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On the solution method for problems related to the
micro-mechanics of a periodically curved fiber near a

convex cylindrical surface

Surkay D. Akbarov1,2,3 and A. R. Mamedov3

Abstract: Within the scope of the piecewise homogeneous body model through
the use of the three-dimensional geometrically non-linear exact equations of the
theory of elasticity, an approach for the investigation of problems with the mi-
cromechanics of a periodically curved fiber near the free convex cylindrical surface
is proposed and employed. The main difficulties in finding the solution to these
problems are caused by the impossibility of employing the summation theorem for
cylindrical functions to satisfy the boundary conditions on the cylindrical surface.
For this purpose the cosine and sine Fourier series presentation of the sought values
is proposed to satisfy the boundary conditions. The coefficients of these series are
calculated numerically through the integrals of the cylindrical functions whose ar-
gument depends on the integrating variable in the complicated form. This approach
is employed successfully both for the solution to the corresponding boundary value
problems in the determination of the self-balanced stress, which is caused primarily
by the periodical curving of the fiber, and for the solution to the problems of micro-
buckling near the surface through the use of the initial imperfection criterion.

Keywords: Micro/nano-fiber, micro-buckling, periodically curved fiber, self-ba-
lanced stress, convex cylindrical surface.

1 Introduction

One of the especially important particularities of fiber reinforced micro- or nano-
polymer materials is a curving of the micro- or nano-fibers in the structure of these
materials. It is known that this curving may be due to design features or to the
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technological processes resulting from the action of various factors (see: Akbarov
and Guz (2000), Corten (1967), Feng, Allen and Moy (1998), Fisher, Bradshow and
Brinson (2003a, 2003b), Guz, Tomashevski, Shulka and Yakovlev (1998), Qian,
Dickey, Andrews and Rantell (2000), Tarnopolsky, Jigun and Polyakov (1987) and
many others).

Studies of the influence of the fiber curvature on the mechanical behavior of the
aforementioned reinforced materials have been made at the macro as well as mi-
cro/nano levels. In the investigations regarding the macro-levels such levels. In the
investigations regarding the macro-levels such as in the papers by Bazant (1968),
Hsaio and Daniel (1996), Manusfied and Purslow (1974), etc., the influence of the
fiber curvature on the effective modulus of elasticity of the reinforced materials was
studied. But in the investigations regarding the micro levels of the foregoing ma-
terials the corresponding studies were made within the scope of the piecewise ho-
mogeneous body model. These investigations can be divided into two groups: the
first contains the investigations which have been made with the use of the approxi-
mate approach through writing the field equations of the corresponding mechanical
problems (for example, Hsaio and Daniel (1996), Jochum and Grandider (2004),
Guz, Tomashevsky, Shulka and Yakovlev (1988) and others); however, the second
group contains those investigations which have been made employing the exact
three-dimensional field equations (Akbarov (1986a, 1986b, 1990), Akbarov and
Guz (1985a,1985b, 2000), Akbarov and Kosker (2003a, 2003b), Akbarov, Kosker
and Ucan (2004, 2006) and others). The detailed consideration and analysis of the
results attained in the studies carried out before the year 2000 were given in the
monograph by Akbarov and Guz (2000). The review of the mentioned investiga-
tions was also given in the survey paper by Akbarov and Guz (2004). It follows
from the foregoing references that before the end of the 20th century the corre-
sponding investigations were made for a small fibre volume fraction and the results
obtained for a single periodically curving fiber which is in the infinite elastic and
viscoelastic medium under action of uniformly distributed normal forces along the
fiber at infinity. Consequently, in the mentioned investigations, the interaction be-
tween the curving fibers under determination of the self-balanced stresses was not
taken into account. But in recent years, in papers by Akbarov and Kosker (2003a,
2003b), and Akbarov, Kosker and Ucan (2004, 2006) the method of solution and
investigations proposed in the studies by Akbarov (1986a,1986b, 1990), Akbarov
and Guz (1985a,1985b, 2000), and Kosker and Akbarov (2003) were developed for
two neighboring periodically curved fibers as well as a row of them. Note that in
these studies the self-balanced stresses caused by the curve of the fibers were in-
vestigated and the influence of the micro-structural parameters such as the relation
of the fiber radius on the period of the curve, the distance between the fibers, the
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ratio of the modulus of elasticity of the constituents, etc., were determined. But the
corresponding investigations regarding those cases where the periodically curved
fibers are near the bounding surface as well as the corresponding working out of
the solution method to these problems, have been completely absent up to now. At
the same time, the following must first be investigated.

The fibers’ curvature with a very small amplitude can be taken as a model for the
investigation of the internal stability loss problems for the time-dependent micro-
or nano-bi-materials within the scope of the initial imperfection criterion. Such an
approach was developed in papers by Akbarov and Kosker (2001, 2004) in which
it was shown that this approach can be applied not only for time dependent ma-
terials, but also for time independent materials. The review of these studies is
given in the paper by Akbarov (2007). However, in the foregoing investigations it
was assumed that the fibers are embedded in an infinitely elastic and viscoelastic
medium. Consequently, in these investigations the effect of the bounding surface
on the internal stability loss of the fibers has not been taken into account. Conse-
quently, the results of the foregoing investigations can not be applied for the cases
where the curved fibers are near the surface bounding the material containing these
fibers. It should be noted that the solution method and the investigations of the cor-
responding micro-buckling problems of near-surface fibers were made in papers by
Guz and Lapusta (1986, 1988) and Lapusta (1988) and others listed and detailed
in the survey papers by Babich, Guz and Chekhov (2001) and Guz and Lapusta
(1999). However in these papers, the corresponding investigations on the stability
loss were made within the scope of the eigen-value (bifurcation) approach and it
was assumed that the material suurounding the fibers occupies an infinite three di-
mensional space (for the case where the fibers are near the cylindrical cavity (Guz
and Lapusta (1988); Lapusta (1988))) or a semi-infinite three dimensional space
(for the case where the fibers are near the plane-surface (Guz and Lapusta (1986))).
In other words, in the papers by Guz and Lapusta (1986, 1988), Lapusta (1988),
and others, it was assumed that the size of the regions occupied by the material
considered in perpendicular directions to that in which the fibers are lying is infi-
nite or semi-infinite. Consequently, in these studies, investigations were also not
carried out for the cases where the mentioned sizes are finite.

Taking the above discussion into account, in the present paper within the scope of
the piecewise homogeneous body model and through the use of the three-dimensional
geometrically non-linear exact equations of the theory of elasticity, the solution
method proposed in Akbarov and Guz (2000), and Akbarov and Kosker (2001,
2003a, 2003b) is developed in order to determine the self-balanced stresses caused
by a periodical curving of the near convex cylindrical surface micro- or nano-fibers
and for the study of the near-surface micro-buckling of these fibers. It is assumed
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that the region occupied by the material considered is bounded by the cylindrical
free surface. Consequently what is considered is the case where the size of the
region occupied by the material in the directions perpendicular to that in which
the fibers are lying is finite. The numerical results obtained by employment of the
method developed are presented and discussed.

2 Formulation of the problem

We consider a cylinder with infinite length and assume that the cross section of
this cylinder is a circle the radius of which is R (Fig. 1). Assuming that this
cylindrical body contains a fiber which has periodic curving along its length, we
suppose that the fiber’s cross section which is perpendicular to its middle line tan-
gent vector, is a circle of constant radius R0. In the natural state, we associate the
Lagrangian cylindrical system of coordinates Orθz(O0r0θ0z0) and the Cartesian
system of coordinates Ox1x2x3 (O0x10x20x30) with the cylinder (the fiber). Between
these coordinates the following relations are satisfied.

x2 = x20, x3 = x30, z = z0, reiθ = R10 + r0eiθ0 . (1)

The middle line of the fiber is given by the equation

x30 = t, x10 = Asin

(
2π

`
t

)
cosβ , x20 = Asin

(
2π

`
t

)
sinβ (2)

where t is a parameter and t ∈ (−∞,+∞), A is the amplitude of the periodic curving
form, ` is a period of the curving form and β is an angle between the plane O0x10x30

and the plane on which the middle line of the fiber lies. Suppose that A << `, we
introduce the small parameter

ε =
A
`
, 0≤ ε << 1.0. (3)

Below, the values related to the cylinder and the fiber will be denoted by upper
indices (1) and (0).

We assume that the fiber and the surrounding cylinder materials are isotropic and
homogeneous. Within the scope of the piecewise homogeneous body model through
the use of the three-dimensional geometrically non-linear exact equations of the
theory of elasticity, we investigate the stress-strain state and the development of
the infinitesimal initial waviness of the fiber in the case where the body is loaded
(compressed or stretched) to infinity by uniformly distributed normal forces with
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Figure 1: The geometry of the structure of the considered body

an intensity p acting in the direction of the Oz axis. For this purpose we write the
field equations which are satisfied within the fiber and surrounding cylinder sepa-
rately. Note that in writing the mentioned equations we use the conventional tensor
notation below.

∇i

[
σ

(k)in
(

δ
j

n +∇nu(k) j
)]

= 0, 2ε
(k)
i j = ∇ ju

(k)
m +∇mu(k)

j +∇ ju
(k)n∇mu(k)

n ,

σ
(k)
(in) = λ

(k)
(

e(k)
δ

n
i

)
+2µ

(k)
ε

(k)
(in),

e(k) = ε
(k)
(11) + ε

(k)
(22) + ε

(k)
(33), k = 0,1; i;n;m; j = 1,2,3. (4)

Here ∇i shows the covariant derivatives with respect to the i− th cylindrical coor-
dinate, σ (k)in is a contravariant component of the stress tensor, ε

(k)
i j is a covariant

component of the Green’s strain tensor, u(k)
m
(
u(k)n

)
is a covariant (contravariant)
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component of the displacement vector, σ
(k)
(i j)

(
ε

(k)
(i j)

)
is a physical component of the

stress (strain) tensor in the k− th cylindrical system of coordinates; λ (k), µ(k) are
the Lamé’s constants of the k-th material and δ

j
n is the Kronecker symbol.

Assume that on the interface between the fiber and surrounding medium (this sur-
face is denoted by S0) the complete contact conditions are satisfied.

