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Hierarchical Adaptive Cross Approximation GMRES
Technique for Solution of Acoustic Problems Using the

Boundary Element Method

A. Brancati 1, M. H. Aliabadi1, I. Benedetti1, 2

Abstract: In this paper a new Rapid Acoustic Boundary Element Method (RABEM)
is presented using a Hierarchical GMRES solver for 3D acoustic problems. The
Adaptive Cross Approximation is used to generate both the system matrix and the
right hand side vector. The ACA is also used to evaluate the potential and the
particle velocity values at selected internal points. Two different GMRES solu-
tion strategies (without preconditioner and with a block diagonal preconditioner)
are developed and tested for low and high frequency problems. Implementation of
different boundary conditions (i.e. Dirichlet, Neumann and mixed Robin) is also
described. The applications presented include the problem of noise acting on a row
of aircraft seats and problem of engine noise emanating from the Falcon aircraft.
For the first example, the new RABEM is shown to be faster than the Fast Multi-
pole Methods. The tests demonstrated that the new solver can achieve CPU times
of almost O(N) for low frequency and O(N logN) for high frequency problems.

1 Introduction

The Boundary Element Method (BEM) is one of the most general and efficient
numerical technique for solving acoustic problems [Wrobel and Aliabadi (2002)].
The boundary element discretisation of the surface of the problem leads to a non-
symmetric and fully populated system matrix. For a standard BEM formulation
both the memory storage and the setting up of the system matrices are of O(N2),
where N denotes the degree of freedom. Moreover, direct solvers require O(N3)
operations while iterative solvers O(kN2), where k is the number of iterations.

To overcome the difficulties related to storage and solution time a number of tech-
niques have been proposed which include using block-based solvers [Crotty (1982);
Rigby and Aliabadi (1995)], lumping techniques [Kane and Kumar (1990)] and
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iterative solvers [Mansur, Araújo and Malaghini (1992)]. The Adaptive Cross
Approximation is an effective technique for solving non-symmetric and fully popu-
lated matrices and decreases the CPU time significantly (see Bebendorf and Rjasanow
(2003)) and has been applied to the Helmholtz equation by, for example, Von Es-
torff et al. (2005). The solution of linear system of equations is accelerated by
calculating only few entries of the original matrix. The basic idea is to divide the
whole matrix into two rank (low and full rank) blocks based on (ACA) size and
distance between a group of collocation points and a group of boundary elements.
The ACA algorithm has been applied to the low rank blocks achieving approxi-
mately O(N) for both storage and matrix-vector multiplication [Benedetti, Aliabadi
and Daví (2007)]. An alternative approach to the fast BEM solver is the Fast
Multipole Method (FMM) (see for example Aoki, Amaya, Urago and Nakayama
(2004); Chew, Song, Cui, Velamparambil, Hastriter and Hu (2004); He, Lim and
Lim (2008); Wang and Yao (2005, 2008)). Although FMM techniques are effi-
cient for the fast solution of boundary element problems, their main disadvantage
is that the knowledge of the kernel expansion is required in order to carry out the
integration; all the terms of the series needed to reach a given accuracy must be
computed in advance and then integrated, which can lead to a significant modifica-
tion of the integration procedures in standard BEM codes. From an algebraic point
of view however, the integration of a degenerate kernel, i.e. of a kernel expanded
in series, over a cluster of elements corresponds to the approximation of the cor-
responding matrix block by a low rank block. Comparison between the FMM and
ACA method were made by Wang, Hall, Yu and Yao (2008) for three-dimensional
Laplace problems. In their study a fully pivoted ACA was shown to require consid-
erably more computational effort than FMM. However, it must noted that the full
pivoted approach is well know to be much slower than partially pivoted approach
developed in our paper. The main reason behind this is that fully pivoted approach
requires the knowledge of the full matrix whereas the partially pivoted approach
would only require generation of individual matrix entries. Indeed, in our paper the
partially pivoted ACA approach for acoustic problems is shown to be superior to
the FMM for an example considered.

