 8.5: η = 1.50%, and in the turbulent flow case, depicted
in Figure 8.9: η = 1.36%, respectively.
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Table 3: Normalized velocity vx at x/H = 6.

experiment∗ present method DNS∆ FVM♣

0.025 0.0104 -0.0058 -0.0002 0.0668
0.049 0.0207 -0.0151 0.0083 0.0891
0.097 0.0337 -0.0083 0.0257 0.1052
0.194 0.0933 0.0246 0.0583 0.1347
0.388 0.1930 0.1097 0.1471 0.2037
0.582 0.3303 0.2248 0.2657 0.2915
0.776 0.4715 0.3700 0.4073 0.3970
0.970 0.5842 0.5384 0.5560 0.5154
1.164 0.6995 0.6931 0.6783 0.6362
1.358 0.7694 0.7788 0.7656 0.7395
1.552 0.8199 0.8346 0.8258 0.8106
1.746 0.8614 0.8814 0.8727 0.8622
1.940 0.8847 0.9164 0.9122 0.9025
2.134 0.9041 0.9329 0.9343 0.9148
2.425 0.9158 0.9383 0.9416 0.9195
2.910 0.9210 0.9415 0.9426 0.9268

 
Figure 8.12: The normalized velocity vx at x/H = 10. Solid line – LRBFCM,
dashed line – FLUENT, ∆ - DNS and * - JD.
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Table 4: Normalized velocity vx at x/H = 10.

experiment∗ present method DNS∆ FVM♣

0.025 0.1386 0.1035 0.1386 0.1737
0.049 0.1891 0.2028 0.2073 0.2285
0.097 0.2733 0.2625 0.2636 0.2706
0.194 0.3264 0.2864 0.3086 0.3102
0.388 0.3938 0.3400 0.3697 0.3677
0.582 0.4715 0.4064 0.4370 0.4262
0.776 0.5492 0.4850 0.5135 0.4911
0.970 0.6218 0.5728 05949 0.5620
1.164 0.7047 0.6642 0.6774 0.6371
1.358 0.7629 0.7483 0.7505 0.7124
1.552 0.8070 0.8119 0.8079 0.7822
1.746 0.8458 0.8546 0.8524 0.8398
1.940 0.8730 0.8792 0.8811 0.8797
2.134 0.8821 0.8898 0.8951 0.8893
2.425 0.8925 0.8952 0.9006 0.8928
2.910 0.9015 0.9000 0.9024 0.8989

 
Figure 8.13: The normalized velocity vx at x/H = 15. Solid line – LRBFCM,
dashed line – FLUENT, ∆ - DNS and * - JD.
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Table 5: The normalized velocity vx at x/H = 15.

experiment∗ present method DNS∆ FVM♣

0.025 0.1451 0.1416 0.1714 0.2011
0.049 0.2500 0.2775 0.2698 0.2721
0.097 0.3497 0.3687 0.3549 0.3361
0.194 0.4054 0.4062 0.4154 0.3895
0.388 0.4547 0.4513 0.4717 0.4473
0.582 0.5065 0.4959 0.5192 0.4944
0.776 0.5492 0.5449 0.5692 0.5415
0.970 0.6218 0.5985 0.6239 0.5906
1.164 0.6891 0.6559 0.6782 0.6420
1.358 0.7344 0.7154 0.7332 0.6951
1.552 0.7746 0.7745 0.7845 0.7485
1.746 0.8135 0.8299 0.8275 0.8000
1.940 0.8394 0.8703 0.8602 0.8467
2.134 0.8562 0.8800 0.8792 0.8815
2.425 0.8692 0.8837 0.8882 0.8862
2.910 0.8705 0.8867 0.8894 0.8908

 
Figure 8.14: The normalized velocity vx at x/H = 19. Solid line – LRBFCM,
dashed line – FLUENT, ∆ - DNS and * - JD.
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Table 6: The normalized velocity vx at x/H = 19.

experiment∗ present method DNS∆ FVM♣

0.025 0.1399 0.1495 0.1798 0.2068
0.049 0.2616 0.2931 0.2892 0.2823
0.097 0.3860 0.3975 0.3852 0.3551
0.194 0.4585 0.4458 0.4509 0.4174
0.388 0.5052 0.4910 0.5061 0.4785
0.582 0.5453 0.5296 0.5457 0.5225
0.776 0.5868 0.5693 0.5859 0.5634
0.970 0.6399 0.6115 0.6316 0.6045
1.164 0.6930 0.6562 0.6801 0.6466
1.358 0.7332 0.7031 0.7256 0.6898
1.552 0.7811 0.7513 0.7693 0.7337
1.746 0.8303 0.8000 0.8078 0.7775
1.940 0.8614 0.8498 0.8397 0.8196
2.134 0.8834 0.8778 0.8646 0.8575
2.425 0.8964 0.8814 0.8836 0.8853
2.910 0.8990 0.8840 0.8879 0.8894

Table 7: Reattachment length.

reattachment length - x/H
experiment∗ 6.00±0.15
present method 6.28
DNS∆ 6.28
FVM♣ 5.50

9 Conclusions

This paper probably for the first time represents the solution of the incompress-
ible turbulent flow by a meshless method. Various turbulent models and numeri-
cal methods were used in the past to solve such kind of problems. In the present
method, we used the low-Re k-ε model with the closure coefficients proposed by
Jones and Launder (1971). Other low-Re turbulence models can be used in the
present method [Wilcox (1993)], but the user should be careful about the boundary
conditions for k and ε of each model. The numerical solution is based on the local
collocation with the radial basis functions for spatial disretization and first order
(backward Euler) explicit method for time discretization. Due to its locality and
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explicit time stepping, the method is very appropriate for parallelization. The par-
tial differential equations are solved in their strong formulation, hence no integra-
tion are needed. The transition from two-dimensional to three-dimensional cases is
quite straightforward. Three examples were focused to test the accuracy and appli-
cability of the proposed method. In the first example, the laminar two-dimensional
channel flow was simulated, where we show the capability of the fractional step
method to solve the incompressible flows. The sparse solver was used to solve the
pressure Poison’s equation. The results were compared with the analytical solu-
tion and experiment. Turbulent flow in a two-dimensional channel and turbulent
flow over a backward-facing step, were chosen in the next two examples, based on
availability of the experimental and numerical tests. In the future, various casting
problems [Vertnik and Šarler (2009)] will be simulated, where the heat and species
transfer with solidification is involved in addition to the turbulent flow. With this,
the new LRBFCM will most probably achieve reasonable maturity.
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