[
σ

(1)in
(

δ
j

n +∇nu(k) j
)]∣∣∣

S0

no j =
[
σ

(0)in
(

δ
j

n +∇nu(k) j
)]∣∣∣

S0

no j, u(1)
( j)

∣∣∣
S0

= u(0)
( j)

∣∣∣
S0

.

(5)

In (5) u(k)
( j) is a physical component of the displacement vector, n0 j is a covariant

component of the unit normal vector to the surface S0.

Moreover on the cylindrical free surfacer = R, so the following conditions are also
satisfied.

[
σ

(1)in
(

δ
j

n +∇nu(k) j
)]∣∣∣

r=R
n j = 0, (6)

where n j is a covariant component of the unit normal vector to the cylindrical sur-
face r = R.

It is known that

σ
(k)
(i j) = σ

(k)i j
H(k)

i H(k)
j , ε

(k)
(i j) = ε

(k)
(i j)

(
H(k)

i H(k)
j

)−1
,

u(i) = u(k)i
H(k)

i = u(k)
i

(
H(k)

i

)−1
, (7)

where (i j) = rr,θθ ,zz,rθ ,rz,zθ , (i) = r,θ ,z. Here H(k)
i are Lamé’s coefficients and

H(k)
1 = 1.0, H(0)

2 = r0, H(1)
2 = r, H(k)

3 = 1.0for the cylindrical system of coordinates.
Thus, with this the formulation of the considered problem has been exhausted.

3 Method of solution

Up to now, various types of numerical and semi-analytical methods have been de-
veloped for computer modeling to solve the various types of problems concerning
deformable solid body mechanics. The present level of such methods is described,
for example, in the papers by Yoda and Kodama (2006), Lu and Zhu (2007), Chen,
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Fu and Zhang (2007), Gato and Shie (2008), Liu, Chen, Li and Cen (2008), Lin,
Lee, Tsai, Chen, Wang and Lee (2008), Wang and Wang (2008), Guz and Dekret
(2008), Dekret (2008a, 2008b) and in many others. Note that all these methods are
based on the discretization or semi- discretization of the domain occupied by the
body considered and field equations which are satisfied in this domain. It is known
that as a result of the mentioned discretization the solution to the problem consid-
ered is reduced to the solution of the system of algebraic equations. At the same
time, there are also other methods, so called analytical + numerical methods, ac-
cording to which the mentioned system of algebraic equations are attained without
any discretization through the employment of the analytical solution method (see:
Akbarov and Guliev (2009), Akbarov and Kosker (2003a, 2003b), Akbarov, Kosker
and Ucan (2004, 2006), Guz and Lapusta (1986, 1988) and many others). But, the
solution to this system of algebraic equations is realized by employing modern PC
modeling. In the present paper, the latest version of computer modeling has been
employed.

Thus, we consider the method of solution to the problem formulated in the previous
section. First we derive the equation for the interface surface S0. According to the
condition of the fiber’s cross section we can conclude that the coordinates of this
surface must simultaneously satisfy the following equations.

ε f ′(t)(x10− ε f (t)cosβ )cosβ + ε f ′(t)(x20− ε f (t)sinβ )sinβ + x30− t = 0,

(−x10 sinβ + x20 cosβ )2 +(x30− t)2 +(x10 cosβ + x20 sinβ − ε f (t))2 = R2
0, (8)

where f (t) = `sin(2πt/`), f ′ (t) = 2π cos(2πt/`); x10, x20, x30 are coordinates
of the surface S0. Note that the first equation in (8) is an equation of the plane
perpendicular to the vector which is the tangent vector to the middle line of the
fiber at the point that corresponds to the fixed value of the parameter t; but the
second equation in (8) is an equation of the circle which is counter to the cross
section of the fiber which rises on the foregoing plane.

Using the relations x10 = r0 cosθ0, x20 = r0 sinθ0 we obtain the following equation
for the surface S0 in the cylindrical system of coordinates O0r0θ0z0:

r0 = r0(θ0, t,ε), z0 = t + z01(θ0, t,ε). (9)

The explicit expressions of the functions r0(θ0, t,ε), z01(θ0, t,ε)can also be attained
from equation (8); in order not to take up too much space here, we will not present
these expressions.

After some mathematical manipulations, we obtain the following equations.
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n0r = r0 (θ0, t,ε)
∂ z0 (θ0, t,ε)

∂ t
[B(θ0, t,ε)]−1 ,

n0θ =
(

∂ z0 (θ0, t,ε)
∂θ0

∂ r0 (θ0, t,ε)
∂ t

− −∂ z0 (θ0, t,ε)
∂ t

∂ r0 (θ0, t,ε)
∂θ0

)
[B(θ0, t,ε)]−1 ,

n0r =−r0 (θ0, t,ε)
∂ r0 (θ0, t,ε)

∂ t
[B(θ0, t,ε)]−1 , (10)

where n0r, n0θ , n0zare physical components of the unit normal vector to the surface
S0 and

B(θ0, t,ε) =
[(

r0 (θ0, t,ε)
∂ z0 (θ0, t,ε)

∂ t

)2

+
(

∂ z0 (θ0, t,ε)
∂θ0

∂ r0 (θ0, t,ε)
∂ t

− ∂ z0 (θ0, t,ε)
∂ t

∂ r0 (θ0, t,ε)
∂θ0

)2

+
(

r0 (θ0, t,ε)
∂ r0 (θ0, t,ε)

∂ t

)2
] 1

2

. (11)

As in the monograph by Akbarov and Guz (2000), we attempt to solve the consid-
ered problem by employing the boundary form perturbation method, according to
which the unknowns are presented in series form in ε (3).

{
σ

(m)i j;ε
(m)
i j ;u(m)

i ;u(m)i
}

=
∞

∑
q=0

ε
q
{

σ
(m)i j,q;ε

(m),q
i j ;u(m),q

i ;u(m)i,q
}

. (12)

Moreover, the expressions (9) and (10) are also presented in the series form in ε as
follows.

r0 = R0 +
∞

∑
k=1

ε
ka0k (θ0, t), z0 = t +

∞

∑
k=1

ε
kb0k (θ0, t),

n0r = 1+
∞

∑
k=1

ε
kc0k (θ0, t), n0θ =

∞

∑
k=1

ε
kb0k (θ0, t), n0z =

∞

∑
k=1

ε
kd0k (θ0, t). (13)

The expressions of functions aok (θ0, t),. . . , d0k (θ0, t) in Eq. (13) can easily be
obtained from Eqs. (9), (10) and (11); therefore these expressions are not given
here.
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Substituting Eq. (12) into Eq. (4), we obtain set equations for each approximation
(12). Using Eq. (13) we expand the values of each approximation (12) in series
form in the vicinity of the point {r0 = R0;z0 = t}. Substituting these last expres-
sions in the contact conditions in (5) and using the expressions of n0r, n0θ and n0z

given in (13), after some mathematical transformations we obtain contact condi-
tions which are satisfied at {r0 = R0;z0 = t} for each approximation in Eq.(12).
It is evident that for the zeroth approximation, Eq.(4) is valid and condition (5)
is replaced by the same one satisfied at point {r0 = R0;z0 = t}. We assume that
∇nu(k),0 << 1 and therefore we replace the terms δ

j
n + ∇nu(k),0 by δ

j
n where δ

j
n is

the Kronecker symbols. According to this assumption, for the zeroth approxima-
tion, we obtain the following system of equations:

∇iσ
(k)i j,0 = 0, 2ε

(k),0
i j = ∇ ju

(k),0
i +∇iu

(k),0
j , (14)

contact conditions

σ
(0),0
(i j)

∣∣∣
r0=R0

= σ
(1),0
(i j)

∣∣∣
r0=R0

, u(0),0
(i)

∣∣∣
r0=R0

= u(1),0
(i)

∣∣∣
r0=R0

, (15)

and boundary conditions

σ
(1),0
(i j)

∣∣∣
r=R

= 0, (16)

where (i j) = rr,rθ ,rz, (i) = r,θ ,z.

Taking the last assumption into account, for the subsequent approximations we
obtain the following system of equations.

∇i

[
σ

(k)i j,q +σ
(k)in,0∇nu(k) j,q

]
=−

q−1

∑
m=1

∇i

(
σ

(k)in,q−m∇nu(k) j,m
)
,

2ε
(k),q
i j = ∇ ju

(k),q
i +∇iu

(k),q
j +

q−1

∑
m=1

∇ ju
(k)n,q−m∇iu

(k),m
k . (17)

Moreover the boundary conditions in (6) for the first and subsequent approxima-
tions can be written as follows
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[
σ

(k)i j,k +σ
(k)in,0∇nu(k) j,q

]∣∣∣
r=R

=−
q−1

∑
m=1

σ
(k)in,q−m∇nu(k) j,m. (18)

Note that the underlined terms in Eqs. (17) and (18) are equal to zero for the first
approximation.

It is necessary to add to these equations the constitutive relations

σ
(k),q
(in) = λ

(k)e(k),q
δ

n
i +2µ

(k)
ε

(k),q
(in) (19)

which are satisfied for each approximation separately. Now we write the contact
conditions for the first approximation by the physical components of the stress
tensor and displacement vector.

[
σ(i)r

]1,1
1,1

+ f1

[
∂σ(i)r

∂ r

]1,0

1,0
+φ1

[
∂σ(i)r

∂ z

]1,0

1,0
+ γr

[
σ(i)r

]1,0
1,0

+ γθ

[
σ(i)θ

]1,0
1,0

+ γz
[
σ(i)z

]1,0
1,0

= 0,

[
u(i)
]1,1

1,1
+ f1

[
∂u(i)

∂ r

]1,0

1,0
+φ1

[
∂u(i)

∂ z

]1,0

1,0
= 0, (20)

where (i) = r,θ ,z. In Eq. (20) replacing (i)with r,θ and z we obtain the explicit
form of the corresponding contact conditions in the considered approximation.
Moreover, in Eq. (20) the following notation is used.