Developing iterative solvers for non symmetric linear systems has been widely in-
vestigated. One of the most popular is the generalized minimal residual method
(GMRES) proposed by Saad and Schultz (1986) and further developed by other
authors [Leung and Walker (1997); Merkel, Bulgakov, Bialecki and Kuhn (1998);
Amini and Maines (1998)].

In this paper a new hierarchical adaptive cross approximation technique coupled
with GMRES is presented for 3D boundary element solution of Helmholtz prob-
lems. Particular attention is paid to implementation of different types of boundary
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conditions (i.e. Dirichlet, Neumann and mixed Robin) into the ACA solution algo-
rithm. The ACA and the H-Matrix format are also employed for the post processing
steps required to evaluate the values of the potential and particle velocity at the in-
ternal points. The constant elements are utilized to discretize the problem. Initially
two simple benchmark problems of the pulsating sphere and of the scattering of a
plane wave from a rigid sphere are investigated. Next, large scale applications of
involving a row of three seats representing the seats in an aircraft cabin and noise
emanating from engines of the Dassault Falcon aircraft are presented. The tests car-
ried out show that the new assembly and solution technique can achieve CPU times
of almost O(N) for low frequency and O(N logN) for high frequency problems.

2 The Boundary Element Method

In this section the three dimensional Boundary Element Method (BEM) for sound
propagation problems is briefly reviewed. The boundary integral formulation for
sound propagation can be written as

C(x′)u j(x′)+
∫

Γ

q∗(x′,x)u(x)dΓ(x)

=
∫

Γ

u∗(x′,x)q(x)dΓ(x)+
∫

Ω

u∗(x′,Xs)
1
c2 b(Xs)dΩ(Xs) (1)

where u(x) and q(x) denote the potential and flux, respectively on the boundary
Γ. The terms u∗(x′,x) and q∗(x′,x) are the potential and the flux fundamental
solutions, respectively, and C(x′) is the free term which its value depends on the
position of x′ on the boundary (see Wrobel and Aliabadi (2002)). The last term
refers to the presence of sources within the domain Ω with strength b(Xs)/c2 where
c is the sound velocity. The BE formulation automatically satisfies the Sommerfeld
radiation condition [Wrobel and Aliabadi (2002)].

The boundary integral equation (1) is discretised with constant elements. The dis-
cretised form of (1) can be written in a matrix form as

HU = GQ+P(Xs) (2)

where H and G are N ×N coefficient matrices corresponding to integrals of the
product of the Jacobian of transformation with flux and potential fundamental so-
lutions, respectively, and U and Q are the N×1 potential and flux vectors, respec-
tively. Finally, the last integral in equation (1) produces the N×1 vector P, created
by NP sources within the domain Ω.

The implementation of the boundary conditions for acoustics wave equations has
received much attention in the last decades. In particular Clayton and Engquist
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(1977) and more recently Higdon (1992) included the absorbing boundary condi-
tions for acoustic simulations in their computing numerical models. The possible
presence of absorbent material with a certain value of impedance has also been in-
troduced by a quantity that relates directly the potential and the flux, here called
artificial admittance (ζ ) which is defined as follows

ζ (ω) =
q
u

(3)

Equation (3) creates the impedance boundary conditions and can be easily ac-
counted for in (2). After substitution of the prescribed boundary conditions, the
resulting system of algebraic equations may be written as

AY = F (4)

where Y is the vector containing the unknown boundary potentials and fluxes, A
is a coefficient matrix which is non-symmetric and densely populated, and F is
obtained by multiplying the prescribed boundary conditions by the corresponding
columns of the G and H matrices.

