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Elastic analysis in 3D anisotropic functionally graded
solids by the MLPG

J. Sladek1, V. Sladek1 and P. Solek2

Abstract: A meshless method based on the local Petrov-Galerkin approach is
proposed for solution of static and elastodynamic problems in 3-D continuously
non-homogeneous anisotropic bodies. Functionally graded materials (FGM) are
multi-phase materials with the phase volume fractions varying gradually in space,
in a pre-determined profile. The Heaviside step function is used as the test functions
in the local weak form resulting into the derived local integral equations (LIEs).
For transient elastodynamic problems either the Laplace transform or the time dif-
ference techniques are applied. Nodal points are randomly distributed in the 3D
analyzed domain and each node is surrounded by a spherical subdomain to which
a local integral equation is applied. The final form of the local integral equations
has a pure contour character only in elastostatics. In elastodynamics an additional
domain integral is involved due to inertia terms. The spatial variation of the dis-
placement is approximated by the moving least-square (MLS) scheme.

Keywords: meshless method, local weak form, Heaviside step function, moving
least squares interpolation, Laplace transform, Houbolt method

1 Introduction

Functionally graded materials are multi-phase materials with the phase volume
fractions varying gradually in space, in a pre-determined profile. This results in
continuously graded thermo-mechanical properties at the (macroscopic) structural
scale. Often, these spatial gradients in material behaviour render FGMs as supe-
rior to conventional composites. FGMs possess some advantages over conventional
composites because of their continuously graded structures and properties [Suresh
and Mortensen (1998); Miyamoto et al. (1999)]. FGMs may exhibit isotropic
or anisotropic material properties, depending on the processing technique and the
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practical engineering requirements. Recent progress in the development and re-
search of FGMs has also enhanced interests in the development of numerical meth-
ods for the solution of elastic and elastodynamic problems in continuously non-
homogeneous solids. The first numerical studies of FGMs have been carried out
using the Finite Element Method [Santare and Lambros (2000); Anlas et al. (2000);
Kim and Paulino (2002)]. The boundary element method (BEM) is very powerful
computational method if the fundamental solution is available. The anisotropy in-
creases the number of elastic constants in Hooke’s law, hence the construction of
fundamental solutions become difficult even in a homogeneous medium. The fun-
damental solution is available in a closed form for 2D problems in a homogeneous
anisotropic solid [Eshelby et al. (1953); Schclar (1994)] and it is given in a com-
plex variable space. Several numerical analyses have been applied to 2-d elasto-
static problems [Cruse and Swedlow (1971); Brebbia et al. (1984)] and in specific
problems like half-plane [Dumir and Mehta (1987); Pan et al. (1998)], fracture me-
chanics [Snyder and Cruse (1975); Clements and Haselgrove (1983); Sollero and
Aliabadi (1993); Pan and Amadei (1996); Ang and Telles (2004)] and piezoelectric
solids [Pan (1999)]. Closed form fundamental solutions for 3D anisotropic elastic-
ity exist for special cases like transversally isotropic or cubic homogeneous media
[Ding et al. (1997)]. Recently, Shiah et al. (2008) have derived the explicit form of
the fundamental solutions for displacements and stresses in 3D anisotropic elastic
solids.

Governing equations for continuously nonhomegeneous solids are more compli-
cated than for a homogeneous counterpart. Therefore, fundamental solutions for
general functionally graded materials are not available in 2D and 3D elasticity.
Recently, fundamental solutions for 2D and 3D elastic problems in exponentially
graded isotropic materials have been derived [Martin et al. (2002); Chan et al.
(2004); Criado et al. (2008)]. It was leading to develop the Boundary Element
Method for a special class of functionally graded materials in 3-D elasticity [Cri-
ado et al. (2007)].