[φ ]1,s
1,s = φ

(1),s−φ
(0),s, γz =− f ′(t)cos(θ0−β ), f1 = f (t)cos(θ0−β ),

φ1 =−R0 f ′(t)cos(θ0−β ),

γr =
(

f (t)
R0
− f ′′(t)

)
cos(θ0−β ), γθ =− f (t)

R0
sin(θ0−β ),

f ′(t) =
d f (t)

dt
, f ′′(t) =

d2 f (t)
dt2 . (21)

The boundary conditions at r = R for the first approximation, according to (16) and
(17), can be written as follows.

σ
(1),1
rr

∣∣∣
r=R

= 0, σ
(1),1
rθ

∣∣∣
r=R

= 0, σ
(1),1
zr

∣∣∣
r=R

= 0. (22)
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In a similar way we can write the contact and boundary conditions for the second
and subsequent approximations for the problem considered.

We determine the unknown values belonging to the considered approximations.
Assume that the Poisson coefficient of the materials’ fiber and surrounding medium
are equal to each other, i.e. ν(1) = ν(0), according to which, in the zeroth approx-
imation, the stresses acting on those areas where the normal is perpendicular to
the Oz axis direction vanish. In the cases where ν(1) 6= ν(0) the mentioned stresses
arise and have the order O

(
ν(1)−ν(0)

)
and, according to the monograph by Ak-

barov and Guz (2000), do not have a considerable effect on the numerical results.
Thus, taking this discussion into account, the determination of each approximation
is considered separately.

The zeroth approximation. This approximation has the following exact solution.

σ
(1),0
zz = p

[
1+

R2
0

R2

(
E(0)

E(1) −1

)]−1

, σ
(0),0
zz = σ

(1),0
zz

E(0)

E(1) ,

ε
(1),0
zz = ε

(0),0
zz =

σ
(0),0
zz

E(0) , u(1),0
z = u(0),0

z = ε
(0),0
zz z,

σ
(1),0
(i j) = σ

(0),0
(i j) = 0, (i j) = rr,θθ ,rθ ,θz,rz. (23)

The first approximation. According to Eqs. (23), Eq.(17) for this approximation
can be written as follows.

∂σ
(k),1
rr

∂ r
+

1
r

∂σ
(k),1
rθ

∂θ
+

∂σ
(k),1
rz

∂ z
+

1
r

(
σ

(k),1
rr −σ

(k),1
θθ

)
+σ

(k),0
zz

∂ 2u(k),1
z

∂ z2 = 0,

∂σ
(k),1
rθ

∂ r
+

1
r

∂σ
(k),1
θθ

∂θ
+

∂σ
(k),1
θz

∂ z
+

2
r

σ
(k),1
rθ

+σ
(k),0
zz

∂ 2u(k),1
θ

∂ z2 = 0,

∂σ
(k),1
rz

∂ r
+

1
r

∂σ
(k),1
θz

∂θ
+

∂σ
(k),1
zz

∂ z
+

1
r

σ
(k),1
rz +σ

(k),0
zz

∂ 2u(k),1
z

∂ z2 = 0. (24)

The constitutive relations remain the same as in Eq. (19). Moreover, the geometri-
cal relations for both the fiber and matrix have the following form.

ε
(k),1
rr =

∂u(k),1
r

∂ r
, ε

(k),1
θθ

=
∂u(k),1

θ

r∂θ
+

u(k),1
r

r
, ε

(k),1
zz =

∂u(k),1
z

∂ z
,



268 Copyright © 2009 Tech Science Press CMES, vol.42, no.3, pp.257-296, 2009

ε
(k),1
rθ

=
1
2

(
∂u(k),1

r

r∂θ
+

∂u(k),1
θ

∂ r
−

u(k),1
θ

r

)
, ε

(k),1
θz =

1
2

(
∂u(k),1

θ

∂ z
+

∂u(k),1
z

r∂θ

)
,

ε
(k),1
zr =

1
2

(
∂u(k),1

z

∂ r
+

∂u(k),1
r

∂ z

)
. (25)

According to Eqs. (20) and (23), we have the following contact conditions for the
first approximation:

[σrr]
1,1
1,1 = 0, [σrθ ] 1,1

1,1 = 0,

[σrz]
1,1
1,1 = 2π sin(αz)

(
σ

(0),0
zz −σ

(1),0
zz

)
× (cosθ0 cosβ + sinθ0 sinβ ) ,

[ur]
1,1
1,1 = 0, [uθ ] 1,1

1,1 = 0, [uz]
1,1
1,1 = 0. (26)

As has been noted above, Eqs. (24) and (25) coincide with the corresponding
equations of the Three-dimensional Linearized Theory of Elasticity; therefore to
solve the obtained system of equations in (24) and (26), we can use the following
representation in the cylindrical system of coordinates (Guz (1999)).

u(k),1
r =

1
r

∂

∂θ
ψ

(k),1− ∂ 2

∂ r∂ z
χ

(k),1, u(k),1
θ

=− ∂

∂ r
ψ

(k),1− 1
r

∂ 2

∂θ∂ z
χ

(k),1,

u(k),1
3 =

(
λ

(k) + µ
(k)
)−1
×
((

λ
(k) +2µ

(k)
)

∆1 +
(

µ
(k) +σ

(k),0
zz

)
∂ 2

∂ z2

)
χ

(k),1,

∆1 =
∂ 2

∂ r2 +
1
r

∂

∂ r
+

1
r2

∂ 2

∂θ 2 . (27)

The functions ψ(k),1 and χ(k),1 are determined from the equations.

(
∆1 +

(
ξ

(k)
1

)2 ∂ 2

∂ z2

)
ψ

(k),1 = 0,

(
∆1 +

(
ξ

(k)
2

)2 ∂ 2

∂ z2

)(
∆1 +

(
ξ

(k)
3

)2 ∂ 2

∂ z2

)
χ

(k),1 = 0, (28)

where
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ξ
(k)
1 =

√
1+

σ
(k),0
zz

µ(k) , ξ
(k)
2 =

√
1+

σ
(k),0
zz

µ(k) , ξ
(k)
3 =

√
1+

σ
(k),0
zz

λ (k) +2µ(k) (29)

The solution of the equations in (27) for the considered problem can be presented
as follows.

ψ
(0),1 = α sinαz

+∞

∑
n=−∞

C(0)
n1 In

(
ξ

(0)
1 αr0

)
einθ0 ,

χ
(0),1 = cosαz

+∞

∑
n=−∞

[
C(0)

n2 In

(
ξ

(0)
2 αr0

)
+ C(0)

n3 In

(
ξ

(0)
3 αr0

)]
einθ0 , (30)

ψ
(1),1 = α sinαz

+∞

∑
n=−∞

[
B(1)

n1 In

(
ξ

(1)
1 αr

)
einθ + C(1)

n1 Kn

(
ξ

(1)
1 αr0

)
einθ0

]
,

χ
(1),1 = cosαz

+∞

∑
n=−∞

{[
B(1)

n2 In

(
ξ

(1)
2 αr

)
+ B(1)

n3 In

(
ξ

(1)
3 αr

)]
einθ

+
[
C(1)

n2 Kn

(
ξ

(1)
2 αr0

)
+C(1)

n3 Kn

(
ξ

(1)
3 αr0

)]
einθ0

}
, (31)

where α = 2π
/
`, In (x) and Kn (x) are a Bessel function of a purely imaginary

argument and Macdonald functions, in turn. Moreover, the unknowns C(k)
ni , B(1)

ni (i =
1,2,3; k = 0,1) are complex numbers and satisfy the relations:

C(k)
ni = C(k)

−ni, B(1)
ni = B(1)

−ni, ImC(k)
01 = ImB(1)

01 = 0. (32)

Thus, using the solutions in (30) and (31) we obtain the expressions for the sought
values from (27), (25) and (19). Note that these expressions contain the unknown
constants in (32). For determination of these unknowns we must obtain the cor-
responding algebraic system of equations from the contact conditions (26) and
boundary conditions (22). In this case under satisfaction of the contact conditions
(26) all the expressions mentioned must be written in the coordinates (r0,θ0). In
other words, the terms in these expressions which have been attained from the terms

B(1)
nk In

(
ξ

(1)
k αr

)
einθ must be written in the coordinates (r0,θ0). For this purpose we

use the summation theorem (Watson (1958)) for the In (x) function, which can be
written for the case at hand as follows.
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Iν(cr)eiνθ =
+∞

∑
m=−∞

Iν−m (cR10) Im (cr0)eimθ0 , c = const. (33)

Consequently, in order to employ expression (33) to satisfy contact conditions (26)
at r0 = R0, the inequality

R0 < R10 (34)

must occur.

Thus, as inequality (34) satisfies for the problem considered (Fig. 1) using the
summation theorem (33), after some mathematical manipulations the functions in
(31) can be rewritten as follows.