Similarly, for internal potential values the resulting system of equations can be
written as

U(X) =−HU+GQ+P(Xs) (5)

where H and G are similar to H and G, but evaluated at internal points (NI), and
for the internal particle velocity

U′(X) =−H
′
U+G

′
Q+P′(Xs) (6)

where superscript “′” denotes derivative with respect to Cartesian coordinates (x,
y, z); H

′
and G

′
contain the integrals of the derivatives of the fundamental solu-

tions and are NI×N matrices calculated by substituting the fundamental solutions
u∗(x′,x) and q∗(x′,x) and their derivatives (see Dominguez (1993)) and P′(Xs) is
a NI×1 vector containing the contribution to the particle velocity generated by the
sources within the domain Ω.

3 Hierarchical BEM for Acoustics

The use of hierarchical matrices [Hackbush (1999); Hackbush and Khoromskij
(2000); Borm, Grasedyck and Hackbush (2003)] for the representation of BEM
system of equations, in conjunction with Krylov subspace methods [Leung and
Walker (1997); Merkel, Bulgakov, Bialecki and Kuhn (1998)], is extended to
BEM acoustic problems with different boundary conditions. The technique speeds
up the computation, whilst maintaining the required accuracy and saving on the
memory storage.
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3.1 Matrix Assembly using the Collocation Method

The hierarchical representation of a boundary element matrix can be regarded as a
subdivision of the matrix itself into a collection of blocks, some of which, called
low rank blocks, allow a special compressed representation, while others, called full
rank blocks are represented in their entirety. The subdivision and the subsequent
classification is achieved starting from the boundary element mesh and is based on
the grouping of the nodes and elements into clusters of close nodes and elements. A
block populated by integrating over a cluster of elements whose distance, suitably
defined, from the cluster of collocation nodes is above a certain threshold is called
admissible and it can be represented in the low rank format. The remaining blocks
are generated and stored in their entirety.

The process leading to the subdivision in sub-blocks and to their further classifica-
tion is based on a preliminary hierarchical partition of the matrix index set aimed
at grouping subsets of indices corresponding to contiguous nodes and elements,
on the basis of some computationally efficient geometrical criterion. The process
starts from the complete set of indices I = {1,2...n} where n denotes the number
of collocation points. This initial set constitutes the root of the tree. Each cluster in
the tree, called tree node (not to be confused with geometrical discretisation nodes)
is split into two subsets, called sons, on the basis of some selected criterion. For this
study the longest extended dimension of the whole geometry (step 1 of the figure
1) is detected first and its central point calculated. This point divides the mesh into
two tree nodes (step 2). The geometries of the mesh of each of these blocks is then
divided into two other tree nodes by following the same procedure (step 3). Such
an iterative procedure is repeated until each tree node is constituted by a smaller
number of elements than the cardinality.

The common tree node from which two sets originate is called the parent. The tree
nodes that cannot be further split are the leaves of the tree. Usually a tree node
cannot be further split when it contains a number of indices equal to or less than a
minimum number nmin, called cardinality of the tree, previously fixed value. This
partition is stored in a binary tree of index subsets, or cluster tree, that constitutes
the basis for the subsequent construction of the hierarchical block subdivision, that
will be stored in a quaternary block tree.

The block tree is built recursively starting from the complete index I× I (both rows
and columns) of the collocation matrix and the previously found cluster tree. The
objective of this process is to split hierarchically the matrix into sub-blocks and to
classify the leaves of the tree into admissible (low-rank) or non admissible (full-
rank) blocks. The classification is based on a geometrical criterion that assesses the
separation of the clusters of boundary elements associated to the considered block.
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Figure 1: A schematic of the first two iterations of the cluster tree creation: 1) the
whole geometry is divided 2) into two parts, each of which is then subdivided again
3) into two parts.

Such a criterion relates directly to the boundary mesh.

Let Ωx0 denote the cluster of elements containing the discretisation nodes corre-
sponding to the row indices of the considered block and Ωx the set of elements over
which the integration is carried out to compute the coefficient corresponding to the
column indices. The admissibility condition can be written as

min(diam Ωx0 ,diam Ωx)≤ η ·dist(Ωx0 ,Ωx) (7)

where η > 0 is a parameter influencing the number of admissible blocks on one
hand and the convergence speed of the adaptive approximation of low rank blocks
on the other hand [Borm, Grasedyck and Hackbush (2003)].

