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Derivation of a Bilayer Model for Shallow Water
Equations with Viscosity. Numerical Validation

G. Narbona-Reina1, J.D.D. Zabsonré 2,
E.D. Fernández-Nieto1 and D. Bresch 3

Abstract: In this work we present a new two-dimensional bilayer Shallow-Water
model including viscosity and friction effects on the bottom and interface level. It
is obtained following [Gerbeau and Perthame (2001)] from an asymptotic analysis
of non-dimensional and incompressible Navier-Stokes equations with hydrostatic
approximation. In order to obtain the viscosity effects into the model we must have
into account a second order approximation. To evaluate this model we perform
two numerical tests consisting of an internal dam-break problem for both, one and
two dimensional cases. In the first one we make a comparison between the model
obtained and the Navier-Stokes simulation.

Keywords: Shallow Water equations, bilayer models, viscosity, friction, capilla-
rity, Finite Volume methods.

1 Introduction

The goal of this paper is the derivation of a new viscous bilayer Shallow Water
model. We also present some numerical test with the aim of checking its validity.
So we shall compare the solution obtained by this new model with the Navier-
Stokes solution.

The Shallow Water (SW) equations are usually used to simulate a large number of
geophysical and engineering applications as ocean circulation, coastal areas, rivers,
etc. But sometimes these equations are not sufficient to model specific situations
as, for instance, the flow involved in the Strait of Gibraltar. In this physical domain
two layers of water with different properties are founded, the denser Mediterranean
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and the Atlantic water. So in this case we must consider a model of at least two
layers. For this purpose we can find several derivations of one and two layers SW
models to tackle these kind of situations in one and two dimensional case.

Usually there are two effects that are neglected in Shallow Water models: the vis-
cosity and the Coriolis force. On the one hand it is important to remark that the
viscous effects are essential to obtain an accurate approximation in dam-breaks
problems or hydraulic jumps situations, as we can see in [Gerbeau and Perthame
(2001); Marche (2005)]. On the other hand the Coriolis force plays an important
role in geophysical fluid dynamics applications. To include this force in equations
does not add any meaningful difficulty for the deduction of the model. Nevertheless
its effects are of major importance in these kind of applications, see for example
[Lucas (2007); Wacher and Givoli (2006)]. The objective is to find a bilayer model
as complete as possible that takes the Coriolis force into consideration, includes the
viscosity effect, friction -at the bottom and at the interface- and tension effect -on
the surface and the interface-.

The pioneer work performed in [Gerbeau and Perthame (2001)] has been consi-
dered as a basis to develop the deduction of our model. In this work a viscous
Shallow Water model is obtained for the one-dimensional one-layer case by per-
forming the asymptotic analysis of the Navier-Stokes equations where friction ef-
fect at the bottom has been taken into account. When only first order approximation
is considered the viscous terms doesn’t appear in the equations, so moving on to the
second order is needed to get the viscosity effects. The authors also put in evidence
the difference between two approximations through an application to a dam-break
problem.

In [Marche (2005)], a viscous one layer 2D Shallow-Water system is derived.
The originality of that work is the introduction of a surface-tension term through
the capillary effects at the free surface and quadratic friction term at the bottom.
These terms have been useful to establish the existence of global weak solutions in
[Bresch and Desjardins (2003)].

With regard to bilayer models we must mention the work performed in [Peybernes
(2006)] and those developed in [Audusse (2005)].

In [Peybernes (2006)], it is deduced a bilayer viscous Shallow-Water model which
takes into account the friction at the interface. But instead of asymptotic analysis
development, several simplifications are used in the boundary conditions to deduce
the final system. The energy of the system is also obtained under restrictive hy-
pothesis on the data.

In [Audusse (2005)], a derivation of a multi-layer Shallow-Water model is per-
formed to extend the case of one layer established in [Gerbeau and Perthame (2001)].
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In this work, using the hydrostatic pressure and the kinematic boundary conditions,
the author derives momentum equations of the form:

∂t

∫ Hα

Hα−1

udz+∂x

∫ Hα

Hα−1

u2dz+ghα∂xh =

=
ν0

ε
∂zu(Hα(t,x))− ν0

ε
∂zu(Hα−1(t,x))

and use at the leading order a finite difference method with respect to the vertical
variable when the equation is an interface equation to deduce the friction term:

µ∂zu(Hα) = µ
Uα+1−Uα

hα+1 +hα

. (1)

Another works related to the derivation of 2D Shallow-Water model can be find in
[Ferrari and Saleri (2004)] and in [García Rodríguez (2005)].

In [Ferrari and Saleri (2004)] the authors include the atmospheric pressure in the
derivation. In [García Rodríguez (2005)] a non-viscous two-layer Shallow Water
system is deduced following [Gerbeau and Perthame (2001)]. Linear friction con-
ditions have been taken into account on the interface and on the bottom.

The deduction of the bilayer model developed in the present work has been obtained
by integrating the three dimensional Navier-Stokes equations with Coriolis force
and by using the asymptotic analysis to get the viscosity effects. We have also
considered the friction effects on the surface and at the bottom and the tension
effect on the surface and at the interface.

We would like to remark that the friction term usually carries some difficulties
in its treatment (both in the model deduction and for the proof of the existence of
solution). So we can find several definitions to avoid these troubles. Often one takes
non linear friction terms, for example in [Song, McFarland, Bergman, and Vakakis
(2005)] the tangential displacement has been considered in the definition of the
friction traction or a more complex expression can be found in [Ozaki, Hashiguchi,
Okayasu, and Chen (2007)] where a microscopic study has been tackled to set
it. In [Marche (2005)] a non linear friction under the form −γ|v|α v is considered
at the bottom. So, in a equivalent way we could define the interface friction as
−γ|v1− v2|(v1− v2).
In [Zabsonré and Narbona-Reina (2009)] we have performed the theoretical ana-
lysis of the model presented in this work, obtaining the existence of weak solutions.
In order to get it we have not been able to control the interface friction of quadratic
form, so we have defined

f ric(v1,v2) =−ξ B(h1,h2)(v1− v2), B(h1,h2) =
h1h2

ρ1
ρ2

h1 + ρ2
ρ1

h2
, (2)
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with ρi the density of each layer and ξ a positive constant. So to be in agreement
with these results we have considered in this paper the linear definition of the fric-
tion term (2).

The drag coefficient B is also used in [Ishii and Hibiki (2006)] and allows us to
control the friction term. Note that in [Chueshov, Raugel, and Rekalo (2005)] the
authors study a system of 3D Navier-Stokes equations in a two-layer thin domain
with an interface condition

(νi∂3ui
j− k(u1

j −u2
j))|x3=0 = 0 i, j = 1,2. (3)

This condition is the same kind condition appearing in the Primitive Equations of
the Coupled Atmosphere and Ocean which describes the atmosphere/ocean inte-
raction.

The paper is organized as follows: In Section 2 we develop the derivation of the
model. First we write the equations in non-dimensional variables, later we perform
the hydrostatic approximation to obtain the Shallow Water equations and finally we
study the asymptotic analysis of two layers. In the last part of the section we state
the final systems found and we include some remarks about them.

Section 3 is devoted to show some numerical test in which we notice the improve-
ment obtained in the solution when considering viscous Shallow Water model in
front of considering the first order one. In Test 1 we compare them with a so-
lution of the Navier-Stokes equations for an internal dam-break problem in one-
dimensional case. In the second test we present a 2D circular dam-break problem
comparing the solutions of the models deduced in this work.

2 Derivation of the bilayer viscous Shallow Water model

In this section we perform the derivation of the model proposed in this paper. We
start from the Navier-Stokes equations in a periodic domain D(t) ∈ R3.

We consider a two layer environment of inmiscible fluids including three boundary
regions. We assume that the bottom is defined by the function b(x), and we denote
by η1,2(t,x) the interface and the free surface is given by η(t,x). The vertical
direction is denoted by z and by x we denote a point in a domain χ ⊂ R2. So the
global domain is D(t) = D1(t)∪D2(t)∪Γb∪Γ1,2(t)∪Γs(t), being:

D1(t) = {(x,z) ∈ R3/x ∈ χ, b(x) < z < η1,2(t,x)};
D2(t) = {(x,z) ∈ R3/x ∈ χ, η1,2(t,x) < z < η(t,x)};
Γb = {(x,z) ∈ R3/x ∈ χ, z = b(x)};
Γ1,2 = {(x,z) ∈ R3/x ∈ χ, z = η1,2(t,x)};
Γs = {(x,z) ∈ R3/x ∈ χ, z = η(t,x)};

(4)
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From now on, subscript 1 will correspond to the layer located below and subscript
2 to those located on the top. We denote by h1(t,x) = η1,2(t,x)−b(x) the thickness
of the layer 1 and by h2(t,x) = η(t,x)−η1,2(t,x) the thickness of the second one.
See Fig. 1.
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Figure 1: Domain.