ψ
(1),1 =α sinαz

[
+∞

∑
n=0

εnY (1)
n1 Kn

(
ξ

(1)
1 αr0

)
cosnθ0

+
+∞

∑
n=1

X (1)
n1 Kn

(
ξ

(1)
1 αr0

)
sinnθ0

+
+∞

∑
n=0

[
+∞

∑
m=0

εnZ(1)
m1 λ

+
nm

(
ξ

(1)
1 αR10

)
Im

(
ξ

(1)
1 αr0

)]
cosnθ0

+
+∞

∑
n=1

[
+∞

∑
m=1

T (1)
m1 λ

−
nm

(
ξ

(1)
1 αR10

)
Im

(
ξ

(1)
1 αr0

)]
sinnθ0

}
,
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χ
(1),1 =cosαz

{
+∞

∑
n=0

εnY (1)
n2 Kn

(
ξ

(1)
2 αr0

)
cosnθ0+

+∞

∑
n=1

X (1)
n2 Kn

(
ξ

(1)
2 αr0

)
sinnθ0

+
+∞

∑
n=0

εnY (1)
n3 Kn

(
ξ

(1)
3 αr0

)
cosnθ0 +

+∞

∑
n=1

X (1)
n3 Kn

(
ξ

(1)
3 αr0

)
sinnθ0

+
+∞

∑
n=0

[
+∞

∑
m=0

εnZ(1)
m2 λ

+
nm

(
ξ

(1)
2 αR10

)
Im

(
ξ

(1)
2 αr0

)]
cosnθ0

+
+∞

∑
n=0

[
+∞

∑
m=0

εnZ(1)
m3 λ

+
nm

(
ξ

(1)
3 αR10

)
Im

(
ξ

(1)
3 αr0

)]
cosnθ0

+
+∞

∑
n=1

[
+∞

∑
m=1

T (1)
m2 λ

−
nm

(
ξ

(1)
2 αR10

)
Im

(
ξ

(1)
2 αr0

)]
sinnθ0

+
+∞

∑
n=1

[
+∞

∑
m=1

T (1)
m3 λ

−
nm

(
ξ

(1)
3 αR10

)
Im

(
ξ

(1)
3 αr0

)]
sinnθ0

}
,

(35)

where

ε0 =
1
2
, εn = 1.0 for n≥ 1, λ

±
nm (x) = In+m (x)± In−m (x) ,

Y (1)
n j = 2ReC(1)

n j , Z(1)
n j = 2ReB(1)

n j , X (1)
n j =−2ImC(1)

n j , T (1)
n j =−2ImB(1)

n j . (36)

Thus, from equations (36), (26), (24), and (18) we obtain the expressions for the
stresses and displacements of the surrounding cylinder and fiber. These expressions
can be presented as follows

{
σ

(k),1
rr ; σ

(k),1
rθ

; σ
(k),1
rz ; u(k),1

r ; u(k),1
θ

; u(k),1
z

}T
=

{sinαz; sinαz; cosαz; sinαz; sinαz; cosαz}T

×

{
+∞

∑
n=0

{
σ

(k),1
rrc (n); σ

(k),1
rθc (n); σ

(k),1
rzc (n); u(k),1

rc (n); u(k),1
θc (n); u(k),1

zc (n)
}T

cosnθ0

+
+∞

∑
n=1

{
σ

(k),1
rrs (n); σ

(k),1
rθs (n); σ

(k),1
rzs (n); u(k),1

rs (n); u(k),1
θs (n); u(k),1

zs (n)
}T

sinnθ0

}
,

(37)

where
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σ
(0),1
rrc (n) = X (0),1

n1 a(0)
11n

(
ξ

(0)
1 αr0

)
+Y (0),1

n2 a(0)
12n

(
ξ

(0)
2 αr0

)
+Y (0),1

n3 a(0)
13n

(
ξ

(0)
3 αr0

)
,

σ
(0),1
rrs (n) = Y (0),1

n1 b(0)
11n

(
ξ

(0)
1 αr0

)
+X (0),1

n2 b(0)
12n

(
ξ

(0)
2 αr0

)
+X (0),1

n3 b(0)
13n

(
ξ

(0)
3 αr0

)
,

σ
(1),1
rrc (n) =X (1)

n1 a(1)
12n

(
ξ

(1)
1 αr0

)
+

+∞

∑
m=0

T (1)
m1 λ

−
nm(ξ (1)

1 αR10)a
(1)
11m

(
ξ

(1)
1 αr0

)
+Y (1)

n2 a(1)
14n

(
ξ

(1)
2 αr0

)
+

+∞

∑
m=0

Z(1)
m2 λ

+
nm(ξ (1)

2 αR10)a
(1)
13m

(
ξ

(1)
2 αr0

)
+Y (1)

n3 a(1)
16n

(
ξ

(1)
3 αr0

)
+

+∞

∑
m=0

Z(1)
m3 λ

+
nm(ξ (1)

3 αR10)a
(1)
15m

(
ξ

(1)
3 αr0

)
,

(38)

σ
(1),1
rrs (n) =Y (1)

n1 b(1)
12n

(
ξ

(1)
1 αr0

)
+

+∞

∑
m=0

Z(1)
m1 λ

+
nm(ξ (1)

1 αR10)b
(1)
11m

(
ξ

(1)
1 αr0

)
+X (1)

n2 b(1)
14n

(
ξ

(1)
2 αr0

)
+

+∞

∑
m=0

T (1)
m2 λ

−
nm(ξ (1)

2 αR10)b
(1)
13m

(
ξ

(1)
2 αr0

)
+X (1)

n3 b(1)
16n

(
ξ

(1)
3 αr0

)
+

+∞

∑
m=0

T (1)
m3 λ

+
nm(ξ (1)

3 αR10)b
(1)
15m

(
ξ

(1)
3 αr0

)
.

The expressions for σ
(k),1
rθs (n), σ

(k),1
rzc (n), u(k),1

rc (n), u(k),1
θs (n), u(k),1

zc (n) ( for σ
(k),1
rθs (n),

σ
(k),1
rzc (n), u(k),1

rc (n), u(k),1
θs (n), u(k),1

zc (n)) are obtained from (38) by replacing a(k)
1·· (·)(

b(k)
1·· (·)

)
with a(k)

2·· (·), a(k)
3·· (·), a(k)

4·· (·), a(k)
5·· (·), a(k)

6·· (·) (b(k)
2·· (·), b(k)

3·· (·), b(k)
4·· (·), b(k)

5·· (·),

b(k)
6·· (·)), respectively,

where

a(1)
11n

(
ξ

(1)
1 x
)

=−b(1)
11n

(
ξ

(1)
1 x
)

=
(

λ
(1) +2µ

(1)
)

×
[(

2n/x2) In(ξ
(1)
1 x) −

(
nξ

(1)
1 /2x

)(
In+1(ξ

(1)
1 x)+ In−1(ξ

(1)
1 x)

)]
+λ

(1)
[
nξ

(1)
1

(
In+1(ξ

(1)
1 x)+ In−1(ξ

(1)
1 x)

)
−
(
2n/x2) In(ξ

(1)
1 x)

]
,
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a(1)
12n

(
ξ

(1)
1 x
)

=−b(1)
12n

(
ξ

(1)
1 x
)

=
(

λ
(1) +2µ

(1)
)

×
[(

2n/x2)Kn(ξ
(1)
1 x)+

(
nξ

(1)
1 /2x

)(
Kn+1(ξ

(1)
1 x)+Kn−1(ξ

(1)
1 x)

)]
+λ

(1)
[
−nξ

(1)
1

(
Kn+1(ξ

(1)
1 x)+Kn−1(ξ

(1)
1 x)

)
−
(
2n/x2)Kn(ξ

(1)
1 x)

]
,

a(1)
13n

(
ξ

(1)
2 x
)

= b(1)
13n

(
ξ

(1)
2 x
)

=
(

λ
(1) +2µ

(1)
)

×
[

εn

((
ξ

(1)
2

)2
/2

)(
In+2(ξ

(1)
2 x)+2In(ξ

(1)
2 x)+ In−2(ξ

(1)
2 x)

)]
+λ

(1) (2n2/x
)

In(ξ
(1)
2 x)+λ

(1)
(

ξ
(1)
2 /x

)(
In+1(ξ

(1)
2 x)+ In−1(ξ

(1)
2 x)

)
−λ

(1)2c(1)
2 In(ξ

(1)
2 x),

a(1)
14n

(
ξ

(1)
2 x
)

= b(1)
14n

(
ξ

(1)
2 x
)

=
(

λ
(1) +2µ

(1)
)

×
[

εn

(
ξ

(1)
2

)2(
Kn+2(ξ

(1)
2 x)+2Kn(ξ

(1)
2 x)+Kn−2(ξ

(1)
2 x)

)
/2

]
+λ

(1) (2n2/x
)

Kn(ξ
(1)
2 x)−λ

(1)
(

ξ
(1)
2 /x

)(
Kn+1(ξ

(1)
2 x)+Kn−1(ξ

(1)
2 x)

)
−λ

(1)2c(1)
2 Kn(ξ

(1)
2 x),

a(1)
15n(ξ

(1)
3 x) = b(1)

15n(ξ
(1)
3 x) = a(1)

13n(ξ
(1)
3 x), a(1)

16n(ξ
(1)
3 x) = b(1)

16n(ξ
(1)
3 x) = a(1)

14n(ξ
(1)
3 x),

a(0)
11n

(
ξ

(0)
1 x
)

=−b(0)
11n

(
ξ

(0)
1 x
)

=
(

λ
(0) +2µ

(0)
)

×
[(

2n/x2) In(ξ
(0)
1 x)−

(
nξ

(0)
1 /2x

)(
In+1(ξ

(0)
1 x)+ In−1(ξ

(0)
1 x)

)]
+λ

(0)
[
nξ

(0)
1

(
In+1(ξ

(0)
1 x)+ In−1(ξ

(0)
1 x)

)
−
(
2n/x2) In(ξ

(0)
1 x)

]
,

a(0)
12n

(
ξ

(0)
2 x
)

= b(0)
12n

(
ξ

(0)
2 x
)

=
(

λ
(0) +2µ

(0)
)

×
[

εn

(
ξ

(0)
2

)2(
In+2(ξ

(0)
2 x)+2In(ξ

(0)
2 x)+ In−2(ξ

(0)
2 x)

)
/2

]
+λ

(0) (2n2/x
)

In(ξ
(0)
2 x)+λ

(0)
(

ξ
(0)
2 /x

)(
In+1(ξ

(0)
2 x)+ In−1(ξ

(0)
2 x)

)
−λ

(0)2c(0)
2 εnIn(ξ

(0)
2 x);
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a(0)
13n(ξ

(0)
3 x) = b(0)

13n(ξ
(0)
3 x) = a(0)

12n(ξ
(0)
3 x),

a(1)
21n

(
ξ

(1)
1 x
)

= b(1)
21n

(
ξ

(1)
1 x
)

=

2µ
(1)
[(

ξ
(1)
1

)2(
In+2(ξ

(1)
1 x)+2In(ξ

(1)
1 x)+ In−2(ξ

(1)
1 x)

)
/2

+ 2
(
n2/x2) In(ξ

(1)
1 x)−

((
ξ

(1)
1

)2
/x

)(
In+1(ξ

(1)
1 x)+ In−1(ξ

(1)
1 x)

)]
,

a(1)
22n

(
ξ

(1)
1 x
)

= b(1)
22n

(
ξ

(1)
1 x
)