In spite of the great success of the finite and boundary element methods as effective
numerical tools for the solution of boundary value problems on complex domains,
there is still a growing interest in development of new advanced methods. Many
meshless formulations are becoming to be popular due to their high adaptivity and
a low cost to prepare input data for numerical analysis. A variety of meshless meth-
ods has been proposed so far [Belytschko et al. (1996); Atluri and Zhu (1998); Zhu
et al. (1998); Atluri (2004)]. Many of them are derived from a weak-form formula-
tion on global domain [Belytschko et al. (1994)] or a set of local subdomains [Zhu
et al. (1998); Atluri and Shen (2002); Atluri et al. (2003); Sladek et al. (2003a,b);
Mikhailov (2002)]. In the global formulation background cells are required for the
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integration of the weak form. In methods based on local weak-form formulation
no cells are required and therefore they are often referred to call as truly meshless
methods. If for the geometry of subdomains a simple form is chosen, numerical in-
tegrations can be easily carried out over them. The meshless local Petrov-Galerkin
(MLPG) method is fundamental base for the derivation of many meshless formula-
tions, since trial and test functions are chosen from different functional spaces. The
fundamental solution as the test function is leading to accurate numerical results
and it was utilized in former papers for isotropic homogeneous and continuously
nonhomogeneous bodies under static [Atluri et al. (2000); Sladek et al. (2000)], dy-
namic loads [Sladek et al. (2003a, b)] and thermoelasticity [Sladek et al. (2001)].
However, in an anisotropic elasticity the fundamental solution is complex or un-
available in a closed form. From complex fundamental solution it is very difficult to
derive the Green’s function which vanishes on the local boundary of circular subdo-
main. It is inappropriate to utilize such a non-vanishing fundamental solution as the
test function in derivation of local boundary integral equations, since both the dis-
placements and tractions are unknown on the boundary of the interior sub-domain.
Recent successes of the MLPG methods have been reported in the development of
the MLPG finite-volume mixed method [Atluri, Han, and Rajendran (2004); Atluri
et al. (2006a,b)], which was later extended to finite deformation analysis of static
and dynamic problems [Han et al (2005)] and in simplified treatment of essential
boundary conditions by a novel modified MLS procedure [Gao et al. (2006)]. The
MLPG has been successfully applied for 2-D elastic problems in homogeneous and
continuously nonhomogeneous solids [Sladek et al. (2004, 2005a, 2006); Selloun-
tos et al. (2005); Ching and Chen (2006)]. The application of meshless methods
to 3D problems has, hitherto, been very limited indeed. In this regard, Han et al.
(2004a,b) have applied MLPG to elasticity in a homogeneous solid and the present
authors have recently analyzed 3D heat conduction problems [Sladek et al. (2008)]
and early also for axisymmetric boundary conditions [Sladek et al. (2005b, 2007)].

In this paper, the Heaviside step function is used as the test function. It yields a
pure contour integral formulation on local boundaries for anisotropic elastostatics,
while in elastodynamics an additional domain integral of inertia terms is involved.
The spatial variation of the displacement is approximated by the moving least-
square (MLS) scheme. After performing the spatial integrations, one obtains the
system of ordinary differential equations for certain nodal unknowns. That system
is solved numerically by the Houbolt finite difference scheme [Houbolt (1950)] as
a time stepping method. Alternatively, the Laplace transform is applied to elimi-
nate the time variable. Then, the local integral equations are derived for Laplace
transforms. Several quasi-static boundary value problems have to be solved for
various values of the Laplace transform parameter. The Papoulis inversion method
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is applied to obtain the time-dependent solutions. The integral equations have a
very simple nonsingular form. Moreover, both the contour and domain integrations
can be easily carried out on spherical sub-domains. The boundary conditions on
the global boundary are satisfied by collocation of the MLS-approximation expres-
sions for the displacements at boundary nodal points. To demonstrate the accuracy
of the present method more numerical examples with simple and more complex
geometry are considered for static and dynamic cases.

2 Equilibrium equations

Let us consider a linear elastodynamic problem in an anisotropic domain Ω bounded
by the boundary Γ. The equilibrium equation can be expressed as

σi j, j(x, t)−ρ üi(x, t) =−Xi(x, t), (1)

where σi j(x, t) is the stress tensor,Xi(x, t) is the body force vector, ρ is the mass
density and ui(x, t) the displacement vector and the dots indicate the second time
derivative. Comma denotes partial differentiation with respect to the spatial coor-
dinates. An elastostatical problem can be considered formally as a special case of
the elastodynamical one, with omitting the acceleration üi(x, t) in the equilibrium
equation (1). Therefore, both cases are analyzed simultaneously.

In the case of elastic material, the relation between stress and strain are given by
Hooke’s law for an anisotropic body

σi j(x, t) = Ci jklεkl(x, t) = Ci jkluk,l(x, t), (2)

where Ci jkl is the material tensor which exhibits the symmetries

Ci jkl = C jikl = Ckli j.

The traction vector ti(x, t) is related to the displacement vector through Cauchy’s
formula ti = σi jn j, which leads to

ti(x, t) = Ci jkluk,l(x, t)n j(x), (3)

where n jdenotes a unit outward normal vector.

The constitutive equations are frequently written through the second order tensor
of material constants [Lekhnitskii (1963)]. Then, one can write for an orthotropic
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material

σ11

σ22

σ33

σ23

σ13

σ12

=



c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66





ε11

ε22

ε33

2ε23

2ε13

2ε12

 . (4)

The compliance coefficients βi jare obtained by the inversion of matrix C in equa-
tion (4). For orthotropic material they can be expressed trough Young’s moduli and
Poisson’s ratios

β11 = 1/E1, β22 = 1/E2, β33 = 1/E3

β12 = β21 =−ν12/E1 =−ν21/E2, β13 = β31 =−ν13/E1 =−ν31/E3

β23 = β32 =−ν23/E2 =−ν32/E3, β44 = 1/G23,

β55 = 1/G13, β66 = 1/G12, (5)

where Ek are the Young’s moduli refering to the axes xk, G12 is the shear modulus
for the plane, νi j are Poisson’s ratios.