We consider ui = (vi,wi) the velocity of each layer, ρi the density, µi denote the
dynamic viscosity and pi is the pressure, for i = 1,2. With this notation, the Navier-
Stokes equations for each layer i = 1,2 state as:{

ρi∂tui +(ρiui∇)ui−div (σi)+2ρi
−→
Ω ×ui =−ρigez;

div (ui) = 0.
(5)

We have included the Coriolis force given by the term 2ρi
−→
Ω × ui where

−→
Ω =

Ω(0,cosθ ,sinθ), being θ the latitude. The stress tensor is defined as σi = 2µiD(ui)−
piId where D(u) = ∇u+∇⊥u

2 is the strain tensor. Finally g is the gravity constant. We
denote by subscript n the normal component and by τ the tangent component, that
is, d = dnn+dττ for all d ∈ R2. In order to obtain a well-posed system we impose
the following conditions on the boundaries:

• On the free surface z = η(t,x):

We assume the pressure to be constant. One usually neglect the atmospheric
pressure effect but here we have considered it. If we denote by ns the unit
normal vector to η(t,x) towards the increasing z and by κ the mean curvature
of the surface (κ = div (ns)), the tension effect on the surface is given by:

σ2 ·ns = α2κ ·ns, (6)
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being α2 constant.

Finally we impose the kinematic condition for the surface:

∂tη + v2 ·∇xη = w2. (7)

• At the interface z = η1,2(t,x):

First we consider the conditions related to the movement of the interface that
is advected by the two flows, i.e., the kinematic condition that we write as:

∂tη1,2 + vi ·∇xη1,2 = wi; i = 1,2. (8)

At the interface we consider the friction effects between the two layers and
the continuity of the tension force. These conditions concern the tangent and
normal components of the stress term respectively in the following sense. We
consider the friction term between the two layers with coefficient γ done by
−γ(u1−u2) , so we impose:

(σi ·n1,2)τ =−γ(u1−u2)τ ; i = 1,2. (9)

We now consider κ1,2 = div (n1,2) the mean curvature at the interface being
n1,2 the unit normal vector to Γ1,2 pointing from layer 1 to layer 2, so we
have:

(σ1 ·n1,2)n = (σ2 ·n1,2)n +((α1−α2)κ1,2 ·n1,2)n, (10)

being α1 constant.

• At the bottom z = b(x):

We consider a Navier condition with a friction coefficient α:

(σ1 ·nb)τ = α(u1)τ , (11)

and a no-penetration condition:

u1 ·nb = 0; (12)

being nb the unit normal vector to Γb pointing to the increasing z.

To obtain the model, first we shall write these equations under a non-dimensional
form, secondly we shall develop the vertical integration in each layer to obtain the
Shallow Water system. Finally we shall perform the asymptotic analysis studding
both first and second order approximations. Therefore, two models are proposed
depending if the viscous and friction terms are included or not.
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2.1 Dimensionless equations

Before changing equations to non-dimensional variables, we shall write the Navier-
Stokes equations and the boundary conditions in a explicit form. First we look at
the Coriolis term that reads:

~Ω×ui = Ω(wi cosθ − (vi sinθ)e2,vi sinθe1,−vi cosθe1). (13)

If we write the equations for each component of the velocity, we have:

ρi∂tvi +ρivi∇xvi +ρiwi∂zvi +2ρiΩ(wi cosθe1 +(vi)⊥ sinθ)−

−2µidiv x(Dx(vi))−µi∂
2
z vi−µi∇x(∂zwi)+∇x pi = 0, i = 1,2;

(14)

ρi∂twi +ρivi∇xwi +ρiwi∂zwi−2ρiΩvi cosθe1−µi∆xwi−

−µi∂z(div xvi)−2µi∂
2
z wi +∂z pi = ρig, i = 1,2;

(15)

and

div xvi +∂zwi = 0 i = 1,2. (16)

Now, we explicitly write the boundary conditions concerning tension and friction
terms using the definition of the stress tensor when needed.

• Free surface. We take the normal vector ns =
1√

1+(∇xη)2

(
−∇xη

1

)
, so

the tension condition state at follows:
(−2µ2Dx(v2)+ p2 +α2κ)∇xη + µ2(∇xw2 +∂zv2) = 0;

−µ2(∇xw2 +∂zv2)∇xη +2µ2∂zw2− p2−α2κ = 0.
(17)

• Interface. In this case the normal vector is

n1,2 =
1√

1+(∇xη1,2)2

(
−∇xη1,2

1

)
,

obtaining for the tension condition:

(2µ1Dx(v1)− p1)|∇xη1,2|2−2µ1(∇xw1 +∂zv1)∇xη1,2+

+2µ1∂zw1− p1 = (2µ2Dx(v2)− p2 +(α1−α2)κ1,2)|∇xη1,2|2−

−µ2(∇xw2 +∂zv2)∇xη1,2 +2µ2∂zw2− p2 +(α1−α2)κ1,2.

(18)
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For the friction condition we must consider the tangent vector ~τ = (τ1,τ2),
that we define as follows:

τ1 =
1

|∇xη1,2|

(
∇⊥x η1,2

0

)
, τ2 =

1√
|∇xη1,2|2 + |∇xη1,2|4

(
−∇xη1,2

−|∇xη1,2|2
)

.

(19)

So, the conditions for i = 1,2 are:

1√
1+ |∇xη1,2|2

µi(∇xwi +∂zvi) =−γ(v1− v2);

1√
1+ |∇xη1,2|2

(
−2µiDx(vi)∇xη1,2 + µi(∇xwi +∂zvi)(1−|∇xη1,2|2)+

+2µi∂zwi∇xη1,2
)

= γ((v1− v2)+(w1−w2)∇xη1,2).
(20)

• Bottom. In the same way, we consider the normal vector

nb =
1√

1+ |∇xb|2

(
−∇xb

1

)
. So for the no-penetration condition we ob-

tain:

−v1∇xb+w1 = 0. (21)

For the other one we take~τ = (τ1,τ2) being

τ1 =
1
|∇xb|

(
∇⊥x b

0

)
, τ2 =

1√
|∇xb|2 + |∇xb|4

(
−∇xb
−|∇xb|2

)
, (22)

and the condition state as:

1√
1+ |∇xb|2

µ1(∇xw1 +∂zv1) = αv1; (23)

1√
1+ |∇xb|2

(
2µ1Dx(v1)∇xb−µ1(∇xw1 +∂zv1)(1−|∇xb|2)−

−2µ1∂zw1∇xb
)

=−α(v1 +w1∇xb).
(24)

We introduce now a small parameter ε = H
L where H and L are two characteris-

tics dimensions along the edges OZ and OX respectively. We also introduce some
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others characteristic dimensions: V for the horizontal velocity, W = εV for the ver-
tical component of the velocity and P = V 2 for the pressure. Next, we consider the
following dimensionless variables, we use the overline notation to denote them:

x = Lx̄ z = Hz̄
vi = V vi wi = εV wi

t =
L
V

t̄ pi = V 2 pi

Rei =
V L
µi

Ro =
V

2LΩ
Fr =

V√
gH

(25)

γ = V γ α = V α

κ =
ε

L
κ κ1,2 =

ε

L
κ1,2

αi =
V 2L

ε
αi ; i = 1,2

b = Hb.

(26)

where we have denoted by Re the Reynolds number, Ro the Rossby number and Fr
the Froude number.

Thus, the equations get as follows (we drop the “overline” notation for the sake of
clarity):

ρi∂tvi +ρivi∇xvi +ρiwi∂zvi +ρi
1

Ro
εwi cosθe1 +ρi

1
Ro

(vi)⊥ sinθ−

− 2
Rei

div x(Dx(vi))−
1

Rei

1
ε2 ∂

2
z vi−

1
Rei

∇x(∂zwi)+∇x pi = 0;
(27)

ρi∂twi +ρivi∇xwi +ρiwi∂zwi−ρi
1
ε

1
Ro

vi cosθe1−
1

Rei
∆xwi−

− 1
ε2

1
Rei

∂z(div xvi)−2
1
ε2

1
Rei

∂
2
z wi +

1
ε2 ∂z pi =−ρi

1
ε2

1
Fr2 ;

(28)

div xvi +∂zwi = 0. (29)

In the same way the boundary conditions must be modified, we specify them next.
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• Conditions at the free surface:

∂tη + v2 ·∇xη = w2; (30)

(
−2

1
Re2

Dx(v2)+ p2 +α2κ

)
∇xη +

1
Re2

∇xw2 +
1
ε2

1
Re2

∂zv2 = 0; (31)

(
−ε

2 1
Re2

∇xw2−
1

Re2
∂zv2

)
∇xη +2

1
Re2

∂zw2− p2−α2κ = 0. (32)

• Conditions at the interface:

∂tη1,2 + v2 ·∇xη1,2 = w2; (33)

∂tη1,2 + v1 ·∇xη1,2 = w1; (34)

−
(

2ε2 1
Re1

∇xw1 +2
1

Re1
∂zv1

)
∇xη1,2 +2

1
Re1

∂zw1− p1 =

=−
(

2ε2 1
Re2

∇xw2 +2
1

Re2
∂zv2

)
∇xη1,2 +2

1
Re2

∂zw2− p2+

+(α1−α2)κ1,2;

(35)

1
Rei

(∇xwi +
1
ε2 ∂zvi) =−1

ε
γ(v1− v2)

√
1+ ε2|∇xη1,2|2; (36)

−2
1

Rei
Dx(vi)∇xη1,2 +

1
Rei

(∇xwi +
1
ε2 ∂zvi)(1− ε

2|∇xη1,2|2)+

+2
1

Rei
∂zwi∇xη1,2 =

=
1
ε

γ((v1− v2)+ ε
2(w1−w2)∇xη1,2)

√
1+ ε2|∇xη1,2|2.