=

2µ
(1)
[(

ξ
(1)
1

)2(
Kn+2(ξ

(1)
1 x)+2Kn(ξ

(1)
1 x)+Kn−2(ξ

(1)
1 x)

)
/2

+ 2
(
n2/x2)Kn(ξ

(1)
1 x)+

((
ξ

(1)
1

)2
/x

)(
Kn+1(ξ

(1)
1 x)+Kn−1(ξ

(1)
1 x)

)]
,

a(1)
23n

(
ξ

(1)
2 x
)

=−b(1)
23n

(
ξ

(1)
2 x
)

=

2µ
(1)
[
−(n/x)ξ

(1)
2

(
In+1(ξ

(1)
2 x)+ In−1(ξ

(1)
2 x)

)
− (n/x)ξ

(1)
2

(
In+1(ξ

(1)
2 x)+ In−1(ξ

(1)
2 x)

)
−
(
2n/x2) In(ξ

(1)
2 x)

]
,

a(1)
24n

(
ξ

(1)
2 x
)

=−b(1)
24n

(
ξ

(1)
2 x
)

=

2µ
(1)
[
(n/x)ξ

(1)
2

(
Kn+1(ξ

(1)
2 x)+Kn−1(ξ

(1)
2 x)

)
+(n/x)ξ

(1)
2

(
Kn+1(ξ

(1)
2 x)+Kn−1(ξ

(1)
2 x)

)
−
(
2n/x2)Kn(ξ

(1)
2 x)

]
,

a(1)
25n(ξ

(1)
3 x) =−b(1)

25n(ξ
(1)
3 x) = a(1)

23n(ξ
(1)
3 x),

a(1)
26n(ξ

(1)
3 x) =−b(1)

26n(ξ
(1)
3 x) = a(1)

24n(ξ
(1)
3 x),

a(0)
21n

(
ξ

(0)
1 x
)

= b(0)
21n

(
ξ

(0)
1 x
)

=

2µ
(0)
[(

ξ
(0)
1

)2(
In+2(ξ

(0)
1 x)+2In(ξ

(0)
1 x)+ In−2(ξ

(0)
1 x)

)
/2

+ 2
(
n2/x2) In(ξ

(0)
1 x)−

((
ξ

(0)
1

)2
/x

)(
In+1(ξ

(0)
1 x)+ In−1(ξ

(0)
1 x)

)]
,
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a(0)
22n

(
ξ

(0)
2 x
)

=−b(0)
22n

(
ξ

(0)
2 x
)

=

2µ
(0)
[
−(n/x)ξ

(0)
2

(
In+1(ξ

(0)
2 x)+ In−1(ξ

(0)
2 x)

)
− (n/x)ξ

(0)
2

(
In+1(ξ

(0)
2 x)+ In−1(ξ

(0)
2 x)

)
−
(
2n/x2) In(ξ

(0)
2 x)

]
,

a(0)
23n(ξ

(0)
3 x) =−b(0)

23n(ξ
(0)
3 x) = a(0)

22n(ξ
(0)
3 x),

a(1)
31n

(
ξ

(1)
1 x
)

=−b(1)
31n

(
ξ

(1)
1 x
)

=−2µ
(1) (2n/x) In(ξ

(1)
1 x),

a(1)
32n

(
ξ

(1)
1 x
)

=−b(1)
32n

(
ξ

(1)
1 x
)

=−2µ
(1) (2n/x)Kn(ξ

(1)
1 x)

a(1)
33n

(
ξ

(1)
2 x
)

= b(1)
33n

(
ξ

(1)
2 x
)

= 2µ
(1)
(

1+ c(1)
2

)
ξ

(1)
2

(
In+1(ξ

(1)
2 x)+ In−1(ξ

(1)
2 x)

)
,

a(1)
34n

(
ξ

(1)
2 x
)

= b(1)
34n

(
ξ

(1)
2 x
)

=−2µ
(1)
(

1+ c(1)
2

)
ξ

(1)
2

(
Kn+1(ξ

(1)
2 x)+Kn−1(ξ

(1)
2 x)

)
,

a(1)
35n(ξ

(1)
3 x) = b(1)

35n(ξ
(1)
3 x) = a(1)

33n(ξ
(1)
3 x), a(1)

36n(ξ
(1)
3 x) = b(1)

36n(ξ
(1)
3 x) = a(1)

34n(ξ
(1)
3 x),

a(0)
31n

(
ξ

(0)
1 x
)

=−b(0)
31n

(
ξ

(0)
1 x
)

=−2µ
(0) (2n/x) In(ξ

(0)
1 x),

a(0)
32n

(
ξ

(0)
2 x
)

= b(0)
32n

(
ξ

(0)
2 x
)

= εn2µ
(0)

ξ
(0)
2

(
1+ c(0)

2

)(
In+1(ξ

(0)
2 x)+ In−1(ξ

(0)
2 x)

)
,

a(0)
33n(ξ

(0)
3 x) = b(0)

33n(ξ
(0)
3 x) = a(0)

32n(ξ
(0)
3 x),

a(1)
41n

(
ξ

(1)
1 x
)

=−b(1)
41n

(
ξ

(1)
1 x
)

=−(2n/x) In(ξ
(1)
1 x),

a(1)
42n

(
ξ

(1)
1 x
)

=−b(1)
42n

(
ξ

(1)
1 x
)

=−(2n/x)Kn(ξ
(1)
1 x),

a(1)
43

(
ξ

(1)
2 x
)

= b(1)
43

(
ξ

(1)
2 x
)

= ξ
(1)
2

(
In+1(ξ

(1)
2 x)+ In−1(ξ

(1)
2 x)

)
,

a(1)
44n

(
ξ

(1)
2 x
)

= b(1)
44n

(
ξ

(1)
2 x
)

=−ξ
(1)
2

(
Kn+1(ξ

(1)
2 x)+Kn−1(ξ

(1)
2 x)

)
,

a(1)
45n

(
ξ

(1)
3 x
)

= b(1)
45n

(
ξ

(1)
3 x
)

= a(1)
43n

(
ξ

(1)
3 x
)

,

a(1)
46n

(
ξ

(1)
3 x
)

= b(1)
46n

(
ξ

(1)
3 x
)

= a(1)
44n

(
ξ

(1)
3 x
)

,

a(0)
41n

(
ξ

(0)
1 x
)

=−b(0)
41n

(
ξ

(0)
1 x
)

=−(2n/x) In(ξ
(0)
1 x),

a(0)
42n

(
ξ

(0)
2 x
)

= b(0)
42n

(
ξ

(0)
2 x
)

= εnξ
(0)
2

(
In+1(ξ

(0)
2 x)+ In−1(ξ

(0)
2 x)

)
,

a(0)
43n(ξ

(0)
3 x) = b(0)

43n(ξ
(0)
3 x) = a(0)

42n(ξ
(0)
3 x),
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a(1)
51n

(
ξ

(1)
1 x
)

= b(1)
51n

(
ξ

(1)
1 x
)

= ξ
(1)
1

(
In+1(ξ

(1)
1 x)+ In−1(ξ

(1)
1 x)

)
,

a(1)
52n

(
ξ

(1)
1 x
)

= b(1)
52n

(
ξ

(1)
1 x
)

=−ξ
(1)
1

(
Kn+1(ξ

(1)
1 x)+Kn−1(ξ

(1)
1 x)

)
,

a(1)
53n

(
ξ

(1)
2 x
)

=−b(1)
53n

(
ξ

(1)
2 x
)

=−(2n/x) In(ξ
(1)
2 x),

a(1)
54n

(
ξ

(1)
2 x
)

=−b(1)
54n

(
ξ

(1)
2 x
)

=−(2n/x)Kn(ξ
(1)
2 x),

a(1)
55n

(
ξ

(1)
3 x
)

=−b(1)
55n

(
ξ

(1)
3 x
)

= a(1)
53n

(
ξ

(1)
3 x
)

,

a(1)
56n

(
ξ

(1)
3 x
)

=−b(1)
56n

(
ξ

(1)
3 x
)

= a(1)
54n

(
ξ

(1)
3 x
)

,

a(0)
51n

(
ξ

(0)
1 x
)

= b(0)
51n

(
ξ

(0)
1 x
)

= ξ
(0)
1

(
In+1(ξ

(0)
1 x)+ In−1(ξ

(0)
1 x)

)
,

a(0)
52n

(
ξ

(0)
2 x
)

=−b(0)
52n

(
ξ

(0)
2 x
)

=−(2n/x) In(ξ
(0)
2 x),

a(0)
53n(ξ

(0)
3 x) =−b(0)

53n(ξ
(0)
3 x) = a(0)

52n(ξ
(0)
3 x),

a(1)
61n

(
ξ

(1)
1 x
)

= b(1)
61n

(
ξ

(1)
1 x
)

= 0.0,

a(1)
62n

(
ξ

(1)
1 x
)

= b(1)
62n

(
ξ

(1)
1 x
)

= 0.0,

a(1)
63n

(
ξ

(1)
2 x
)

= b(1)
63n

(
ξ

(1)
2 x
)

= εn2c(1)
2 In(ξ

(1)
2 x),

a(1)
64n

(
ξ

(1)
2 x
)

= b(1)
64n

(
ξ

(1)
2 x
)

= εn2c(1)
2 Kn(ξ

(1)
2 x),

a(1)
65n

(
ξ

(1)
3 x
)

= b(1)
65n

(
ξ

(1)
3 x
)

= a(1)
63n

(
ξ

(1)
3 x
)

,

a(1)
66n

(
ξ

(1)
3 x
)

= b(1)
66n

(
ξ

(1)
3 x
)

= a(1)
64n

(
ξ

(1)
3 x
)

,

a(0)
61n

(
ξ

(0)
1 x
)

= b(0)
61n

(
ξ

(0)
1 x
)

= 0.0,

a(0)
62n

(
ξ

(0)
2 x
)

= εn2c(0)
2 In(ξ

(0)
2 x), a(0)

63n(ξ
(0)
3 x) = a(0)

62n(ξ
(0)
3 x),

ε0 = 0.5, εn = 1.0 for n≥ 1,

c(k)
2 =

[(
λ

(k)/µ
(k) +2

)(
ξ

(k)
2

)2
−1−σ

(k),0
33 /µ

(k)
]
×µ

(k)/
(

λ
(k) + µ

(k)
)
, k = 0,1.