The following boundary and initial conditions are assumed
ui(x, t) = ũi(x, t) on Γu

ti(x, t) = t̃i(x, t) on Γt

ui(x, t)|t=0 = ui(x,0) and u̇i(x, t)|t=0 = u̇i(x,0) in Ω,
where Γu is the part of the global boundary with prescribed displacement while
onΓt the traction vector is prescribed.

3 Local boundary integral equations in Laplace transform domain

Applying the Laplace transformation to the governing equation (1), we have

σ̄i j, j(x,s)−ρs2ūi(x,s) =−F̄i(x,s), (6)

where

F̄i(x,s) = X̄i(x,s)+ sui(x,0)+ u̇i(x,0)

is the redefined body force in the Laplace transform domain with initial boundary
condition for displacements ui(x,0) and velocities u̇i(x,0).
The Laplace transform of function f (x, t) is defined as
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L [ f (x, t)] = f̄ (x,s) =
∞∫

0

f (x, t)e−stdτ,

where s is the Laplace transform parameter.

Instead of writing the global weak form for the above governing equation, the
MLPG methods construct the weak form over local subdomains such as Ωs, which
is a small region taken for each node inside the global domain [Atluri and Shen
(2002)]. The local subdomains overlap each other, and cover the whole global do-
main Ω. The local subdomains could be of any geometric shape and size. In the
current paper, the local subdomains are taken to be of spherical shape.

subdomain =Ω Ωs s
i '

∂  Ω Γs s s
i i i=L U

∂Ωs =  i ∂ Li
s Ωs=

Li
s

Γs  u
i or Γst

i

ri

node xi

support of node xi

local boundary '

 

Figure 1: Local boundaries for weak formulation and support domain of weight
function at node xi

The local weak form of the governing equation (6) can be written as∫
Ωs

[
σ̄i j, j(x,s)−ρs2ūi(x,s)+ F̄i(x,s)

]
u∗ik(x)dΩ = 0, (7)

where u∗ik(x) is a test function.

Using

σi j, ju
∗
ik = (σi ju

∗
ik), j−σi ju

∗
ik, j
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and applying the Gauss divergence theorem one can write∫
∂Ωs

σ̄i j(x,s)n j(x)u∗ik(x)dΓ−
∫
Ωs

σ̄i j(x,s)u∗ik, j(x)dΩ

+
∫
Ωs

[
−ρs2ūi(x,s)+ F̄i(x,s)

]
u∗ik(x)dΩ = 0, (8)

where ∂Ωs is the boundary of the local subdomain which consists of three parts
∂Ωs = Ls ∪Γst ∪Γsu (Fig.1). Ls is the local boundary that is totally inside global
domain, Γst is the part of the local boundary which coincides with the global trac-
tion boundary, i.e., Γst = ∂Ωs∩Γt , and similarly Γsu is the part of local boundary
that coincides with the global displacement boundary, i.e., Γsu = ∂Ωs∩Γu.

If a Heaviside step function is chosen as the test function u∗ik(x)in each subdomain

u∗ik(x) =

{
δik at x ∈ (Ωs∪∂Ωs)
0 at x /∈Ωs

and considering

t̄i(x,s) = σ̄i j(x,s)n j(x)

the local weak form (8) is leading to the local boundary integral equations∫
∂Ωs

t̄i(x,s)dΓ+
∫
Ωs

[
−ρs2ūi(x,s)+ F̄i(x,s)

]
dΩ = 0. (9)

Rearranging unknown terms on the left hand side we get∫
Ls

t̄i(x,s)dΓ+
∫

Γsu

t̄i(x,s)dΓ−
∫
Ωs

ρs2ūi(x,s)dΩ =−
∫

Γst

¯̃ti(x,s)dΓ−
∫
Ωs

F̄i(x,s)dΩ.

(10)

Equation (10) is recognized as the overall force equilibrium on the subdomain Ωs.
In case of stationary problems, the domain integral on the left hand side of this local
boundary integral equation disappears. Then, a pure contour integral formulation is
obtained under the assumption of vanishing body sources and homogeneous initial
conditions.