(37)
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• Conditions at the bottom:

−v1∇xb+w1 = 0; (38)

1
Re1

(∇xw1 +
1
ε2 ∂zv1) =

1
ε

α v1

√
1+ ε2|∇xb|2; (39)

2
1

Re1
Dx(v1)∇xb− 1

Re1
(∇xw1 +

1
ε2 ∂zv1)(1− ε

2|∇xb|2)−

−2
1

Re1
∂zw1∇xb =−α

1
ε
(v1 + ε

2w1∇xb)
√

1+ ε2|∇xb|2.
(40)

2.2 Hydrostatic approximation

We assume ε to be small and we take the formal expression of the system at O(ε2),
keeping the terms of order zero and one. Thus, the hydrostatic system state as
follows:

ρi∂tvi +ρidiv x(vi⊗ vi)+ρi∂z(viwi)+ ερi
1

Ro
wi cosθe1 +ρi

1
Ro

(vi)⊥ sinθ

− 2
Rei

div x(Dx(vi))−
1
ε2

1
Rei

∂
2
z vi−

1
Rei

∇x(∂zwi)+∇x pi = 0;
(41)

−ερi
1

Ro
vi cosθe1−

1
Rei

∂z(div xvi)−2
1

Rei
∂

2
z wi +∂z pi =−ρi

1
Fr2 ; (42)

div xvi +∂zwi = 0. (43)

And boundary conditions:

• Conditions at the free surface:

∂tη + v2∇xη = w2; (44)

(
−2

1
Re2

Dx(v2)+ p2 +α2κ

)
∇xη +

1
Re2

∇xw2 = 0; (45)
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∂zv2 = O(ε); (46)

− 1
Re2

∂zv2∇xη +2
1

Re2
∂zw2− p2−α2κ = 0. (47)

• Conditions at the interface:

∂tη1,2 + v2 ·∇xη1,2 = w2; (48)

∂tη1,2 + v1 ·∇xη1,2 = w1; (49)

−2
1

Re1
∂zv1∇xη1,2 +2

1
Re1

∂zw1− p1 =

=−2
1

Re2
∂zv2∇xη1,2 +2

1
Re2

∂zw2− p2 +(α1−α2)κ1,2;
(50)

1
Rei

∂zvi = ε f ric(v1,v2); (51)

−2
1

Rei
Dx(vi)∇xη1,2 +

1
Rei

(∇xwi +
1
ε2 ∂zvi)+2

1
Rei

∂zwi∇xη1,2−

− 1
Rei

∂zvi|∇xη1,2|2 =−1
ε

f ric(v1,v2).
(52)

Where we have denoted by f ric(v1,v2) = −γ(v1− v2) the friction term bet-
ween the two layers.

• Conditions at the bottom:

−v1∇xb+w1 = 0; (53)
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1
Re1

∂zv1 = εα v1; (54)

2
1

Re1
Dx(v1)∇xb− 1

Re1
(∇xw1 +

1
ε2 ∂zv1)+

1
Re1

∂zv1|∇xb|2−

−2
1

Re1
∂zw1∇xb =−1

ε
α v1.

(55)

2.3 Shallow Water system and asymptotic analysis

To obtain the Shallow Water equations, we assume that the height is small with
respect to the length of the domain, that is, ε � 1. We first integrate the equations
for each layer. Then we shall perform the asymptotic analysis of the system by
introducing an asymptotic regime hypotheses over the physical data.

We shall obtain the system at first order, but we will must analyze the second order
to obtain a system with viscosity.

We first perform the integration of the layer 1.

We want to obtain the pressure value, so from equation (42) for i = 1:

∂z p1 =−ρ1
1

Fr2 + ερ1
1

Ro
cosθv1e1 +

1
Re1

∂z(div xv1)+2
1

Re1
∂

2
z w1. (56)

To get p1, we integre this equations from z to η1,2, with z ∈ (b,η1,2),

p1(z)− p1(η1,2) =−ρ1
1

Fr2 (z−η1,2)+ ερ1
1

Ro
cosθe1

∫ z

η1,2

v1dz+

+
1

Re1
(div xv1−div xv1|z=η1,2

)+2
1

Re1
(∂zw1−∂zw1|z=η1,2

).
(57)

By using the divergence free condition we obtain the following expression for p1:

p1(z) = p1(η1,2)−ρ1
1

Fr2 (z−η1,2)+ ερ1
1

Ro
cosθe1

∫ z

η1,2

v1dz−

− 1
Re1

(div xv1−div xv1|z=η1,2
).

(58)

Now, we integrate the system equations from b to η1,2. For the equation (43) and
using conditions (49) and (53), we have:

∂tη1,2 +div x

∫
η1,2

b
v1dz = 0. (59)
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If we integrate the equation for the horizontal velocity (41), and we use the condi-
tion (49) it gives:

ρ1∂t

∫
η1,2

b
v1dz+ρ1div x

∫
η1,2

b
(v1⊗ v1)dz+ ερ1

1
Ro

cosθe1

∫
η1,2

b
w1dz+

+ρ1
1

Ro
sinθ

∫
η1,2

b
(v1)⊥dz−2

1
Re1

div x

∫
η1,2

b
Dx(v1)dz+∇x

∫
η1,2

b
p1dz+

+
1
ε2

1
Re1

∂zv1|z=b +
1

Re1
∇xw1|z=b− p1(η1,2)∇xη1,2+

+2
1

Re1
Dx(v1)|z=η1,2

∇xη1,2−
1
ε2

1
Re1

∂zv1|z=η1,2
− 1

Re1
∇xw1|z=η1,2

−

−2
1

Re1
Dx(v1)|z=b∇xb+ p1(b)∇xb = 0.

(60)

Due to condition (52), we can write

2
1

Re1
Dx(v1)|z=η1,2

∇xη1,2−
1
ε2

1
Re1

∂zv1|z=η1,2
− 1

Re1
∇xw1|z=η1,2

=

=
1
ε

f ric(v1,v2)+2
1

Re1
∂zw1|z=η1,2

∇xη1,2−
1

Re1
∂zv1|z=η1,2

|∇xη1,2|2.

(61)

And thanks to condition (55), we have

−2
1

Re1
Dx(v1)|z=b∇xb+

1
ε2

1
Re1

∂zv1|z=b +
1

Re1
∇xw1|z=b =

=
1
ε

α v1|z=b +
1

Re1
∂zv1|z=b|∇xb|2−2

1
Re1

∂zw1|z=b∇xb.
(62)

So, we get for the first layer the following equation:

ρ1∂t

∫
η1,2

b
v1dz+ρ1div x

∫
η1,2

b
(v1⊗ v1)dz+ ερ1

1
Ro

cosθe1

∫
η1,2

b
w1dz+

+ρ1
1

Ro
sinθ

∫
η1,2

b
(v1)⊥dz−2

1
Re1

div x

∫
η1,2

b
Dx(v1)dz+∇x

∫
η1,2

b
p1dz−

−p1(η1,2)∇xη1,2 + p1(b)∇xb+
1

Re1
(2∂zw1−∂zv1∇xη1,2)|z=η1,2

∇xη1,2−

− 1
Re1

(2∂zw1−∂zv1∇xb)|z=b∇xb+
1
ε

f ric(v1,v2)+
1
ε

α v1|z=b = 0.