Since the actual diameters and the distance between two clusters are generally time
consuming to be exactly computed, the condition is usually assessed with respect
to bounding boxes parallel to the reference axes [Giebermann (2001); Grasedyck
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(2005)]. In this case Ωx0 and Ωx in the equation (7) are replaced by the boxes Qx0

and Qx. The bounding box clustering technique adopted in the present work is
generally used for its simplicity, although it produces non-optimal partitions that
can be improved by suitable procedures, as will illustrated next. Other clustering
techniques able to produce better initial partitions have been proposed in the litera-
ture. The construction using the principal component analysis [Bebendorf (2006)]
significantly improves the quality of the initial partition.

The algorithm is graphically illustrated in the figure 2. Starting from the root (the
entire matrix), each block is subdivided into four sub-blocks until either the ad-
missibility condition is satisfied or the block is sufficiently small that it cannot be
further subdivided. The clear grey boxes represent low rank blocks while the dark
grey boxes are the full rank ones.

Figure 2: A schematic presentation of the first three iterations that form the block
tree.

An admissible block can be represented in low rank format. Such representa-
tion constitutes an approximation of the discrete integral operator based, from
the analytical point of view, on a suitable expansion of the kernel of the contin-
uous integral operator [Bebendorf and Rjasanow (2003); Tyrtyshnikov (1996);
Goreinov, Tyrtyshnikov and Zamarashkin (1997); Bebendorf (2000)]. This ex-
pansion, and consequently the existence of low rank approximants, is based on
the asymptotic smoothness of the kernel functions [Bebendorf and Grzhibovskis
(2006)], i.e. on the fact that the kernels u∗(x′,x) and q∗(x′,x) are singular only
when x′ = x. Asymptotic smoothness represents a sufficient condition for the ex-
istence of low rank approximates. For more detailed information about asymptotic
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smoothness the readers are referred to the works [Bebendorf and Rjasanow (2003);
Bebendorf (2000)].

Let C be an m×n admissible block. It admits the low rank representation

C 'Ck = A ·BT =
k

∑
i=1

ai ·bT
i (8)

where A is of order m× k and B is of order n× k, with k being the rank of the
new representation. The approximating block Ck satisfies the relation ‖C−Ck‖F ≤
ε‖C‖F , where ‖·‖F represents the Frobenius norm and ε is the set accuracy. Some-
times it is useful to represent the matrix using the alternative sum representation,
where ai and bi are the i− th columns of A and B, respectively. The approximate
representation allows storage savings with respect to the full rank representation
and speeds up the matrix-vector product [Grasedyck and Hackbusch (2003)].

The low rank blocks are built by computing and storing only some of the entries
of the original blocks. Such entries allow for computation of the columns ai and
bi of the representation [8] through suitable algorithms, known as adaptive cross
approximation (ACA) [Bebendorf and Rjasanow (2003); Bebendorf (2000)]. The
ACA algorithms allow to reach the selected collocation matrix accuracy εc adap-
tively. The stopping criterion is based on the assessment of the convergence of
the approximating block in terms of the Frobenius norm [Bebendorf and Rjasanow
(2003); Bebendorf (2000)]. Once the k− th couple (ak,bk) has been computed the
Frobenius norm of the approximation can be computed by the following recursive
formula

‖Ck‖2
F = ‖Ck−1‖2

F +2
k−1

∑
i=1

(aT
k ai)(bT

i bk)+‖ak‖2
F‖bk‖2

F (9)

where ak and bk represent the column and row computed at the k− th iteration. A
suitable stopping criterion can be expressed as

‖ak‖F‖bk‖F ≤ ε‖Ck‖F (10)

that prescribes to stop the iteration when the inequality is satisfied for a required
preset accuracy ε .