In the MLPG method, the test and trial function are not necessarily from the same
functional spaces. For internal nodes, the test function is chosen as the Heaviside
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step function with support on the local subdomain. The trial function, on the other
hand, is chosen to be the moving least squares (MLS) interpolation over a number
of nodes randomly spread within the domain of influence. While the local subdo-
main is defined as the support of the test function on which the integration is carried
out, the domain of influence is defined as a region where the weight function is not
zero and all nodes lying inside are considered for interpolation. To approximate the
distribution of the Laplace transform of displacements over a number of randomly
located nodes{xa}, a = 1,2, ...,n, the MLS approximant ūh(x,s)of ū, is defined by

ūh(x,s) = pT (x)a(x,s), (11)

where pT (x) =
[
p1(x), p2(x), ..., pm(x)

]
is a complete monomial basis of order

m; and a(x) is a vector containing the coefficients a j(x), j = 1,2, ...,mwhich are
functions of the space co-ordinates x = [x1, x2, x3]

T . In 3D problems, the linear
basis is defined as

pT (x) = [1, x1, x2, x3] , (12)

and the quadratic basis is defined as

pT (x) =
[
1, x1, x2, x3, (x1)2, (x2)2, (x3)2, x1x2, x1x3, x3x2

]
. (13)

The coefficient vector a(x) is determined by minimizing a weighted discrete L2-
norm defined as

J(x) =
n

∑
a=1

wa(x)
[
pT (xa)a(x,s)− ûa(s)

]2
, (14)

where wa(x) is the weight function associated with the node a with wa(x) ≥ 0.
Recall that n is the number of nodes in the support domain for which the weight
function wa(x) > 0 and ûa(s) are the fictitious nodal values, but not the nodal values
of the unknown trial function ūh(x,s), in general. The stationary condition of J in
eq. (14) with respect to a(x,s),

∂J/∂a = 0,

leads to the following linear relation between a(x,s) and û(s)

A(x)a(x,s)−B(x)û(s) = 0, (15)

where

A(x) =
n

∑
a=1

wa(x)p(xa)pT (xa),
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B(x) =
[
w1(x)p(x1), w2(x)p(x2), ..., wn(x)p(xn)

]
. (16)

The MLS approximation is well defined only when the matrix A in eq. (16) is non-
singular. A necessary condition to satisfy this requirement is that at least m weight
functions are non-zero (i.e. n ≥ m) for each sample point x ∈ Ω. The solution of
eq. (16) for a(x,s) and a subsequent substitution into eq. (11) lead to the following
relation

ūh(x,s) = ΦΦΦT (x) · û(s) =
n

∑
a=1

φ
a(x)ûa(s), (17)

where

ΦΦΦT (x) = pT (x)A−1(x)B(x). (18)

In eq. (17), φ a(x) is usually referred to as the shape function of the MLS approxi-
mation corresponding to the nodal pointxa. From eqs. (16) and (18), it can be seen
that φ a(x) = 0when wa(x) = 0. In practical applications, wa(x) is often chosen
such that it is non-zero over the support of the nodal pointxi. The support of the
nodal point xa is usually taken to be a sphere of the radius ri centred at xa (see Fig.
1). The radius ri is an important parameter of the MLS approximation because it
determines the range of the interaction (coupling) between the degrees of freedom
defined at considered nodes.

A 4th-order spline-type weight function is applied in the present work

wa(x) =

{
1−6

(
da

ra

)2
+8
(

da

ra

)3−3
(

da

ra

)4
0≤ da ≤ ra

0 da ≥ ra
, (19)

where da = ‖x−xa‖ and ra is the radius of the spherical support domain. With eq.
(19), the C1-continuity of the weight function is ensured over the entire domain,
therefore the continuity condition of the traction vector is satisfied.

The partial derivatives of the MLS shape functions are obtained as [Atluri (2004)]

φ
a
,k =

m

∑
j=1

[
p j

,k(A
−1B) ja + p j(A−1B,k +A−1

,k B) ja
]
, (20)

wherein A−1
,k =

(
A−1

)
,k represents the derivative of the inverse of A with respect

to xk, which is given by

A−1
,k =−A−1A,kA−1 .
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The traction vectors t̄i(x,s) at a boundary point x ∈ ∂Ωs are approximated in terms
of the same nodal values ûa(s) as

t̄h(x,s) = N(x)C
n

∑
a=1

Ba(x)ûa(s), (21)

where the matrix N(x) is related to the normal vector n(x) on ∂Ωs by

N(x) =

n1 0 0 0 n3 n2

0 n2 0 n3 0 n1

0 0 n3 n2 n1 0


and the matrix Ba is represented by the gradients of the shape functions as

Ba =



φ a
,1 0 0
0 φ a

,2 0
0 0 φ a

,3
0 φ a

,3 φ a
,2

φ a
,3 0 φ a

,1
φ a

,2 φ a
,1 0


.