(63)

Now, we calculate the integration for the upper layer in the same way that for layer
one. From equation (42) for i = 2 we have:

∂z p2 =−ρ2
1

Fr2 + ερ2
1

Ro
cosθe1v2 +

1
Re2

∂z(div xv2)+2
1

Re2
∂

2
z w2. (64)
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We integrate this equations from z to η with z ∈ (η1,2,η) to obtain the value of p2,
we have also used the condition (47):

p2(z) =−ρ2
1

Fr2 (z−η)− ερ2
1

Ro
cosθe1

∫
η

z
v2−

1
Re2

(div xv2|z=η +div xv2)−

− εα2κ. (65)

Integrating from η1,2 to η the divergence equation, we obtain:

∂t(η−η1,2)+div x

∫
η

η1,2

v2 = 0. (66)

Now, we integrate equation (41):

ρ2∂t

∫
η

η1,2

v2dz+ρ2div x

∫
η

η1,2

(v2⊗ v2)dz+ ερ2
1

Ro
cosθe1

∫
η

η1,2

w2dz+

+ρ2
1

Ro
sinθ

∫
η

η1,2

(v2)⊥dz−2
1

Re2
div x

∫
η

η1,2

Dx(v2)+∇x

∫
η

η1,2

p2dz+

+2
1

Re2
Dx(v2)|z=η∇xη− 1

Re2
∇xw2|z=η − p2(η)∇xη−

−2
1

Re2
Dx(v2)|z=η1,2

∇xη1,2 +
1
ε2

1
Re2

∂zv2|z=η1,2
+

1
Re2

∇xw2|z=η1,2
+

+p2(η1,2)∇xη1,2 = 0.

(67)

We use conditions (52) and (45) to get:

−2
1

Re2
Dx(v2)|z=η1,2

∇xη1,2 +
1
ε2

1
Re2

∂zv2|z=η1,2
+

1
Re2

∇xw2|z=η1,2
=

=−1
ε

f ric(v1,v2)−2
1

Re2
∂zw2|z=η1,2

∇xη1,2 +
1

Re2
∂zv2|z=η1,2

|∇xη1,2|2
(68)

and

2
1

Re2
Dx(v2)|z=η∇xη− 1

Re2
∇xw2|z=η − p2(η)∇xη = α2κ∇xη . (69)
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So the equation for the second layer state as follows

ρ2∂t

∫
η

η1,2

v2dz+ρ2div x

∫
η

η1,2

(v2⊗ v2)dz+ ερ2
1

Ro
cosθe1

∫
η

η1,2

w2dz+

+ρ2
1

Ro
sinθ

∫
η

η1,2

(v2)⊥dz−2
1

Re2
div x

∫
η

η1,2

Dx(v2)+∇x

∫
η

η1,2

p2dz−

− 1
Re2

(2∂zw2 +∂zv2∇xη1,2)|z=η1,2
∇xη1,2 + p2(η1,2)∇xη1,2−

−1
ε

f ric(v1,v2)+α2κ∇xη = 0.

(70)

2.3.1 Asymptotic analysis

We assume the problem to be in an asymptotic regime by supposing the following
hypothesis over the data:

1
Rei

= εµ0i, α = εα0, αi = εα0i, γ = εγ0. (71)

We make the development of the unknowns up to order 2:

v1 = v0
1 + εv1

1 +O(ε2); v2 = v0
2 + εv1

2 +O(ε2);
w1 = w0

1 + εw1
1 +O(ε2); w2 = w0

2 + εw1
2 +O(ε2);

p1 = p0
1 + ε p1

1 +O(ε2); p2 = p0
2 + ε p1

2 +O(ε2);
η = η0 + εη1 +O(ε2); η1,2 = η0

1,2 + εη1
1,2 +O(ε2).

(72)

So from now on we denote f ric0(v1,v2) = −γ0(v0
1− v0

2). For the development of
h1, we have into account that η1,2 = h1 +b, so we can write

h1 = h0
1 + εh1

1 +O(ε2), (73)

where h0
1 = η0

1,2−b and h1
1 = η1

1,2−b. In the same way we can write

h2 = h0
2 + εh1

2 +O(ε2), (74)

being h0
2 = η0−η0

1,2 and h1
2 = η1−η1

1,2, remember that η = η1,2 +h2.

We can approximate κ1,2 = ∆xη1,2 +O(ε2) and κ = ∆xη +O(ε2).
Now we perform the asymptotic analysis for the two layers. Firstly we study the
first order approximation where the viscosity terms do not appear. The second order
approximation is derived to obtain a viscous system. Due to the bilayer situation we
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must consider the influence of two friction terms, one on the bottom and other one
on the interface. In [Gerbeau and Perthame (2001)] one can find how to make the
correction of the velocity in order to obtain a modified coefficient for the friction at
the bottom. But in our case there is a friction term at the interface to be taken into
account, so we have performed a correction in both velocities to derive model.

1. First order approximation.

Layer D1.

If we consider the terms of the principal order (ε0), we obtain from (41), (51) and
(54) that:

∂ 2
z v1 = O(ε);

∂zv1|z=η1,2
= O(ε);

∂zv1|z=b = O(ε).
(75)

From here, we deduce that v1 does not depend on z at first order so we can write:

v0
1(t,x,z) = v0

1(t,x). (76)

Under this hypothesis, we can rewrite the expressions above up to order one to
obtain the final equation for layer 1 at first order. First, we write (59) as:

∂tη
0
1,2 +div x(h0

1v0
1) = 0, (77)

and from (58) we obtain the pressure:

p0
1(z) =−ρ1

1
Fr2 (z−η

0
1,2)+ p0

1(η
0
1,2). (78)

But the term appearing in (63) involves the integral of the pressure, so we calculate
it from (78):

∇x

∫
η1,2

b
p0

1dz = h0
1∇x(p0

1(η
0
1,2))+ p0

1(η
0
1,2)∇x(η0

1,2−b)+
1
2

ρ1
1

Fr2 ∇x(h0
1)

2. (79)

If we take these values into equation (63), considering only principal order terms,
we obtain:

ρ1∂t((η0
1,2−b)v0

1)+ρ1div x((η0
1,2−b)v0

1⊗ v0
1)+ρ1

1
Ro

sinθ(η0
1,2−b)(v0

1)
⊥+

+(η0
1,2−b)∇x(p0

1(η
0
1,2))+ p0

1(η
0
1,2)∇x(η0

1,2−b)+
1
2

ρ1
1

Fr2 ∇x(b−η
0
1,2)

2−

− p0
1(η

0
1,2)∇xη

0
1,2 + p0

1(b)∇xb+ f ric0(v1,v2)+α0v0
1 = 0. (80)
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Now we simplify the pressure terms. We use the definition of p0
1 (78) to write

−p0
1(η

0
1,2)+ p0

1(b) =−ρ1
1

Fr2 (b−η
0
1,2). (81)

From (50) up to first order we have p0
1 = p0

2 +O(ε).
So the final equation reads:

ρ1∂t(h0
1v0

1)+ρ1div x(h0
1v0

1⊗ v0
1)+ρ1

1
Ro

sinθh0
1(v

0
1)
⊥+h0

1∇x(p0
2(η

0
1,2))

+
1
2

ρ1
1

Fr2 ∇x(h0
1)

2 +ρ1
1

Fr2 h0
1∇xb+ f ric0(v1,v2)+α0v0

1 = 0.
(82)

Layer D2.

Following the same way, we obtain the equations for the second layer.

Thus, from equations (41), (51) and (45) we can write:

∂ 2
z v2 = O(ε);

∂zv2|z=η1,2
= O(ε);

∂zv2|z=η = O(ε).
(83)

So we can deduce that v2 does not depend on z at order zero:

v0
2(t,x,z) = v0

2(t,x), (84)

That allows us to write (66) as

∂th
0
2 +div x(h0

2v0
2) = 0 (85)

and from the pressure (65),

p0
2(z) =−ρ2

1
Fr2 (z−η

0)+O(ε). (86)

We integrate (86) to obtain the pressure term in equation (70):

∇x

∫
η0

η0
1,2

p0
2 =

1
2

ρ2
1

Fr2 ∇x(h0
2)

2. (87)

So, the equation for the layer 2 at first order is:

ρ2∂t(h0
2v0

2)+ρ2div x(h0
2v0

2⊗ v0
2)+ρ2

1
Ro

sinθh0
2(v

0
2)
⊥+

1
2

ρ2
1

Fr2 ∇x(h0
2)

2+

+ρ2
1

Fr2 h0
2∇xη

0
1,2− f ric0(v1,v2) = 0.

(88)
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Remark 2.1 The equation for layer 1 given by (82) includes the value of the pre-
ssure of the second layer. Now, using (86) we can write the equation for D1 as
follows:

ρ1∂t(h0
1v0

1)+ρ1div x(h0
1v0

1⊗ v0
1)+ρ1

1
Ro

sinθh0
1(v

0
1)
⊥+ρ2

1
Fr2 h0

1∇xh0
2+

+
1
2

ρ1
1

Fr2 ∇x(h0
1)

2 +ρ1
1

Fr2 h0
1∇xb− f ric0(v1,v2)+α0v0

1 = 0.