(39)
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Thus, with the foregoing, we have prepared all needed mathematical calculations
to satisfy the contact conditions at r0 = R0.

Now we consider satisfaction of the boundary conditions in (22). For this pur-
pose we must present the terms written in the coordinates (r0,θ0) which enter the

expressions of σ
(1),1
rr , σ

(1),1
rθ

and σ
(1),1
rz in the system of coordinates (r,θ) . These

expressions are presented in series form, the terms of which are (unknown const)n×
Kn+k(cr0)cosnθ0 or (unknown const)n× Kn+k(cr0)sinnθ0 (k = 0,1,2,3). It should
be noted that for presentation of these terms in the system of coordinates (r,θ)
we cannot employ the summation theorem for functions Kn+k(cr0)cosnθ0 and
Kn+k(cr0)sinnθ0, because, in the considered case, the inequality R > R10 occurs,
i.e. the condition in type (34) does not satisfy in the satisfaction of the boundary
conditions at r = R (22). Therefore, we propose here the following algorithm for
this satisfaction. To simplify the consideration below we will make all discussions
for the stress σ

(1),1
rr . These discussions can be easily transformed for the stresses

σ
(1),1
rθ

and σ
(1),1
rz .

First we present the expressions of the stress σ
(1),1
rr as follows.

σ
(1),1
rr =sinαz

{
+∞

∑
n=0

X (1)
n1 a(1)

12n(ξ
(1)
1 αr0)cosnθ0+

+∞

∑
n=0

T (1)
n1 a(1)

11n(ξ
(1)
1 αr)cosnθ

+
+∞

∑
n=0

Y (1)
n2 a(1)

14n(ξ
(1)
2 αr0)cosnθ0+

+∞

∑
n=0

Z(1)
n2 a(1)

13n(ξ
(1)
2 αr)cosnθ

+
+∞

∑
n=0

Y (1)
n3 a(1)

16n(ξ
(1)
3 αr0)cosnθ0+

+∞

∑
n=0

Z(1)
n3 a(1)

15n(ξ
(1)
3 αr)cosnθ

}

+ sinαz

{
+∞

∑
n=1

Y (1)
n1 b(1)

12n(ξ
(1)
1 αr0)sinnθ0+

+∞

∑
n=1

Z(1)
n1 b(1)

11n(ξ
(1)
1 αr)sinnθ

+
+∞

∑
n=1

X (1)
n2 b(1)

14n(ξ
(1)
2 αr0)sinnθ0+

+∞

∑
n=1

T (1)
n2 b(1)

13n(ξ
(1)
2 αr)sinnθ

+
+∞

∑
n=1

X (1)
n3 b(1)

16n(ξ
(1)
3 αr0)sinnθ0+

+∞

∑
n=1

T (1)
n3 b(1)

15n(ξ
(1)
3 αr)sinnθ

}
.

(40)

Under satisfying the boundary condition (22) at r = R with the use of equation
(40), instead of r0and θ0 we write the following expressions which are obtained
from equation (1).
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r0 = r0(r,θ) = R

√
1−2

R10

R
cosθ +

(
R10

R

)2

,

θ0 = θ0(r,θ) = argcos

(cosθ − R10

R

)
/

√
1−2

R10

R
cosθ +

(
R10

R

)2
 . (41)

Taking equation (41) into account, we expand the terms a(1)
1 jn (cr0)cosnθ0 and b(1)

4 jn (cr0)sinnθ0

with the following cosine and sine Fourier series, respectively.

a(1)
1 jn (cr0)cosnθ0 =

+∞

∑
k=0

α
(1)
1 jnk (cR)coskθ , b(1)

1 jn (cr0)sinnθ0 =
+∞

∑
k=1

β
(1)
1 jnk (cR)sinkθ ,

(42)

where

α
(1)
1 jn0 (cR) =

2
π

π∫
0

a(1)
1 jn (cr0)cosnθ0dθ

α
(1)
1 jnk (cR) =

1
π

π∫
0

a(1)
1 jn (cr0)cosnθ0 coskθdθ for k ≥ 1,

β
(1)
1 jnk (cR) =

1
π

π∫
0

b(1)
1 jn (cr0)sinnθ0 sinkθdθ . (43)

Substituting expression (42) into equation (40) and doing some mathematical trans-
formations we obtain the following expression for σ

(1)
rr at r = R.
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σ
(1),1
rr

∣∣∣
r=R

=sinαz

{
+∞

∑
n=0

[
+∞

∑
k=0

X (1)
k1 α

(1)
12nk(ξ

(1)
1 αR)

+T (1)
n1 a(1)

11n(ξ
(1)
1 αR)+

+∞

∑
k=0

Y (1)
k2 α

(1)
14nk(ξ

(1)
2 αR)+Z(1)

n2 a(1)
13n(ξ

(1)
2 αR)

+
+∞

∑
k=0

Y (1)
k3 α

(1)
16nk(ξ

(1)
3 αR)+Z(1)

n3 a(1)
15n(ξ

(1)
3 αR)

]
cosnθ

+
+∞

∑
n=1

[
+∞

∑
k=1

Y (1)
k1 β

(1)
12nk(ξ

(1)
1 αR)+Z(1)

n1 b(1)
11n(ξ

(1)
1 αR)

+
+∞

∑
k=1

X (1)
k2 β

(1)
14nk(ξ

(1)
2 αR)+T (1)

n2 b(1)
13n(ξ

(1)
2 αR)

+
+∞

∑
k=1

X (1)
k3 β

(1)
16nk(ξ

(1)
3 αR)+T (1)

n3 b(1)
15n(ξ

(1)
3 αR)

]
sinnθ

}
.

(44)

In a similar manner we obtain the following expressions for the stresses σ
(1),1
rθ

and

σ
(1),1
rz at r = R.

σ
(1),1
rθ

∣∣∣
r=R

=sinαz

{
+∞

∑
n=1

[
+∞

∑
k=1

X (1)
k1 α

(1)
22nk(ξ

(1)
1 αR)

+T (1)
n1 a(1)

21n(ξ
(1)
1 αR)+

+∞

∑
k=1

Y (1)
k2 α

(1)
24nk(ξ

(1)
2 αR)+Z(1)

n2 a(1)
23n(ξ

(1)
2 αR)

+
+∞

∑
k=1

Y (1)
k3 α

(1)
26nk(ξ

(1)
3 αR)+Z(1)

n3 a(1)
25n(ξ

(1)
3 αR)

]
sinnθ

+
+∞

∑
n=0

[
+∞

∑
k=0

Y (1)
k1 β

(1)
22nk(ξ

(1)
1 αR)+Z(1)

n1 b(1)
21n(ξ

(1)
1 αR)

+
+∞

∑
k=0

X (1)
k2 β

(1)
24nk(ξ

(1)
2 αR)+T (1)

n2 b(1)
23n(ξ

(1)
2 αR)

+
+∞

∑
k=0

X (1)
k3 β

(1)
26nk(ξ

(1)
3 αR)+T (1)

n3 b(1)
25n(ξ

(1)
3 αR)

]
cosnθ

}
,
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σ
(1),1
rz

∣∣∣
r=R

=cosαz

{
+∞

∑
n=0

[
+∞

∑
k=0

X (1)
k1 α

(1)
32nk(ξ

(1)
1 αR)

+T (1)
n1 a(1)

31n(ξ
(1)
1 αR)+

+∞

∑
k=0

Y (1)
k2 α

(1)
34nk(ξ

(1)
2 αR)+Z(1)

n2 a(1)
33n(ξ

(1)
2 αR)

+
+∞

∑
k=0

Y (1)
k3 α

(1)
36nk(ξ

(1)
3 αR)+Z(1)

n3 a(1)
35n(ξ

(1)
3 αR)

]
cosnθ

+
+∞

∑
n=1

[
+∞

∑
k=1

Y (1)
k1 β

(1)
32nk(ξ

(1)
1 αR)+Z(1)

n1 b(1)
31n(ξ

(1)
1 αR)

+
+∞

∑
k=1

X (1)
k2 β

(1)
34nk(ξ

(1)
2 αR)+T (1)

n2 b(1)
33n(ξ

(1)
2 αR)

+
+∞

∑
k=1

X (1)
k3 β

(1)
36nk(ξ

(1)
3 αR)+T (1)

n3 b(1)
33n(ξ

(1)
3 αR)

]
sinnθ

}
.

(45)

where

α
(1)
2 jn0 (cR) =

2
π

π∫
0

a(1)
2 jn (cr0)cosnθ0dθ ,

α
(1)
2 jnk (cR) =

1
π

π∫
0

a(1)
2 jn (cr0)cosnθ0 coskθdθ for k ≥ 1,

β
(1)
2 jnk (cR) =

1
π

π∫
0

b(1)
2 jn (cr0)sinnθ0 sinkθdθ ,

β
(1)
2 jn0 (cR) =

2
π

π∫
0

b(1)
2 jn (cr0)cosnθ0dθ

β
(1)
2 jnk (cR) =

1
π

π∫
0

b(1)
2 jn (cr0)cosnθ0 coskθdθ for k ≥ 1,

α
(1)
2 jnk (cR) =

1
π

π∫
0

a(1)
2 jn (cr0)sinnθ0 sinkθdθ . (46)

Thus, using equations (37) and (38) we can satisfy the contact conditions in (26),
and using equations (44) and (45) we can satisfy boundary condition (22). In this
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way we attain from these boundary and contact conditions the infinite system’s lin-
ear algebraic equations for determination of the unknown constants in the foregoing
expressions. The analyses of these expressions show that the mentioned unknowns
can be divided into two uncrossing sets (groups): the first of them (denoted by SI)
is

SI =
{

X (1),1
n1 , T (1),1

n1 , Y (1),1
n2 , Y (1),1

n3 , Z(1),1
n2 , Z(1),1

n3 , X (0),1
n1 , Y (0),1

n2 , Y (0),1
n3

}
,

(47)

but the second of them (denoted by SII) is

SII =
{

Y (1),1
n1 , Z(1),1

n1 , X (1),1
n2 , X (1),1

n3 , T (1),1
n2 , T (1),1

n3 , Y (0),1
n1 , X (0),1

n2 , X (0),1
n3

}
.