3.2 Boundary Conditions and Right Hand Side Setting

By applying the ACA, the actual setting of the final system for mixed boundary
condition problems requires some additional considerations. In this work differ-
ent types of boundary conditions are considered in such a way that rigid, soft and
absorbing surfaces can all be studied in order to simulate a real situation and to
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perform an eventual parametric analysis. An initial routine selects the matrix that
is calculated first based on the boundary conditions that are predominant for that
block. If the flux (or potential) is predominant then the matrix H (or G) is calcu-
lated first, otherwise, in the case the boundary condition are in terms of impedance,
the ACA algorithm is applied to both the matrices.

In order to speed up significantly the system solution of equation (4) the “Bloc-
kNode” pointer suggested by Benedetti, Aliabadi and Daví (2007) is used here.
The contributions of each block to the solving matrix A is stored in the BlockNode
pointer and calculated at each step as well as the contribution of the right hand side
vector that is, instead, stored in the global vector F to save memory.

The ACA algorithm is applied to one or both of the matrices G and H depending
upon the boundary conditions that are predominant for each block matrix. Partic-
ular care must be taken when not pure Dirichlet, Neumann or mixed Robin condi-
tions are applied. There may be four different cases:

a) BCs mainly in terms of flux (or potential) except for the kth value ex-
pressed in terms of potential (or flux).

As an example, one can consider that the boundary conditions are expressed in
terms of flux (the first block matrix calculated with ACA is H) and at the node k
is expressed in terms of potential. A routine replaces each kth value of each row
previously calculated with zero, adds the opposite in sign of the kth column of the
G block matrix and also adds a zero row with 1 at the kth element (see figure 3).

Figure 3: Substitution of the kth values of each row with zero, addition of the kth

column of the G block matrix and of a zero row with 1 at the kth element.

b) BCs mainly in terms of flux except for the kth value expressed in terms
of impedance.
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Here simply add the kth column of the G block matrix not yet calculated multiplied
by the artificial admittance ζ opposite in sign, and adds a zero row with 1 at the kth

element (see figure 4).

Figure 4: Addition of the kth column of the G block matrix multiplied by the artifi-
cial admittance ζ opposite in sign and of a zero row with 1 at the kth element.

c) BCs mainly in terms of potential except for the kth value expressed in
terms of impedance.

In this case multiply the kth row of the G block matrix (previously calculated) by the
artificial admittance ζ opposite in sign. Then another routine adds the kth column
of the H block matrix not yet calculated and a zero row with 1 at the kth element
(see figure 5).

Figure 5: Multiplication of the kth row of the G block matrix by the artificial ad-
mittance ζ opposite in sign, addition of the kth column of the H block matrix and
of a zero row with 1 at the kth element.
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d) BCs mainly in terms of impedance except for the kth value expressed
in terms of potential (or flux).

In this case the ACA algorithm acts earlier on the H block matrix. If the ACA
stop criterion is reached and the kth value is in terms of potential, the kth value of
each row calculated is set to zero. The ACA algorithm is finally applied to the G
block matrix whose columns are multiplied −ζ , and the kth elements of its rows
are divided by ζ (see figure 6).

Figure 6: Substitution of the kth values of each row with zero, addition of the
columns of the G block matrix multiplied by the artificial admittance opposite in
sign and of its rows where the kth elements are divided by ζ .

Regarding the setting up of the right hand side vector some additional considera-
tions are required as explained next. Recalling the ACA algorithm, the routine that
calculates the ith row of one of the block matrices G or H also calculates the ith row
of the other block matrix. Thus, the right hand side contribution of that row for the
block matrix analyzed is directly calculated.

Now, there are two main cases to analyze.

• BCs mainly in terms of flux (or potential).

Here, one may need to apply the ACA on the matrix G (or H). In fact, if all the
boundary conditions are zero, there is no need to calculate the contribution of the
block matrix to the final right hand side and another block matrix can be analyzed.
Moreover, owing to the fact that the number of entries needed for the ACA is,
in most the cases, equal for both the block matrix G and H, may be convenient
to calculate the contribution to the right hand side with a standard procedure (see
appendix).