(89)

2. Second order approximation: Correcting the friction terms.

As we can see, there are no viscous terms involved in the equations above. To
obtain a viscous system we must take into account the second order approximation.
We perform the equivalent correction for the bottom friction presented in [Gerbeau
and Perthame (2001)] but for the bilayer case.

We purpose an additional correction for the friction term at the interface in the
equations obtained. For this aim first we are going to develop the second order
approximation for each term in both layers equations, later we shall perform the
velocities correction and we shall state the final model.

Layer D1.

Now we consider the approximation up to order 2 for the unknows:

ṽ1 = v0
1 + εv1

1,

p̃1 = p0
1 + ε p1

1,

η̃1,2 = η0
1,2 + εη1

1,2,

h̃1 = h0
1 + εh1

1,

(90)

and we back to the equations writing them up to second order. First, for (43):

∂t h̃1 +div x(h̃1ṽ1) = O(ε2). (91)

Now, we want to get an expression for v1 with the aim of determine its average. We
take equation (41) to principal order:

ρ1∂tv1 +ρ1div x(v1⊗ v1)+ρ1∂z(v1w1)+ρ1
1

Ro
(v1)⊥ sinθ−

− 1
ε

µ01∂
2
z v1 + ∇x p1 = 0. (92)
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Thus,

1
ε

µ01∂
2
z v1 = ρ1∂tv

0
1 +ρ1v0

1∇xv0
1 +ρ1

1
Ro

(v0
1)
⊥ sinθ +∇x(p0

1(η
0
1,2))+

+ ρ1
1

Fr2 ∇xη
0
1,2 +O(ε). (93)

From (82), we can write

h0
1(ρ1∂tv

0
1 +ρ1v0

1∇xv0
1 +ρ1

1
Ro

sinθ(v0
1)
⊥+∇x(p0

2(η
0
1,2))+ρ1

1
Fr2 ∇xη

0
1,2) =

= f ric0(v1,v2)−α0v0
1 (94)

So we can simplify the expression of ∂ 2
z v1:

1
ε

µ01∂
2
z v1 =

1

h0
1

f ric0(v1,v2)−
α0

h0
1

v0
1 +O(ε). (95)

If we integrate this equation from b to z and we use condition (54) we obtain:

v1 = ṽ1|z=b +
ε

µ01
α0v0

1(z−b)+
ε

µ01
( f ric0(v1,v2)−α0v0

1)
(z−b)2

2h0
1

+O(ε2). (96)

From here, we can obtain the average of the velocity v1:

v1 =
1
h1

∫
η1,2

b
v1 =

(
1+ ε

h0
1α0

3µ01

)
ṽ1|z=b + ε

h0
1

6µ01
f ric0(v1,v2)+O(ε2). (97)

Note that v1⊗ v1 = v1⊗ v1 +O(ε2). For the sake of brevity we do not include the
proof, (Cf. [Zabsonré (2008)] for details).

We must calculate the term for the pressure at first order, we back to equation (58):

p1(z) = p̃1(η̃1,2)−ρ1
1

Fr2 (z− η̃1,2)+ ερ1
1

Ro
cosθv0

1e1(z−η
0
1,2)+O(ε2). (98)

Thus the integral of the pressure reads:

∇x

∫
η1,2

b
p1 =

1
2

ρ1
1

Fr2 ∇x(h̃1)2− 1
2

ερ1
1

Ro
cosθe1∇x((h0

1)
2v0

1)+∇x(h̃1 p̃1(η̃1,2)).

(99)

Looking at (63), we need to obtain the integral of w0
1, so we integrate the equation

of free divergence∫
η1,2

b
w0

1dz = h0
1v0

1∇xb−
(h0

1)
2

2
div xv0

1. (100)
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And finally, from equation (97) we obtain the velocity at the bottom:

ṽ1|z=b = βv1− ε
h0

1

6µ01
β f ric0(v1,v2)+O(ε2), (101)

where β = β (h1) =
(

1+ ε
h0

1α0

3µ01

)−1

.

Layer D2.

As in the case of layer 1, we look for the second order to obtain the viscosity terms
in the equation. We define the approximations of second order:

ṽ2 = v0
2 + εv2

1;

p̃2 = p0
2 + ε p1

2;

η̃ = η0 + εη1;

h̃2 = h0
2 + εh1

2.

(102)

So we obtain for the first equation:

∂t h̃2 +div x(h̃2ṽ2) = O(ε2). (103)

We write the equation (41) at principal order to obtain v2,

1
ε

µ02∂ 2
z v2 = ρ2∂tv0

2 +ρ2div x(v0
2⊗ v0

2)+ρ2v0
2∂zw0

2 +ρ2
1

Ro sinθ(v0
2)
⊥

+ρ2
1

Fr2 ∇xη
0 +O(ε),

(104)

and using (88),

h0
2

(
ρ2∂tv

0
2 +ρ2v0

2∇xv0
2 +ρ2

1
Ro

sinθ(v0
2)
⊥+ρ2

1
Fr2 ∇xη

0
)

= f ric0(v1,v2), (105)

from where we get

1
ε

µ02∂
2
z v2 =

1

h0
2

f ric0(v1,v2). (106)

Integrating this expression from η0
1,2 to z and using (51), we find the expression for

v2:

v2 = ṽ2|z=η1,2
+

ε

µ02
f ric0(v1,v2)(z−η

0
1,2)

(
1−

z−η0
1,2

2h0
2

)
+O(ε2), (107)
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that we integrate to obtain the average for the velocity of the second layer:

v2 =
1

η−η1,2

∫
η

η1,2

v2 = ṽ2|z=η1,2
+ ε

1
3µ02

h0
2 f ric0(v1,v2)+O(ε2). (108)

Again, v2⊗ v2 = v2⊗ v2 +O(ε2).
The divergence condition allows us to know the integral of w0

2:

∫
η0

η0
1,2

w0
2 = w0

2x=|η0
1,2

h0
2−

1
2
(h0

2)
2div xv0

2, (109)

and from (65) we get the integral of the pressure:

∇x

∫
η0

η0
1,2

p2 =
1
2

ρ2
1

Fr2 ∇x(h0
2)

2− ερ2
1
2

1
Ro

cosθe1∇x((h0
2)

2v0
2)−

−2εµ02∇x(h0
2div xv0

2)− εα02∇x(h0
2∆xη

0).

(110)

Now we perform the correction for the specifics friction terms. This correction is
based in the same idea that we have developed for the layer 1 to obtain the value of
the velocity v1|z=b

in function of the average v1 in equation (101). This will provide
us the correction of the friction coefficient at the bottom.

For this aim we take the definition of the friction term at the interface:

f ric(v1,v2) =−γ(v1− v2), with γ > 0. (111)

Remember that for the asymptotic assumption we have taken γ = εγ0, and

f ric0(v1,v2) =−γ0(v0
1− v0

2).

On the contrary to the first case we make the correction at the same time for both
layers.

Now we want to get a modified friction coefficient at the interface, the idea is to
find a value of the difference of velocities (v1−v2)|z=η1,2

in function of the averages
v1 and v2 because this is the term appearing in the friction term (111). First we give
the expression of v1 in function of v1|z=η1,2

. So we return to (95) that we write now
as:

1
ε

µ01∂
2
z v1 =− 1

h0
1

γ0(v0
1− v0

2)−
α0

h0
1

v0
1 +O(ε). (112)
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We integrate this equation from z to η1,2 getting:

v1 = ṽ1|z=η1,2
− ε

µ01
γ0(v0

1− v0
2)(z−η1,2)−

− ε

µ01

(
γ0(v0

1− v0
2)+α0v0

1

) (z−η1,2)2

2h0
1

+O(ε2)
(113)

and we compute the average of v1:

v1 =−1
6

ε

µ01
h0

1α0ṽ1|z=b +
(

1+
ε

3µ01
γ0h0

1

)
ṽ1|z=η1,2

− ε

3µ01
h0

1γ0ṽ2|z=η1,2
+O(ε2).