It should be noted that there are neither Lagrange multipliers nor penalty parame-
ters introduced into the local weak form in eq. (7) because the essential boundary
conditions on Γi

su can be imposed directly using the interpolation approximation
eq. (17):

n

∑
a=1

φ
a(xi)ûa(s) = ¯̃u(xi,s) for xi ∈ Γi

su, (22)

where ¯̃u(xi,s) is the Laplace transform of displacements prescribed on the boundary
Γi

su for essential boundary conditions.

Natural boundary conditions for the traction vector are satisfied on Γi
st by colloca-

tion of the approximate expression eq. (21) at xi

N(xi)C
n

∑
a=1

Ba(xi)ûa(s) = ¯̃t(xi,s) for xi ∈ Γi
st . (23)

Furthermore, in view of the MLS-approximation (17) and (21) for unknown fields
in the local integral equations (10), we obtain the discretized LIE

n

∑
a=1

∫
Li

s

N(x)CBa(x)dΓ− Iρs2
∫
Ωi

s

φ
a(x)dΩ

 ûa(s) =−
∫
Ωi

s

F̄(x,s)dΩ, (24)
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which are considered on the sub-domains adjacent to interior nodes xi. Note that I
stands in eq. (24) for the diagonal unit 3×3 matrix.

Collecting the discretized LIE together with the discretized boundary conditions,
we get the complete system of algebraic equations for computation of nodal un-
knowns which are the Laplace transforms of fictitious parameters ûa(s). The time
dependent values of the transformed variables can be obtained by an inverse trans-
formation. There are many inversion methods available for the Laplace transforma-
tion. As the Laplace transform inversion is an ill-posed problem, small truncation
errors can be greatly magnified in the inversion process and lead to poor numer-
ical results. In the present analysis the Papoulis algorithm [Papoulis (1957)] is
used. This method has been used since it is less time consuming than other more
advanced inversion techniques. An approximate value faof the inverse f (t) for a
specific time t is given by

fa(t) =
N

∑
i=1

Ci sin(2i−1)Θ (25)

where

cosΘ = e−bt , Ci =
N

∑
k=1

B−1
ik Ak

Ak =
4
π

22(k−1)b f̄ [(2k−1)b] , k = 1,2, ...,N (26)

And B−1
ik is a triangular matrix whose elements are known and dependent on the

number of the expansion coefficients N in eq. (25). The selected number N = 15
with a double precision arithmetic is applied in numerical examples. It means that
it is needed to solve N boundary value problems for the corresponding Laplace
parameters s = (2k− 1)b, where b is a real positive number. Its value determines
the final time instant in which we want to obtain f (t).

4 Time dependent Local integral equations

The local weak form of the governing equation (1) can be written as

∫
Ωs

[σi j, j(x, t)−ρ üi(x, t)+Xi(x, t)]u∗ik(x)dΩ = 0. (27)
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Applying the Gauss divergence theorem to the first integral one obtains∫
∂Ωs

σi j(x, t)n j(x)u∗ik(x)dΓ−
∫
Ωs

σi j(x, t)u∗ik, j(x)dΩ

+
∫
Ωs

[−ρ üi(x, t)+Xi(x, t)]u∗ik(x)dΩ = 0. (28)

If we will use the same test function as in the Laplace transform approach, the local
integral equation (LIE) has the form∫
Ls

ti(x, t)dΓ+
∫

Γsu

ti(x, t)dΓ−
∫
Ωs

ρ üi(x, t)dΩ = −
∫

Γst

t̃i(x, t)dΓ−
∫
Ωs

Xi(x, t)dΩ.

(29)

Substituting the MLS approximations for displacements (17) and tractions (27) into
(29), we get the set of discretized LIEs

n

∑
a=1


∫

Li
s

N(x)CBa(x)dΓ

 ûa(t)− Iρ

∫
Ωi

s

φ
a(x)dΩ

 ¨̂u
a
(t)

=−
∫
Ωi

s

X(x, t)dΩ,

(30)

considered at internal nodes xi. The discretized displacement and traction boundary
conditions

n

∑
a=1

φ
a(xi)ûa(t) = ũ(xi, t) for xi ∈ Γi

su, (31)

N(x)C
n

∑
a=1

Ba(xi)ûa(t) = t̃(xi, t) for xi ∈ Γi
st . (32)

are considered at boundary nodes Γu and Γt , respectively.

The system of ordinary differential equations (30) and collocation equations (31)
and (32) can be rearranged in such a way that all known quantities are on the r.h.s.
Thus, in matrix form the system becomes

Lẍ+Kx = P. (33)

There are many time integration procedures for the solution of this system of ordi-
nary differential equations. In the present work, the Houbolt method is applied. In
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the Houbolt finite difference scheme [Houbolt (1950)], the acceleration (ü = ẍ) is
expressed as

ẍτ+∆τ =
2xτ+∆τ −5xτ +4xτ−∆τ −xτ−2∆τ

∆τ2 , (34)

where ∆τ is the time step.