• BCs mainly in terms of admittance.
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Once the ACA as been applied to the block matrix H, the possible contribution to
the right hand side vector F, due to the presence of the kth value of the boundary
conditions expressed in terms of potential, is easily calculated by multiplying each
column of the ACA to the kth value of each row with opposite in sign. Finally,
if the ACA algorithm applied to the block matrix G is also successful reached,
the contribution to the right hand side of the eventual presence of the boundary
condition expressed in terms of flux is clearly calculated.

3.3 System Solution

Once the hierarchical representation of the collocation matrix has been established,
the solution of the system can be computed through iterative solvers with or without
preconditioners. When the condition number is high it slows down the convergence
rate, as is often the case when dealing with BEM systems, a preconditioner can be
computed taking full advantage of the representation in hierarchical format. For
Ay = F system a left preconditioner is an easily invertible matrix M such that the
condition number of the system M−1Ay = M−1F results lower than the original
one, improving thus the convergence rate of the iterative solver.

In the present work a GMRES iterative solver [Saad and Schultz (1986)] without
and with preconditioner are used for the solution of the system of equations. The
method, proposed by Saad and Schultz (1986) and further developed by many other
author, is a Krylov based iterative method for the numerical solution of a system of
linear equations, as in equation (4). The Arnoldi iteration is used to form a basis
for the Krylov subspace.

In all the on-line complex GMRES routines available for FORTRAN, the genera-
tion of the whole matrix A is needed. In the present work the whole matrix is never
calculated, resulting in a reduction in memory requirements. The routine adopted
is an O(N) procedure.

Internal Points

The ACA algorithm can also be used to speed up the calculation of potential and
particle velocity at internal points from the boundary values of potential and flux.
To achieve this, a cluster tree for the internal points is generated following the pro-
cedure seen at the beginning of this section. Thus the hierarchical tree is generated
by considering the columns and the rows of the block matrices H, G, H

′
and G

′
(see

equations (5) and (6)). The ACA procedure is applied four times to all the matrices.
The name of such a pointer, the values of the parameters η and cardinality remain
unchanged and hence the same routines as for the boundary points can be applied.
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4 Numerical Results

In order to demonstrate the efficiency of the proposed method a series of numeri-
cal tests have been performed. Comparisons with the standard BEM with a direct
solver [Dominguez (1993)], with LMS Virtual.Lab [LMS International (2008)]
and with Fast Multipole Method (FMM) for acoustics [FastBEM Acoustics (R)]
shows that the formulation presented here can significantly reduce the system so-
lution time. All of the numerical simulations were executed on a Xeon(TM) CPU
3.00GHz processor with 2GB of RAM.

In all the simulations performed the value of the parameter η=10 and the cardinality
is set to 22. These values are found to give the best performances. Moreover, the
value of the cardinality is quite restricted. In fact, as this value decreases, the
stopping criterion of equation (10) is not successful for many low rank blocks,
rather, it increases the CPU time due to bigger full block dimensions. The value of
the parameter η can be modified between 1 and 1000 without loss of accuracy and
resulting in a 5% CPU time acceleration. Furthermore, the optimum value of this
parameter depends upon the geometry and the elements of the mesh.

Concerning the storage memory requirements of the matrix A, figure 7 shows the
block-wise structure of the collocation matrix as generated by the ACA algorithm
for a pulsating sphere constituted with 6100 elements for four different values of η

(1, 2, 4 and 10). The tone of grey is proportional to the ratio between the memory
required for the low rank representation and the memory required for a standard
format. Hence black blocks stand for the full rank block matrix, while almost
white blocks are those for which the ACA compression works better.