(114)

Remember that thanks to (101) we have

v1 =
(

1+
ε

3µ01
α0h0

1

)
ṽ1|z=b−

1
6

ε

µ01
h0

1γ0(ṽ1− ṽ2)|z=η1,2
+O(ε2). (115)

We had too the value for the average of velocity v2 in equation (108):

v2 =− ε

3µ02
γ0h0

2ṽ1|z=η1,2
+
(

1+
ε

3µ02
h0

2γ0

)
ṽ2|z=η1,2

+O(ε2). (116)

Subtracting the last two expressions we get:

v1− v2 =− ε

6µ01
h0

1α0ṽ1|z=b +
(

1+
ε

3
γ0

(
h0

1

µ01
+

h0
2

µ02

))
(ṽ1− ṽ2)|z=η1,2

+

+O(ε2). (117)

We solve the following system for obtaining ṽ1|z=b and (ṽ1− ṽ2)|z=η1,2
:


v1 =

(
1+

ε

3µ01
α0h0

1

)
ṽ1|z=b−

ε

6µ01
h0

1γ0(ṽ1− ṽ2)|z=η1,2
;

v1− v2 =− ε

6µ01
h0

1α0ṽ1|z=b +
(

1+
ε

3
γ0

(
h0

1

µ01
+

h0
2

µ02

))
(ṽ1− ṽ2)|z=η1,2

.

(118)

The results are:

ṽ1|z=b = Dδv1 +D
εγ0h0

1

6µ01
(v1− v2), (119)
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and

(ṽ1− ṽ2)|z=η1,2
= D

εα0h0
1

6µ01
v1 +Dβ

−1(v1− v2), (120)

being

β =
(

1+
ε

3µ01
α0h0

1

)−1

, δ = 1+
ε

3
γ0

(
h0

1

µ01
+

h0
2

µ02

)
(121)

and

D =
(

β
−1

δ − ε2

36µ2
01

(h0
1)

2
α0γ0

)−1

. (122)

As we can check that β−1δ > 1 and having into account that we have a second
order approximation, we set:

D = βδ
−1. (123)

So we can rewrite the solutions as:

ṽ1|z=b = βv1 +βδ
−1 εγ0h0

1

6µ01
(v1− v2), (124)

and

(ṽ1− ṽ2)|z=η1,2
= βδ

−1 εα0h0
1

6µ01
v1 +δ

−1(v1− v2). (125)

We take these values to equations (63) and (70):

ρ1∂t(h̃1v1)+ρ1div x(h̃1v1⊗ v1)−
ε

2
ρ1

1
Ro

cosθe1(h̃1)2div xv1+

+ρ1
1

Ro
sinθ h̃1(v1)⊥−2εµ01div x(h̃1Dx(v1))+

1
2

ρ1
1

Fr2 ∇x(h̃1)2−

−ε

2
ρ1

1
Ro

cosθe1∇x((h̃1)2v1)+ρ1
1

Fr2 h̃1∇xb̃+

+ερ1
1

Ro
cosθ h̃1

[
(v1 ·∇xb̃)e1− (v1 · e1)∇xb̃

]
+

+δ
−1

γ0

(
β

εα0h0
1

6µ01
v1 +(v1− v2)

)
+βα0

(
v1 +δ

−1 εγ0h0
1

6µ01
(v1− v2)

)
−

−2εµ01∇xh̃1div xv1 + h̃1∇x(p̃1(η̃1,2)) = 0.

(126)
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ρ2∂t(h̃2v2)+ρ2div x(h̃2v2⊗ v2)−
ε

2
ρ2

1
Ro

cosθe1(h̃2)2div xv2+

+ρ2
1

Ro
sinθ h̃2(v2)⊥−2εµ02div x(h̃2Dx(v2))+

1
2

ρ2
1

Fr2 ∇x(h̃2)2−

−ε
1
2

ρ2
1

Ro
cosθe1∇x((h̃2)2v2)−2εµ02∇x(h̃2div xv2)+

+ερ2
1

Ro
cosθe1h0

2w0
2|z=η1,2

−δ
−1

γ0

(
β

εα0h0
1

6µ01
v1 +(v1− v2)

)
+

+∇xη̃1,2(p̃2(η̃1,2)+2εµ02div xv2)−

−εα02∇x(h0
2∆xη

0)+ εα02∇xη
0
∆xη

0 = 0,

(127)

where we can check now how the coefficients for both friction terms have been
corrected for two layers.

In order to simplify the last two terms in (126), we use the interfaz condition (35)
to write:

p̃1(η̃1,2)+2εµ01div xv1 = p̃2(η̃1,2)+2εµ02div xv2− ε(α01−α02)κ1,2. (128)

So if we also include the expression of κ1,2 we get:

−2εµ01∇xh̃1div xv1 + h̃1∇x(p̃1(η̃1,2)) =−2εµ01∇xh̃1div xv1+

+h̃1∇x(−2εµ01div xv1 + p̃2(η̃1,2)+2εµ02div xv2− ε(α01−α02)∆xη̃1,2)

=−2εµ01∇x(h̃1div xv1)+ h̃1∇x(p̃2(η̃1,2)+2εµ02div xv2)−

−ε(α01−α02)h̃1∇x(∆xη̃1,2).

(129)
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Finally the equation for layer 1 reads as:

ρ1∂t(h̃1v1)+ρ1div x(h̃1v1⊗ v1)−
ε

2
ρ1

1
Ro

cosθe1(h̃1)2div xv1+

+ρ1
1

Ro
sinθ h̃1(v1)⊥−2εµ01div x(h̃1Dx(v1))+

1
2

ρ1
1

Fr2 ∇x(h̃1)2−

−ε

2
ρ1

1
Ro

cosθe1∇x((h̃1)2v1)+ρ1
1

Fr2 h̃1∇xb̃−2εµ01∇x(h̃1div xv1)+

+ερ1
1

Ro
cosθ h̃1

[
(v1 ·∇xb̃)e1− (v1 · e1)∇xb̃

]
+

+δ
−1

γ0

(
β

εα0h0
1

6µ01
v1 +(v1− v2)

)
+βα0

(
v1 +δ

−1 εγ0h0
1

6µ01
(v1− v2)

)
+

+h̃1∇x(p̃2(η̃1,2)+2εµ02div xv2)− ε(α01−α02)h̃1∇x(∆xη̃1,2) = 0.

(130)

In the same way we work on the last terms in (127) by using (65) to rewrite them
as:

p̃2(η̃1,2)+2εµ02div xv2 = ρ2
1

Fr2 h̃2− ερ2
1

Ro
cosθe1h̃2v2− εα02κ. (131)

So:

∇η̃1,2(p̃2(η̃1,2)+2εµ02div xv2) =

= ∇η̃1,2(ρ2
1

Fr2 h̃2)− ερ2
1

Ro
cosθe1∇x(η̃1,2)h̃2v2− εα02∇xη

0
1,2∆xη

0.
(132)

We can finally write the equation for layer 2 as

ρ2∂t(h̃2v2)+ρ2div x(h̃2v2⊗ v2)−
ε

2
ρ2

1
Ro

cosθe1(h̃2)2div xv2+

+ρ2
1

Ro
sinθ h̃2(v2)⊥−2εµ02div x(h̃2Dx(v2))+ρ2

1
Fr2 (h̃2∇xh̃2 + h̃2∇xη̃1,2)−

−ε
1
2

ρ2
1

Ro
cosθe1∇x((h̃2)2v2)−2εµ02∇x(h̃2div xv2)+

+ερ2
1

Ro
cosθe1h0

2w0
2|z=η1,2

−δ
−1

γ0

(
β

εα0h0
1

6µ01
v1 +(v1− v2)

)
−

−ερ2
1

Ro
cosθe1h̃2v2∇xη̃1,2− εα02h0

2∇x(∆xη
0) = 0.
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(133)

Remark 2.2 We can use the equation (131) to write (130) as:

ρ1∂t(h̃1v1)+ρ1div x(h̃1v1⊗ v1)−
ε

2
ρ1

1
Ro

cosθe1(h̃1)2div xv1+

+ρ1
1

Ro
sinθ h̃1(v1)⊥−2εµ01div x(h̃1Dx(v1))+

1
2

ρ1
1

Fr2 ∇x(h̃1)2−

−ε

2
ρ1

1
Ro

cosθe1∇x((h̃1)2v1)+ρ1
1

Fr2 h̃1∇xb̃−2εµ01∇x(h̃1div xv1)+

+ερ1
1

Ro
cosθ h̃1

[
(v1 ·∇xb̃)e1− (v1 · e1)∇xb̃

]
+

+δ
−1

γ0

(
β

εα0h0
1

6µ01
v1 +(v1− v2)

)
+βα0

(
v1 +δ

−1 εγ0h0
1

6µ01
(v1− v2)

)
−

−εα01h̃1∇x∆xh̃1− εα01h̃1∇x∆xb+ρ2
1

Fr2 h̃1∇xh̃2−

−2ερ2
1

Ro
cosθe1h̃1∇x(h̃2v2)− εα02h̃1∇x∆xh̃2 = 0.