(48)

From the foregoing contact and boundary conditions we attain the system of equa-
tions for each group of unknowns separately.

The equations for the SI (47) group of unknowns are as follows.

+∞

∑
k=0

X (1)
k1 α

(1)
i2nk(ξ

(1)
1 αR)+T (1)

n1 a(1)
i1n(ξ

(1)
1 αR)+

+∞

∑
k=0

Y (1)
k2 α

(1)
i4nk(ξ

(1)
2 αR)

+Z(1)
n2 a(1)

i3n(ξ
(1)
2 αR)+

+∞

∑
k=0

Y (1)
k3 α

(1)
i6nk(ξ

(1)
3 αR)+Z(1)

n3 a(1)
i5n(ξ

(1)
3 αR) = 0,

X (1)
n1 a(1)

j2n

(
ξ

(1)
1 αR0

)
+

+∞

∑
m=1

T (1)
m1 λ

−
nm(ξ (1)

1 αR10)a
(1)
j1m

(
ξ

(1)
1 αR0

)
+Y (1)

n2 a(1)
j4n

(
ξ

(1)
2 αr0

)
+

+∞

∑
m=0

Z(1)
m2 λ

+
nm(ξ (1)

2 αR10)a
(1)
j3m

(
ξ

(1)
2 αR0

)
+Y (1)

n3 a(1)
j6n

(
ξ

(1)
3 αR0

)
+

+∞

∑
m=0

Z(1)
m3 λ

+
nm(ξ (1)

3 αR10)a
(1)
j5m

(
ξ

(1)
3 αR0

)
= δ

6
j δ

n
1 2π

(
σ

(1),0
33 −σ

(2),0
33

)
cosβ , n = 0,1,2, ...,∞; i = 1,2,3; j = 1,2,3,4,5,6.

(49)
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The equations for the SII (48) group of unknowns are as follows.

+∞

∑
k=1

Y (1)
k1 β

(1)
i2nk(ξ

(1)
1 αR)+Z(1)

n1 b(1)
i1n(ξ

(1)
1 αR)+

+∞

∑
k=1

X (1)
k2 β

(1)
i4nk(ξ

(1)
2 αR)

+T (1)
n2 b(1)

i3n(ξ
(1)
2 αR)+

+∞

∑
k=1

X (1)
k3 β

(1)
i6nk(ξ

(1)
3 αR)+T (1)

n3 b(1)
i3n(ξ

(1)
3 αR) = 0,

Y (1)
n1 b(1)

j2n

(
ξ

(1)
1 αR0

)
+

+∞

∑
m=0

Z(1)
m1 λ

+
nm(ξ (1)

1 αR10)b
(1)
j1m

(
ξ

(1)
1 αR0

)
+X (1)

n2 b(1)
j4n

(
ξ

(1)
2 αR0

)
+

+∞

∑
m=1

T (1)
m2 λ

−
nm(ξ (1)

2 αR10)b
(1)
j3m

(
ξ

(1)
2 αR0

)
+X (1)

n3 b(1)
j6n

(
ξ

(1)
3 αR0

)
+

+∞

∑
m=0

T (1)
m3 λ

+
nm(ξ (1)

3 αR10)b
(1)
j5m

(
ξ

(1)
3 αR0

)
= δ

6
j δ

n
1 2π

(
σ

(1),0
33 −σ

(2),0
33

)
sinβ . n = 0,1,2, ...,∞; i = 1,2,3; j = 1,2,3,4,5,6.

(50)

Consequently, as SI∩SII = /0 the system of equations in (49) and (50) can be solved
separately. But for this purpose the contact and boundary conditions must be also
separated into two parts with respect to the presentation of the corresponding terms
by the sinnθ and cosnθ .

With the foregoing we have exhausted the consideration of the solution method as
well as the computer modeling algorithm for obtaining the corresponding numeri-
cal results. It should be noted that the main difference in the method and algorithm
developed from the methods and algorithms used in the papers by Akbarov and
Kosker (2003a, 2003b), Guz and Lapusta (1988), Lapusta (1988) and others listed
in the references of these papers is the expansion of the sought values in the cosine
and sine Fourier series under satisfaction of the boundary conditions at r = R for
which the summation theorem for the cylindrical functions is not applicable.

The values of the second and subsequent approximations in (12) can also be deter-
mined as the values of the first approximation by taking the obvious changes into
account. The large number of numerical investigations carried out and detailed in
the monograph by Akbarov and Guz (2000) show that the second and subsequent
approximations give only insignificant quantitative improvement over the numeri-
cal results. Therefore we here restrict ourselves to consideration of the zeroth and
first approximation only.

The approach proposed above with the corresponding stability loss criterion (with
infinitesimal initial imperfection criterion) can also be applied for investigation of
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the fiber micro-buckling which is near the convex cylindrical bounded surface un-
der compression of the considered body in the direction of the Oz axis (Fig.1). Note
that the corresponding micro-buckling problems for the fiber which is near the con-
cave cylindrical surface (cavity) as well as the plane-surface were investigated in
the papers by Guz and Lapusta (1986, 1988).

4 Numerical results and discussions

We introduce the dimensionless parameters χ = 2πR0/`, δ = σ
(1),0
33 /µ(1), L =

R10/R0, h = H/R0, (R10 + H = R), e = E(0)/E(1), where E(0)(E(1)) is a modu-
lus of elasticity of the fiber (matrix) material, ` is a period of the form of the fiber’s
curvature and R0 is a radius of the fiber’s circular cross section. The meaning of the
other geometrical parameters is shown in Fig. 1. Nevertheless, we note that here
the dimensionless parameters h and L characterize the distance between the fiber
and convex cylindrical surface and the distance between the fiber and the center of
the cylinder which contains this fiber.

In obtaining the numerical results, the infinite series in equations (49) and (50) must
be replaced by the corresponding finite series, i.e., for example,

+∞

∑
k=0

X (1)
k1 a(2)

i2nk

(
ξ

(1)
1 αR

)
≈

+M

∑
k=0

X (1)
k1 a(2)

i2nk

(
ξ

(1)
1 αR

)
. (51)

From the comparison of the corresponding numerical results obtained for various
M in (51), the final value of M is determined. For example, if∣∣∣ ∣∣∣σ (1),1

rr

∣∣∣∣∣∣
M
−
∣∣∣σ (1),1

rr

∣∣∣∣∣∣
M−1

∣∣∣/ ∣∣∣σ (1),1
rr

∣∣∣∣∣∣
M−1
≤ 10−3,

then the increase in the number M or the increase in the numbers in series (50) is
stopped. It should be noted that for the validity of the replacement of the infinite
series with the finite ones, i.e. for the validity of equation (51), it is necessary to
prove that the determinant of coefficients of the unknowns in equations (49) and
(50) is a normal type determinant (Kantarovich and Krilov (1962)).

Similar proofs were also presented in the papers by Akbarov and Kosker (2003a,
2003b) and others, therefore we will not stop here to show the procedure for this
proof; rather, we begin to analyze the numerical results attained for the self-balanced
normal stress acting on the interface between the fiber and surrounding medium
and for the critical compression deformation under which the micro-buckling of
the fiber occurs.

In the numerical investigation, the integrals (43) and (46) are calculated by the use
of the Gauss integration algorithm. In this case the interval [0,π] is divided into a
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certain number of short intervals. The number of these intervals is determined from
the numerical convergence of the values of the integrals.

4.1 Numerical results related to the self-balanced normal stress

Assuming that β = 0, ε = 0.015, e = E(0)/E(1) = 50, ν(1) = ν(0) = 0.3 and con-

sidering the values of σnn = ε σ
(0)
rr

∣∣∣
r0=R0

calculated under αz = π/2 and θ0 = 0,

we investigate the dependence between
∣∣∣σnn/σ

(1),0
33

∣∣∣ and χ for various values of L

and h. Through the parameter δ = σ
(1),0
33 /µ(1) we will characterize the influence

of the geometrical non-linearity on the values of
∣∣∣σnn/σ

(1),0
33

∣∣∣. First, we assume

that δ ∼ O
(
10−5

)
( i.e. we assume that β = 10−5), for which the effect of the

mentioned geometrical non-linearity on the values of
∣∣∣σnn/σ

(1),0
33

∣∣∣ can be ignored

with very high accuracy, and we analyze the convergence of the numerical results
obtained for various values of M in (51). For this purpose, consider the case where
L = 2.0. According to the well known mechanical consideration, this convergence
must improve with h, because the influence of the free cylindrical boundary on
the self-balanced stress σnn decreases with h, and primarily because this influence
causes the sought values to be presented in series form. Thus, consider the graphs

given in Figs. 2a, 2b and 2c which show the dependence between
∣∣∣σnn/σ

(1),0
33

∣∣∣ and

χ under h = 3.0, 5.0 and 9.0, respectively, for various M and n, where n indicates
the number of the equations from which the unknown constants SIare determined.
It follows from these graphs that, as has been predicted above, the convergence of
the numerical results improves with h. Taking the results illustrated in Figs. 2a, 2b
and 2c into account, below we will discuss the results attained in the case where
{M = 5;n = 51}.
Thus, we consider the influence of the parameter h (for fixed L) on the values

of
∣∣∣σnn/σ

(1),0
33

∣∣∣ attained for various χ . This influence is illustrated by the graphs

given in Fig. 3. These graphs show that the values of
∣∣∣σnn/σ

(1),0
33

∣∣∣ approach with

h the corresponding values of
∣∣∣σnn/σ

(1),0
33

∣∣∣ obtained for the case where the fiber is

embedded within the infinite medium (Akbarov and Guz (1985b)). This statement
again confirms the validity of the computational algorithm that has been developed
and used here.