RABEM vs. SBEM vs. LMS

The problem of the sound radiated by a pulsating sphere with radius, wave number
k and uniform radial velocity all equal to unity is investigated. The acoustic wave
velocity and the medium density are set equal to unity. The three-dimensional
scalar wave propagation problems using constant boundary elements [Dominguez
(1993)], will be referred to as “SBEM”, and is used for comparison purposes. Table
1 compares the two codes speed up ratio (defined as CPU time of SBEM divided by
CPU time of RABEM) for setting up the system solution, finding the solution and
for the total time for eight different mesh accuracies. The percentage error in all the
simulations is less than 0.02 %. Comparison are also made with the commercial
code LMS Virtual.Lab as shown in table 1.

The comparison with SBEM demonstrates that the RABEM formulation is effective
in the population of the linear system when more than 2000 degrees of freedom
mesh is studied. However, the GMRES routine is effective even considering a
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Figure 7: Block-wise representation of the ACA generated matrix for η = 1, η = 2,
η = 4 and η = 10.

limited number of elements.

Comparison of RABEM and LMS for the rigid sphere (same medium characteristic
as seen in the first example scattered by a plane waves with unit amplitude and zero
phase at the origin) is shown in figure 8.

It must be pointed out that no attempt has been made to optimize the general BEM
routines of integration etc. in the RABEM and they remain the same as in the
standard BEM (SBEM).

Internal Points To demonstrate the speed up that can be achieve when the ACA
is applied at selected internal points, the CPU time of the RABEM and standard
code is compared for the 3240 dof pulsating sphere and for four sets of internal
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Table 1: Speed up ratio between the RABEM, SBEM and LMS.

SBEM/RABEM LMS/RABEM
dof Setting up System Solution Solver Total Total
646 0.8 107.9 2.2 0.88
1126 1.0 180.6 3.6 0.45
2112 1.5 611.6 7.8 0.31
3240 2.0 1669.9 18.3 0.33
4764 2.6 44098.7 44.6 0.57
6100 3.2 5562.1 55.4 0.93
8488 4.1 13165.7 132 1.5
10340 5.0 18513.2 175.7 1.8
20232 - - - 3.5
28194 - - - 10.3

Figure 8: Speed up ratio for a scattered rigid sphere by a plane wave -
LMS/RABEM.

points: 546, 2184, 4368 and 10374. Once again the speed up ratio is defined as the
ratio of CPU times obtained by SBEM over RABEM. Figure 9 shows the resulting
acceleration during the procedure for calculating the internal point potential. The
RABEM CPU time required depends upon the location of such internal points as
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well as the dof of the boundary mesh, where as the standard procedure is invariant
to the location, while the rank of the ACA decreases as the points are further away.

Figure 9: Speed up ratios relates to four different groups of internal points for a
pulsating sphere discretised with 3240 constant triangular elements.

Frequency Variation

The variation of the computational time with respect to varying frequency is studied
in the problem of pulsating sphere. The example tested in the first above (with the
same boundary conditions) is studies for 8 angular frequencies (1, 2, 4, 8, 12, 16,
20, 30 Hz/rad). The mesh has 10340 constant triangular elements. Figure 10 shows
the ratios obtained by dividing the CPU times for different angular frequencies
with the CPU time for the angular frequency of 1 Hz/rad. As evident the CPU time
increases almost linearly.

A Row of Seat in an Aircraft Cabin

Another example to which the RABEM has been applied is a row of three seats
of an aircraft cabin as shown in figure 11. The surface of the seats have been di-
vided into 27,284 constant triangular elements. The maximum extensions along
the x, y and z axis are 694, 1563 and 960 millimeters, respectively. The sizes of
the smallest and the largest triangles are 3.58E-03 and 2.38E-02 millimeter, re-
spectively, so the maximum frequency that can be applied is around 1.3-1.5 kHz.
In the simulation performed all the surfaces has been set as hard and a monopole
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Figure 10: CPU time ratios for different angular frequencies for a pulsating sphere
meshed with 10340 triangular elements.