(134)

2.4 Final models

In this section we write the final equations for the two models obtained with dimen-
sion and dropping the cosines terms, having into account that

1
Rei

= εµ0i, α = εα0, αi = εα0i, γ = εγ0. (135)

We also divide the second and fourth equations in the systems by ρ1 and ρ2 res-
pectively. For a good writing of equations we introduce some notation about the
coefficients involved in the system. First we define the density relation by r = ρ2

ρ1
,

we explicit the dynamic viscosity as µi = ρiνi for i = 1,2, being νi the kinematic
viscosity and finally we take the following definition for the friction and tension co-
efficients: γ = γ̃ρ2, α = α̃ρ1, αi = α̃iρi with γ̃ , α̃ and α̃i being positive constants.

Next we introduce some remarks about the approximations obtained mainly related
to the friction terms.

First, we state the system without viscosity, from equations (77), (89), (85) and
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(88), we found the following system that we denoted by (BL1):

(BL1)



∂th2 +div x(h2v2) = 0;

∂t(h2v2)+div x(h2v2⊗ v2)+2Ωsinθh2(v2)⊥+

+
1
2

g∇xh2
2 +gh2∇xη1,2 = γ̃(v1− v2);

∂th1 +div x(h1v1) = 0;

∂t(h1v1)+div x(h1v1⊗ v1)+2Ωsinθh1(v1)⊥+
1
2

g∇xh2
1+

+gh1∇xb+ rgh1∇xh2 =−rγ̃(v1− v2)− α̃v1.

(136)

In the same way, we consider equations (91), (134), (103) and (133) to write the
viscous model with correction on the bottom and interface friction, (BL2):

(BL2)



∂th2 +div x(h2v2) = 0;

∂t(h2v2)+div x(h2v2⊗ v2)+2Ωsinθh2(v2)⊥+
1
2

g∇xh2
2+

+gh2∇xη1,2 = δ
−1

γ̃

(
β

α̃h1

6ν1
v1 +(v1− v2)

)
+ α̃2h2∇x∆xh2+

+α̃2h2∇x∆xη1,2 +2ν2div x(h2Dx(v2))+2ν2∇x(h2div xv2);

∂th1 +div x(h1v1) = 0;

∂t(h1v1)+div x(h1v1⊗ v1)+2Ωsinθh1(v1)⊥+
1
2

g∇xh2
1+

+gh1∇xb+ rgh1∇xh2 =−δ
−1

γ̃ r

(
β

α̃h1

6ν1
v1 +(v1− v2)

)
−

−βα̃

(
v1 +δ

−1r
γ̃h1

6ν1
(v1− v2)

)
+ α̃1h1∇x∆xh1+

+α̃1h1∇x∆xb+2ν1div x(h1Dx(v1))+2ν1∇x(h1div xv1),

(137)
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being

β =
(

1+
α̃

3ν1
h1

)−1

, δ = 1+
γ̃

3

(
r

h1

ν1
+

h2

ν2

)
. (138)

Remark 2.3 We want to remark that friction terms that we have obtained in (137)
have the same order of the friction and viscosity coefficients. That is to say, if we
suppose that the coefficients νi, α̃i, α̃ and γ̃ are of order ε , with ε ∼ 10−3, then we
next prove that the terms

δ
−1

γ̃r

(
β

α̃h1

6ν1
v1 +(v1− v2)

)
, βα̃

(
v1 +δ

−1r
γ̃h1

6ν1
(v1− v2)

)
(139)

have order ε too. We write them as follows:

δ
−1

γ̃rβ
α̃

6ν1
h1v1 +δ

−1
γ̃r (v1− v2), βα̃ v1 +δ

−1
γ̃rβ

α̃

6ν1
h1(v1− v2). (140)

So, it is enough to prove that the coefficients given by

δ
−1

γ̃β
α̃

ν1︸ ︷︷ ︸
[1]

, δ
−1

γ̃︸ ︷︷ ︸
[2]

, and βα̃︸︷︷︸
[3]

(141)

have order ε .

First we develop β and δ−1:

β =
3ν1

3ν1 + α̃h1
, δ

−1 =
3ν1ν2

3ν1ν2 + γ̃rν2h1 + γ̃ν1h2
(142)

and we observe that they have order ε0 because νi, α̃ and γ̃ have the same order.
Now we study each term in (141).

Term [1]: Since β and δ−1 have order ε0 and ν1, α̃ and γ̃ have order ε we deduce
that this first term have order ε .

Term [2]: this term has order ε because δ−1 has order ε0 and γ̃ has order ε .

Term [3]: for the same reason that for the second one, we find the ε order for this
term, because β has order ε0 and α̃ has order ε .

Remark 2.4 We have performed the deduction of a bilayer Shallow Water equa-
tions following the work developed in [Gerbeau and Perthame (2001)] for the one-
layer case.
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Then, if we throw out the layer on top, we should get the model for one-layer
obtained by them in that work. So, taking h2 = ρ2 = 0 in the final system (137):

∂th1 +div x(h1v1) = 0;

∂t(h1v1)+div x(h1v1⊗ v1)+2Ωsinθh1(v1)⊥+
1
2

g∇xh2
1 +gh1∇xb+

+rgh1∇xh2 =−βα̃v1 +2ν1div x(h1Dx(v1))+2ν1∇x(h1div xv1);

(143)

that is just the same correction for the friction that Gerbeau and Perthame have
found but in 2d case.

Remark 2.5 In [Zabsonré and Narbona-Reina (2009)] a theoretical study of a
simplified (BL2) model is performed proving the existence of global weak solution
for the system above but in the particular case when b = 0. To obtain this result,
the following form for the friction coefficient is taken:

γ =
h1h2

ν1
ν2

h1 + ν2
ν1

h2
. (144)

Remark 2.6 The proof of the global weak solution for the (BL2) system is in
course, it shall appear in a forthcoming paper.

3 Numerical assessment

This section is devoted to check the validity of the new viscous bilayer model that
we have derived in the previous section. In the first test we solve a 1D internal dam-
break problem following the work [Gerbeau and Perthame (2001)] and we compare
the numerical solution obtained by solving (BL1) and (BL2) with the Navier-Stokes
equations. In Test 2 we make a comparison of the solution of the models for a 2D
dam-break problem.

The results obtained show us that the new viscous model improves the no vis-
cous one for both unknowns, height and discharge. But as it is already confirmed
in precedent works (see [Gerbeau and Perthame (2001); Marche (2005); Audusse
(2005); Peybernes (2006)]) we notice that the more significant difference relies on
the discharge.

Test 1: An internal dam-break problem.

We present a test for which we compare the solutions obtained for Navier-Stokes
equations with variable density with those given by systems (BL1) and (BL2). In
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the numerical discretization we have defined the friction term at the interface as
follows:

fric(v1,v2) =−κB(h1,h2)(v1− v2), with B(h1,h2) =
h1h2

ρ1
ρ2

h1 + ρ2
ρ1

h2
and κ > 0.

(145)

In [Gerbeau and Perthame (2001)] a dam-break test is calculated to validate the
viscous model obtained. In this work we present a similar case but solving an
internal dam-break problem where two flows with different densities are involved,
with the aim of emphasizing the importance of the friction term between layers.

To make the comparison between the approximated Shallow-Water systems and
Navier-Stokes equations, we have computed the non-dimensional problem in each
case without tension terms (i.e. α̃i = 0, for i = 1,2). For the sake of clarity we
specify these problems below.

So for the first order approximation we have:

(BL1adim)



∂th2 +div x(h2v2) = 0;

∂t(h2v2)+div x(h2v2⊗ v2)+
1
2

1
Fr2 ∇xh2

2 +
1

Fr2 h2∇xη1,2 =

= γ̃0(v1− v2);

∂th1 +div x(h1v1) = 0;

∂t(h1v1)+div x(h1v1⊗ v1)+
1
2

1
Fr2 ∇xh2

1+

+
1

Fr2 h1∇xb+ r
1

Fr2 h1∇xh2 =−rγ̃0(v1− v2)− α̃0v1.