Substituting eq. (34) into eq. (33), we get the system of algebraic equations for the
unknowns xτ+∆τ :

[
2

∆τ2 L+K
]

xτ+∆τ = L
1

∆τ2 {5xτ −4xτ−∆τ +xτ−2∆τ}+P. (35)

The value of the time step has to be appropriately selected with respect to material
parameters (propagation velocities) and time dependence of the boundary condi-
tions.

5 Numerical examples

5.1 A cube under uniform tension

In this section, numerical results will be presented to illustrate the implementation
and effectiveness of the MLPG method for elasticity problems. First, homoge-
neous material properties and steady-state boundary conditions are considered. An
anisotropic cube is analyzed.

In the first example, the cube is under a uniaxial tension in x3 direction. Due to
symmetry of boundary conditions with respect to 3 axes only one eighth of the
cube is analyzed. Then, mixed boundary conditions for displacements and the trac-
tion vector on surfaces of the cube are considered (Fig. 2). For the purpose of
illustration, a relatively coarse node distribution is shown in the figure.

In such a case, an analytical solution is available

u1 = β13σ33x1, u2 = β23σ33x2, u3 = β33σ33x3. (36)

Numerical analyses are made for a cube with side a = 10m and transversaly isotropic
and orthotropic material properties. For transversaly isotropic material we have
considered: Young‘s moduli E1 = 20 · 104kN/m2, E3 = 4 · 104kN/m2, Poisson‘s
ratio ν12 = ν13 = ν23 = 0.25 and shear moduli G12 = 8 · 104kN/m2, G13 = G23 =
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Figure 2: Mixed boundary conditions for analyzed cube

1.6 ·104kN/m2. Then, the corresponding stress-strain matrix is given as

88 72 40 0 0 0
88 40 0 0 0

24 0 0 0
1.6 0 0

sym. 1.6 0
8

 ·104 kN/m2.

The compliance coeeficients βi j can be obtained by inversion of the above matrix.
For orthotropic material we have considered following material parameters: E1 =
20 · 104 kN/m2, E2 = 10 · 104 kN/m2 E3 = 4 · 104 kN/m2, ν12 = 0.5, ν21 = 0.25,
ν23 = 0.25, ν32 = 0.1, ν13 = 0.25, ν31 = 0.05, G12 = 8 · 104 kN/m2, G13 = G23 =
1.6 ·104 kN/m2. Following identities have to be satisfied

E2ν12 = E1ν21, E2ν32 = E3ν23, E3ν13 = E1ν31.

Constitutive equations for an orthotropic material are given as

ε11 =
1

E1
σ11−

ν21

E2
σ22−

ν31

E3
σ33



Elastic analysis in 3D anisotropic functionally graded solids by the MLPG 237

ε22 =−ν12

E1
σ11 +

1
E2

σ22−
ν32

E3
σ33

ε33 =−ν13

E1
σ11−

ν23

E2
σ22 +

1
E3

σ33

2ε23 =
1

G23
σ23, 2ε13 =

1
G13

σ13, 2ε12 =
1

G12
σ12. (37)

The compliance matrix is computed from equations (37). After the inversion of the
compliance matrix one gets the stress-strain matrix C

23.64 6.364 1.818 0 0 0
11.97 1.515 0 0 0

4.242 0 0 0
1.6 0 0

sym. 1.6 0
8

 ·104 kN/m2.

In the MLS approximation, three regular node distributions with a total 27, 125
and 1331 nodes are used here. The radius of the spherical subdomain is considered
as rloc = 0.8s, where s is the shortest distance of two neighboring nodes. The
numerical results can be compared with analytical ones. The Sobolev norms of the
errors for the displacements obtained

ru =
‖unum−uexact‖
‖uexact‖ ×100% with ‖u‖=

∫
Ω

uiu
d
i Ω

1/2

are 0.64%, 0.39% and 0.12% for particular node distributions with 27, 125 and
1331 nodes, respectively. One can see that a high accuracy of results is obtained
even for a coarse node distribution.

Next, the cube with functionally graded material properties is analyzed. In the test
example, we have considered only c33(x3) = c330(1+ x3/a) is varying with Carte-
sian coordinates and other terms of the matrix C are constant. Uniform material
properties are the same as in the previous example for the orthotropic material.