source with unit complex potential amplitude has been inserted at the center of the
left seat with a distance of 7.4 and 21.8 cm from the cushion and the back of the
seat, respectively. The speed up ratio related to the Fast Multipole Method FMM
and for the RABEM without preconditioner (RABEM) and with a block diago-
nal preconditioner (RABEMpdb) are displayed in the figure 12 for nine different
frequencies (100, 200, 400, 600, 800, 900, 1000, 1100 and 1200 Hz). As evident
RABEM is faster than the FMM code [FastBEM Acoustics (R)] for higher frequen-
cies. In particular for frequencies lower than 400Hz FastBEM is slightly faster, but
as the frequency increases the speed up ratio grows up almost linearly up to 2.6 for
1200Hz. In this example the RABEMpdb is never faster than RABEM.

The same geometry has been simulated by Virtual.Lab LMS for a frequency of
100Hz. The RABEM code solved it 4.2 times faster than LMS.

Finally, in figure 13 the solution in terms of real part of the potential for the 100Hz
frequency is displayed.

Dassault Falcon Airplane

The simulations of a 47998 elements mesh (see figure 14) of a model representing
the Dassault Falcon airplane is presented. The total length of the aircraft is 18.5m
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Figure 11: Surface of an airplane seat row meshed with 27,284 triangular elements.

Figure 12: Comparison between the unpreconditioned, and block diagonal precon-
ditioned GMRES for an airplane seat row meshed with 27,284 triangular elements.
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Figure 13: Real part of the potential for the aircraft seats when a monopole acts at
100Hz.

and the wing extension is 22.46m. The highest frequency applied was 180 Hz.
The sizes of the smallest and the largest triangles are 1.02E-02 and 0.23millimeter,
respectively, so the maximum frequency that can be applied is around 185 Hz. In
the simulation performed all the surfaces has been set as hard and two monopole
sources with unit complex potential amplitude have been inserted just in front of
the compressors of two engines.

Figure 14: 47,998 triangular elements Dassault Falcon mesh.
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Figure 15 shows the sound pressure level for 25Hz.

Figure 15: Sound pressure level at 25Hz for a Falcon geometry.

5 Conclusions

A new Hierarchical ACA GMRES BEM fast solver (RABEM) for 3D acoustic
numerical simulations has been presented. The new approach is shown to result
in significant savings in both storage and solution time. The proposed method is
shown to speed up the solution time as much as 18 times the commercial code
LMS. The solutions time are shown to be sensitive to the frequency with higher
frequencies requiting more solution times. The tests demonstrated that the new
solver can achieve CPU times of almost O(N) for low frequency and O(N logN) for
high frequency problems.
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Appendix

In this appendix a possible procedure to optimize the calculation of the right hand
side vector is described.

In order to calculate the minimum number of terms four different alternatives which
depend upon the boundary conditions need to be analyzed.
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1. The values of the boundary conditions are all zero;

2. Application of ACA algorithm a second time;

3. Population of the missing columns;

4. Population of the missing rows.

The first case occurs when all the boundary conditions are zero. Thus there is no
need to calculate the contribution of the block matrix to the final right hand side
and another block matrix can be analyzed. The last three options are to optimize
the number of the elements of the matrices that still need to be calculated.

Owing to the fact that the number of entries needed for ACA is, in most the cases,
equal for both the block matrix G and H, the number of elements that must be
calculated is

NII
ACA = NI

ACA×m+NI
ACA×n (11)

where NI
ACA is the number of rows (or columns) calculated in the first application

of the ACA.

Moreover, in the case that the non-zero boundary conditions are few, say NzBC, only
selected columns of the original block matrix are needed and the total number of
elements to be calculated is

Ndir1 = NzBC×m (12)

The final option corresponds to calculating the remaining contribution of the right
hand side block matrix directly and depends on the following numbers

Ndir2 = n× (m−NI
ACA) (13)

In conclusion, if the first alternative is not verified, the lower number between NII
ACA,

Ndir1 and Ndir2 drives the choice for calculating the right hand side contribution of
each block.