(146)

For the second order approximation we solve:

(BL2adim)



∂th2 +div x(h2v2) = 0;

∂t(h2v2)+div x(h2v2⊗ v2)+
1
2

1
Fr2 ∇xh2

2+

+
1

Fr2 h2∇xη1,2 = δ
−1

γ̃0

(
β

α̃0h1

6
ε

2Re1 v1 +(v1− v2)
)

+

+2
1

Re2
div x(h2Dx(v2))+2

1
Re2

∇x(h2div xv2);

(147)
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for the upper layer and for the lower one:

(BL2adim)



∂th1 +div x(h1v1) = 0;

∂t(h1v1)+div x(h1v1⊗ v1)+
1
2

1
Fr2 ∇xh2

1 +
1

Fr2 h1∇xb+

+r
1

Fr2 h1∇xh2 =−δ
−1

γ̃0 r

(
β

α̃0h1

6
ε

2Re1 v1 +(v1− v2)
)
−

−βα̃0

(
v1 +δ

−1r
γ̃0h1

6
ε

2Re1 (v1− v2)
)

+

+2
1

Re1
div x(h1Dx(v1))+2

1
Re1

∇x(h1div xv1),

(148)

being

β =
(

1+
α̃0

3
ε

2Re1 h1

)−1

, δ = 1+
γ̃0

3
ε

2 (rh1Re1 +h2Re2) . (149)

And finally for the Navier-Stokes equations we take the following problem:

(NSadim)



ρ∂tv+ρv∇xv+ρw∂zv−

− 2
Re

div x(Dx(v))−
1

Re
1
ε2 ∂

2
z v− 1

Re
∇x(∂zw)+∇x p =

=−γ[v]δε(ρ);

ρ∂tw+ρv∇xw+ρw∂zw−

− 1
Re ∆xw−− 1

ε2

1
Re

∂z(div xv)−2
1
ε2

1
Re

∂
2
z w+

1
ε2 ∂z p =

=−ρ
1
ε2

1
Fr2 − γ[w]δε(ρ);

div xv+∂zw = 0.

(150)

with boundary conditions at the bottom:{ 1
Re

(∇xw+
1
ε2 ∂zv) =

1
ε

α v;

w = 0.
(151)

And δε being an approximation of the Dirac mass on the interface, defined as fo-
llows:

δε =
1
ε

ξ

(
ρ

ε

)
|∇ρ|, with ξ (ϑ) =

{ 1
2(1+ cos(πϑ)) if |ϑ |< 1
0 otherwise

(152)
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So the term involving δε in (150) is an approximation of the friction condition at
the interface that we have in the two layers case.

We take a domain D with length L = 1 meters and we set the friction coefficient as
ν = ν0 ζ , γ = γ0 ζ , α = α0 ζ with ζ being a quantity depending on the jump

height, given by ζ = h1L−h1R
L . The height before the jump is taken as h1L = 0.9 and

h1R = 0.1 after the jump.

If we denote by ρi, i = 1,2 the densities associated with each layer, we have defined
r = ρ2

ρ1
= 0.98 and the upper layer density, ρ2 = 1.

We have also set the following constant data:

ε = 0.04,
1

Rei
=

1
Re

=
ε

10
(for i = 1,2),

1
Fr2 = 1, and ζ = 10 to put in evidence the

influence of the friction term.

The resolution of problems (BL1adim) and (BL2adim) has been performed by using
a Finite Volume method of Roe’s type; see [Parés and Castro (2004)]. We take the
following initial conditions:

h(t = 0) =
{

h1L x < 0;
h1R x > 0,

q(t = 0) = 0. (153)

In order to solve the Navier-Stokes equations for this problem, we have solved it
in a two-dimensional domain D ×ϒ, ϒ with length 1, in the terms that we specify
next.

To calculate the density ρ , we have solved the transport problem for the salinity S
given by:

∂tS +∇(uS)− ς∆S = 0, (154)

ς being the molecular diffusion. Then, the density is updated by the state equation

ρ = ρ0 [1+F(S)] , (155)

where ρ0 is a reference density and F(S) is a function of the salinity S.

For the time being we are not able to solve the bilayer problem using Navier-Stokes
equations so in order to simulate this situation, we have taken the following cons-
tant piecewise function for the initial density value, (see Fig. 3) related to initial
condition (153):

ρ(t = 0) =
{

ρ2 if {x < 0,y > h1L} and {x > 0,y > h1R}
ρ1 otherwise,

(156)

and the corresponding initial data for the salinity. At the initial time, we have taken
u = 0. Regarding the constants involving the Navier-Stokes problem, we have fixed
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Figure 2: Evolution in time of the interface from t=1 to t=6.

the reference density ρ0 = 1 and in our case, we have considered linear functions F ,
F(S) = bS for a positive constant b, concretely we set b = 1. Finally, the molecular
diffusion for the salinity problem is taken as ς = 10−5.

We numerically solve this problem using a Finite Element discretization in the
stable pair of spaces (P2,P1). The computational work has been performed by
using the software Freefem++ (http://www.freefem.org).

Computing the test at time T = 6 seconds for the three problems, we compare the
solutions obtained for the interface and the velocity.
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Figure 3: Initial density for Navier-Stokes problem.

In Fig. 3 we show the interface level obtained in each case for times from t = 1 to
t = 6. For problems (BL1adim) and (BL2adim) we plot the height of the lower layer,
h1, but for Navier-Stokes equations, this value must be obtained as a function of the
density profile, so we show the isolines of the density (colored lines).

As we can see in this figure the approximation for Navier-Stokes is not too mean-
ingful to compare it with the models studied here. Anyway we can see that the
solution given by the two systems keep on the profile of the Navier-Stokes solu-
tion.

Finally, in Fig. 3 we show the velocities of the lower layer obtained by solving
problems (BL1adim), (BL2adim) and (NSadim) at times t = 1 to 6. We notice that the
solutions of the Shallow-Water systems are getting further when the time increases
and that the second order approximation gives us a closer solution to the Navier-
Stokes velocity.

Test 2: Circular dam-break problem in a 2D domain.

We consider a circular dam-break problem in both, surface and interface with a no
constant bottom.

The domain is the square D = [0,2]× [0,2], the bottom is given by the following
function:

b(x,y) =
{ 1

8(1+ cos(2πx))(1+ cos(2πy)) (x−1)2 +(y−1)2 ≤ 0.12;
0 otherwise.

(157)

The initial condition is given by:

h1(t = 0)+b(x,y) =
{

1.1 (x−0.9)2 +(y−1)2 ≤ 0.22;
0.6 otherwise.

(158)
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Figure 4: Evolution in time of the velocity of the layer below for times t=1 to t=6.

h2(t = 0)+h1(t = 0)+b(x,y) =
{

1.7 (x−1.6)2 +(y−1)2 ≤ 0.12;
1.2 otherwise;

(159)

and q1(t = 0) = q2(t = 0) = 0. A longitudinal section in y = 1 of the height initial
condition is shown in Fig. 5.

The CFL is set to 0.7 and we consider a partition with ∆x = ∆y = 0.02, the final
time is T = 2. The friction coefficients and the kinematic viscosity has been taken
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as γ̃ = α̃ = ν1 = ν2 = 10−3 and the density ratio is set to 0.8.

In Fig. 6 we show the evolution in time, from t = 0.2 to t = 2 of the interface and
the free surface.

In Figs. 7-10 a longitudinal section in y = 1 is drawn. The heights of layers are
shown in Fig. 7 for the same times values. We can see that the difference between
the solution of problems (BL1) and (BL2) is getting higher in time. This behavior
can also been check for the discharges, see Fig. 8 for layer 1 and Fig. 9 for layer 2.

In order to weigh up the influence of the friction at the interface we show in
Fig. 10 the difference between horizontal velocities v1x − v2x. Remember that
f ric(v1,v2) =−γ(v1− v2). We can see that for small times the difference is about
0.4 near the bottom bump and for final times this quantity is reduced to the half.

4 Conclusions

In this work we propose a bilayer Shallow Water 2D model, taking into account
viscosity and tension effects on the surface and the interface. The model is ob-
tained from the Navier-Stokes equations through a second order development in the
asymptotic analysis and the integration process, following [Gerbeau and Perthame
(2001)].

The main difficulty is related to the correction of the friction term at the interface.
Usually to make this correction we must write the velocities at the interface in
function of the average velocities. Due to that the friction term depends on the
velocity difference of the two layers, we have a coupled problem and a second
order friction correction cannot be performed layer by layer. To solve this problem
we set out a linear system of equations where the unknowns are the velocities at the
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Figure 6: Free surface and interface.
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Figure 8: Discharge layer 1.
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Figure 9: Discharge layer 2.
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Figure 10: Difference between velocities: v1x− v2x.
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interface and at the bottom, that we write in function of the average velocities. So
we obtain the correction for both friction terms: at the interface and at the bottom.
And, in particular we can observe in the model the influence of the friction at the
bottom in the upper layer.

Finally we present two numerical tests to check the influence of the viscosity terms
and friction corrections in the model. In the first test a one-dimensional internal
dam-break problem is presented. We make a comparison between the solution of
two models (first and second order) and the solution of Navier-Stokes equations
with variable density. In this case we observe that the interface position and veloci-
ties computed by the models are comparable with the solution of the Navier-Stokes
equations with variable density. Moreover, we can see that the velocity obtained
from the second order model is closer to the velocity computed for Navier-Stokes
problem.

In the second test, a problem with higher velocities is considered. We set a double
circular dam-break problem with a bump in the bottom. The test is designed in
order to obtain a great difference between the velocities of the two layers, conse-
quently we find an important influence of friction terms. As motivated in the first
test, we show that the effects added in the second order model are significants.
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