The variation of displacements u1 and u2 along x3 in the FGM cube edge (x1 =
x2 = 10.) is presented in Fig. 3. One can see that both displacement components
are gradually growing with x3 in counterpart to a homogeneous cube where both
components are uniform, uhom

1 =−0.125 ·10−7m and uhom
2 =−0.25 ·10−7m . The

present MLPG results are compared with ones obtained by the ANSYS computer
code with 6400 solid186 elements. A very fine mesh is applied to use the FEM
results as benchmark. One can observe a good agreement of results.
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Figure 3: Variation of displacements u1 and u2 along x3 in the FGM cube
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Figure 4: Temporal variation of displacements u3 in the homogeneous cube at x1 =
x2 = x3 = 10.
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Next, the same orthotropic cube with homogeneous material properties under an
impact load with Heaviside time variation is analyzed. The mass density is con-
sidered as ρ = 5000kg/m3. Both the Laplace transform and time difference ap-
proaches are applied to obtain numerical results. The Papoulis Laplace inversion
is applied for 15 Laplace transform solutions and parameter b = 1. In the time
difference approach we have used 100 time steps with time incrementt = 0.005s.
Numerical results for the vertical component of displacements at the top side of
the cube are presented in Fig. 4. One can observe a very good agreement of FEM
and MLPG results obtained by Houbolt time difference technique. A good agree-
ment of the FEM and MLPG results obtained with Laplace transform method is
observed only for shorter time instants. It is well known that the Laplace inversion
techniques are unstable for large time instants.

The horizontal components of displacements are given in Fig. 5. Since Young‘s
moduli are various in all three directions, we have three different wave velocities.
Then, each displacement component has its own time variation. The displacement
component u1 oscillates around the static value ustat

1 = −1.25 ·10−8. Similarly, u2

oscillates around the static value ustat
1 =−2.5 ·10−8.

Figure 6 presents a comparison of the time variations for u3 at the top and mid side
of the homogeneous orthotropic cube. On the top side where also external load is
applied, one can observe immediate displacement increments. However, in the mid
side it is observed certain delay due to a finite wave velocity.

Finally we have considered the cube with functionally graded material properties.
Again, we have considered linear variation for c33(x3) = c330(1 + x3/a) and other
terms of the matrix C are constant. Uniform material properties are the same as in
the previous example for the orthotropic material. Numerical results are presented
in Fig.7. Very good agreement of the FEM and MLPG results with those by the time
difference technique is observed on the top side of the cube. The peak values of u3

for FGM cube are reduced with respect to the homogeneous case. Also peak value
is reached at a shorter time instant in the FGM cube than in homogeneous one. It
is due to higher wave velocity in FGM cube where mass density is considered as in
the homogeneous case.

5.2 Hollow cylinder

An isotropic hollow cylinder subjected to a static pressure p0 on the internal surface
as shown in Fig. 8 is analyzed as a test example. Functionally graded hollow
cylinder with a length L = 0.3 and radii a = 4 and b = 5 is investigated. The finite-
length cylinder is considered as a part of the infinite-length tube. Hence, the axial
displacements on the top and the bottom of the hollow cylinder are assumed to be
vanishing. An exponential spatial variation of Young’s modulus in radial direction
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Figure 5: Temporal variation of displacements u1 and u2 in the homogeneous cube
at x1 = x2 = x3 = 10.
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Figure 6: Temporal variation of displacements u3 in the homogeneous cube at the
top and mid side
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Figure 7: Temporal variation of displacements u3 in the FGM cube at the top and
mid side
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Figure 8: Geometry of a 3-d axisymmetric body
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is considered:

E = E1 exp[β (r−a)], (38)

where β = 1
b−a ln(E2/E1) with E1 = E(a) and E2 = E(b).

Poisson’s ratio is taken as constant ν = 0.25 and E1 = 104. For a homogeneous
hollow cylinder, E(r) = E1 and β = 0. In this case, under the plane strain condition
corresponding to an infinite-length tube, the analytical solution is available and it
is given by

σϕϕ = σ0

[
(b/r)2 +1

]
, σ0 =

p0

(b/a)2−1
,

ur =
σ0

E1
r
[
(1+ν)(b/r)2 +1−ν

]
. (39)

In the error and convergence analyses, the following relative percentage errors of
L2-norm are introduced for the radial displacement and the hoop stress as

eu =
‖unum−uexact‖
‖uexact‖ , es =

‖σnum−σ exact‖
‖σ exact‖ , (40)

where

‖u‖=

∫
Ω

(ur)2dΩ

1/2

, ‖σ‖=

∫
Ω

(σϕϕ)2dΩ

1/2

.

The relative percentage errors and the convergence rates for three different node
distributions are presented in Fig. 9, where s represents the node-distance in ra-
dial direction. A uniform node distribution is considered in angular direction with
nodes each 10 degrees. The accuracy is very high especially for the finest node
distribution consisting of 3780 (21x5x36) nodes uniformly distributed in the rect-
angular domain with 21 nodes in the radial direction and 5 nodes in axial direction.
In other two cases, 1584 (11x4x36) and 864 (6x4x36) nodes have been used.

Next, the influence of the gradation of the material properties on the radial displace-
ments and the hoop stresses is analyzed. In Figs. 10 and 11 the following notation
is used: u1 = ur(a), u2 = ur(b), s1 = σϕϕ(a) and s2 = σϕϕ(b). The numerical
results provided by the MLPG method are compared with those obtained by the
FEM-ANSYS computer code. Axisymmetric triangular elements with a quadratic
interpolation have been used in the FEM analysis. In the FEM calculations, there
have been used 100 elements in the radial direction and 10 elements in the axial
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Figure 9: Relative errors and convergence rates
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Figure 10: Variation of the normalized radial displacement with the nonhomogene-
ity ratio E2/E1



244 Copyright © 2009 Tech Science Press CMES, vol.43, no.3, pp.223-251, 2009

direction, with a total number of 1000 elements for the rectangular cross-section of
the hollow cylinder with the axial plane. A good agreement between both results is
achieved, which verifies the accuracy of the present meshless method. For conve-
nience, the radial displacements are normalized by ur(a) and the hoop stresses by
σϕϕ(a).
The hollow cylinder under an impact load σrr(t) = pH(t− 0) on the internal sur-
face of the hollow cylinder is analyzed too. The same material constants as in the
previous static case are chosen. The mass density is taken as ρ = 500.

The time variations of the radial displacement on the internal surface of the hol-
low cylinder are shown in Figs. 12 and 13 for two different gradient parameters
of Young’s modulus. A node distribution consisting of 3780 (21x5x36) nodes
uniformly distributed in the rectangular domain is used for our MLPG analysis.
The Houbolt method has been applied for the MLPG with the time increment
t = 0.009s. In the FEM analysis, the same mesh as in the previous static analysis
is used now. The time step for FEM is selected as 0,002. A very good agreement
between the FEM and the MLPG results is obtained. It verifies again the accuracy
of the present method. In the FGM hollow cylinder with a gradually increasing
Young’s modulus in the radial direction characterized by E2/E1 = 5., the frequency
of the oscillations is higher as compared to that in a homogeneous hollow cylinder,
but the amplitude is reduced. The opposite phenomena are observed in Fig. 13,
where Young’s modulus is gradually decreasing with radial coordinate.

Figure 14 presents the time variation of the hoop stresses on the internal surface
of the hollow cylinder for the material gradations E2/E1 = 5. Numerical results
for a homogeneous and an FGM hollow cylinder are given here to investigate the
influence of the material gradation on the variation of the hoop stresses. If Young’s
modulus is gradually increasing with radial coordinate the hoop stress at the internal
surface is significantly reduced in comparison with that in a homogeneous cylinder.
It should be noted here that the same values of Young’s modulus on the internal
surface are used in both homogeneous and FGM hollow cylinders.

6 Conclusions

A meshless method based on the local Petrov-Galerkin approach is proposed for so-
lution of static and elastodynamic problems in 3-D continuously non-homogeneous
anisotropic bodies. For transient elastodynamic problems either the Laplace trans-
form or the time difference techniques are applied.

The Heaviside step function is used as test functions in the local symmetric weak
form, leading to the derivation of the local boundary-domain integral equations.
In contrast to conventional boundary integral equation methods, all the integrands
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Figure 11: Variation of the normalized hoop stress with the nonhomogeneity ratio
E2/E1
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Figure 12: Time variation of the radial displacement on the internal surface of the
FGM cylinder for E2/E1 = 5.
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Figure 13: Time variation of the radial displacement on the internal surface of the
FGM cylinder for E2/E1 = 0.2
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Figure 14: Time variation of the hoop stresses on the internal surface of the FGM
cylinder for E2/E1 = 5.
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in the present formulation are regular. Thus, no special integration techniques are
required to evaluate the integrals.

The analyzed domain is divided into small overlapping spherical subdomains on
which the local boundary integral equations are applied. The proposed methods
are truly meshless methods, wherein no elements or background cells are involved
in either the interpolation or the integration. The Moving Least-Squares (MLS)
scheme is adopted for approximating the physical quantities.

The main advantage of the present method is its simplicity and generality in com-
parison to, say, the conventional BEM. The method is particularly promising for
problems which cannot be solved by the conventional BEM when the fundamental
solutions are not available. However, in its current development, the computational
time in the proposed method is larger since there are many more nodes involved
and the shape functions in the MLS approximation are significantly more complex
than in BEM or FEM using simple polynomials. Intensive research to reduce the
CPU is running. It is based on the reduction of the bandwidth of the final system
matrix in the mixed formulation [Atluri et al. (2004), (2006b)].

The proposed method can be further extended to nonlinear problems, where mesh-
less approximations may have certain advantages over the conventional domain-
type discretization approaches.

Acknowledgement: The authors acknowledge the support by the Slovak Sci-
ence and Technology Assistance Agency registered under number APVV-0427-07,
the Slovak Grant Agency VEGA-2/0039/09.
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