Now we analyze the change in the values of
∣∣∣σnn/σ

(1),0
33

∣∣∣ as the fiber goes away

from the cylindrical free surface under fixed R/R0 (= L+h = 50.0). The graphs il-
lustrating this change are given in Fig. 4 for various combinations of the parameters
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Figure 2: (a) The graphs of the dependence between the
∣∣∣σnn/σ

(1),0
33

∣∣∣ and parameter

χ for various M and n under h = 3.0. (b) The graphs of the dependence between

the
∣∣∣σnn/σ

(1),0
33

∣∣∣ and parameter χ for various M and n under h = 5.0. (c) The graphs

of the dependence between the
∣∣∣σnn/σ

(1),0
33

∣∣∣ and parameter χ for various M and n

under h = 9.0

L and h. It follows from these graphs that the values of
∣∣∣σnn/σ

(1),0
33

∣∣∣ increase as the

fiber goes away from the cylindrical surface and, as in the previous case, approach
the values obtained in the paper by Akbarov and Guz (1985b) for the single fiber
contained in the infinite elastic body.

Fig. 5 shows the graphs of the dependence of the values of
∣∣∣σnn/σ

(1),0
33

∣∣∣ and χ
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Figure 3: The influence of the distance of the fiber from the cylindrical surface (i.e.

of the parameter h) on the values of
∣∣∣σnn/σ

(1),0
33

∣∣∣. The graph constructed in the case

where h = 40.0 coincides with the corresponding one constructed in the paper by
Akbarov and Guz (1985)

constructed for various L under fixed value of h(= 3.0), i.e. under a fixed distance

of the fiber from the free cylindrical surface. The graphs show that the
∣∣∣σnn/σ

(1),0
33

∣∣∣
also approach certain asymptotic values with L (in other words, with R/R0). The
increasing R means the curvature radius of the cylindrical surface is increasing.
Consequently, the cylindrical surface approaches the plane-surface with R/R0 (for
fixed R0). It follows from the foregoing statement that the mentioned asymptotic

values of
∣∣∣σnn/σ

(1),0
33

∣∣∣ correspond to the values attained for the fiber which is near to

the free plane-surface. The results also show that the values of
∣∣∣σnn/σ

(1),0
33

∣∣∣ increase

with R/R0.

In all the foregoing results we observe that the dependence between
∣∣∣σnn/σ

(1),0
33

∣∣∣
and the parameter χ has a non-monotone character. This character of the mentioned
dependence was also noted in many investigations detailed in the monograph by
Akbarov and Guz (2000). However, the results given in Fig. 5 show that the non-
monotone character of the dependence considered becomes weak with decreasing
L, i.e. as the curvature radius of the cylindrical surface decreases.
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Figure 4: The change of the values of
∣∣∣σnn/σ

(1),0
33

∣∣∣ as the fiber goes away from the

cylindrical surface under fixed R/R0 (= L+h = 50)

So far, it has been assumed that δ ∼ O
(
10−5

)
and the influence of the geometrical

non-linearity was not taken into account. Now we consider the influence of an

increase in the absolute values of δ on the values of
∣∣∣σnn/σ

(1),0
33

∣∣∣. In this case,

the distinction between the cases where the body considered is compressed and
stretched must be made, i.e., between the cases where δ < 0.0 and δ > 0.0. The
corresponding graphs are given in Fig. 6 for the case where L = 47.0 and h =
3.0. It follows from these results that under compression (tension), as a result
of the geometrical non-linearity being take into account, the absolute values of∣∣∣σnn/σ

(1),0
33

∣∣∣ increase (decrease). This conclusion agrees, in the quantitative sense,

with the corresponding one attained in the paper by Akbarov and Kosker (2003b).

With the foregoing we have restricted ourselves to consideration of the numerical
results regarding the distribution of the self-balanced normal stress which is caused
namely by the periodic curving of the fiber which is near the convex cylindrical
surface.
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Figure 5: The graphs of the dependence between
∣∣∣σnn/σ
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∣∣∣ and the parameter χ

constructed for various L under fixed h(= 3.0), i.e. under a fixed distance of the
fiber from the free cylindrical surface

4.2 Numerical results related to the micro-buckling of the fiber

Now we examine the employment of the developed approach to investigate the
micro-buckling of a fiber which is near the convex cylindrical free surface. For this
purpose we use the initial imperfection criterion, which, according to the problem
under consideration, is formulated as follows.

u(0),1
r /`→ ∞ as ε

(1),0
33

(
= ε

(0),0
33 = p/E(1)

)
→ ε

(1),0
33.cr

(
= ε

(0),0
33.cr = pcr/E(1)

)
. (52)

Fig. 7 shows the realization of this criterion for the case where L = 6.0, h = 2.0,
and χ = 0.4. At the same time, Fig. 7 shows the convergence of the critical values

of ε
(1),0
33.cr (52) with respect to M and n. The results confirm that the mentioned

convergence is quite good.

Consider the influence of the parametersLand hon the values of
∣∣∣ε(1),0

33.cr

∣∣∣. This in-

fluence is illustrated by the data given in Tables 1 and 2 which show the values

of
∣∣∣ε(1),0

33.cr

∣∣∣for various values L and h under χ = 0.4. These results show that un-

der fixed h (i.e. under h = 2.0) the values of
∣∣∣ε(1),0

33.cr

∣∣∣ approach (along with L) the
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for the values of the
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corresponding values attained in the paper by Guz and Lapusta (1986) for the fiber
which is near the plane-surface, but under fixed L (i.e. under L = 6.0) these values
approach (along with h) the corresponding values attained for the fiber embedded
within the infinite elastic medium (see Babich (1973) and Akbarov and Kosker
(2001)). Consequently, these results again confirm the validity and correctness of
the proposed approach and developed computational algorithm for obtaining accu-
rate numerical results. The last statement is also conformed by the graphs given

in Fig. 10, which show the dependence between
∣∣∣ε(1),0

33.cr

∣∣∣ and χ for various val-

ues of h under L = 12.0. Note that in Fig. 8 the graph corresponding to the case
where the fiber is surrounded by the infinite body (i.e. the case where h = ∞) was
also given for a comparison of the results obtained in the present investigation with
those obtained in the paper by Babich (1973). It follows from these graphs that

among the critical values of
∣∣∣ε(1),0

33.cr

∣∣∣ there exists a min
∣∣∣ε(1),0

33.cr

∣∣∣ which is taken within

the scope of the bifurcation theory of the stability loss as a criterion for the near
surface failure under compression of the body along the fiber. For fixed L and h the
values of the mentioned failure force depend only on the values of the ratio of the
mechanical constants of the materials of the fiber and surrounding body. But the
value of χ which corresponds to the failure force is determined at the end of the
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solution procedure. However, the value of the failure force determined within the
scope of the initial imperfection criterion depends also on the values of χ because
in the selection of the initial imperfection form, the value of χ is determined before
the solution procedure. Consequently, the failure value of the initial force attained
within the framework of the initial imperfection criterion in general, differs from
that which is attained within the framework of the bifurcation approach and is more
real than that determined within the scope of the bifurcation theory.

With this we have restricted ourselves to the consideration of the analyses of the nu-
merical results related to the micro-buckling problem of the fiber which is near the
convex cylindrical surface. The approach proposed and employed here can also be
applied for the nano-fibers in a polymer matrix under modeling of the nano-fibers
as continuous fibers with infinite length, the elasticity modulus of which are 300 –
1000 times greater than that of the polymer matrix (see: the papers by Guz, Rush-
chitsky and Guz (2008), Qian, Dickey, Andrews and Rantell (2000), Zhuk and Guz
(2007) and others). These and other similar problems on the mechanics of micro-
or nano-fibers near the convex cylindrical surface, in elastic and viscoelastic poly-
mer materials which can be investigated within the scope of the approach proposed
in the present paper will be the subject of further investigations on the part of the
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Figure 8: The graphs of the dependence between
∣∣∣ε(1),0

33.cr

∣∣∣ and the parameter χ con-

structed for various h under L = 12.0. The graph constructed in the case where
h = ∞ is the graph constructed in the papers by Babich (1973) and Akbarov and
Kosker (2001)

authors.

Table 1: The values of
∣∣∣ε(1),0

33.cr

∣∣∣ for various L under h = 2.0, χ = 0.4. The case where

L = ∞ corresponds to the paper by Guz and Lapusta (1986)

L 2.0 10.0 20.0 30.0 ∞∣∣∣ε(1),0
33.cr

∣∣∣ 0.0884 0.0961 0.1038 0.1076 0.1077

Table 2: The values of
∣∣∣ε(1),0

33.cr

∣∣∣ for various h under L = 6.0, χ = 0.4. The case where

h = ∞ corresponds to the papers by Babich (1973) and Akbarov and Kosker (2001)

h 2.0 6.0 10.0 20.0 ∞∣∣∣ε(1),0
33.cr

∣∣∣ 0.0923 0.1230 0.1307 0.1307 0.1307
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5 Conclusions

In the present paper, within the scope of the piecewise homogeneous body model
through the use of the three-dimensional geometrically non-linear exact equations
of the theory of elasticity, an approach for the investigation of problems in the
micromechanics of a periodically curved fiber which is near the convex free cylin-
drical surface has been proposed and employed. The main difficulties in solving the
corresponding problems are caused by the impossibility of employing the summa-
tion theorem of the cylindrical functions for satisfaction of the boundary conditions
on the convex free cylindrical surface. For this purpose, the authors of the paper
propose the use of the cosine and sine Fourier series presentation of the sought val-
ues. The coefficients of these series are calculated numerically through the integrals
of the cylindrical functions whose argument depends on the integrating variable in
the complicated form.

The developed approach is employed successfully for the solution to the corre-
sponding boundary value problems in the determination of the self-balanced stresses
which are caused namely by the periodic curving of the fiber and for the solution to
the near surface micro-buckling problems through the use of the initial imperfection
criterion.

The numerical results of the self-balanced stress distribution and of the critical
strains of the micro-buckling of the fiber are presented and discussed. The validity
of the developed approach and of the obtained numerical results are proven with
the convergence of the numerical results with a number of algebraic equations and
with the correspondence of these with the known results from the particular cases
of other published investigations.

The proposed approach can easily be developed for application to more compli-
cated cases, i.e. to those cases where two or more than two neighboring fibers are
near the convex free cylindrical surface. Those mechanical problems which can
be studied by the employment of the proposed approach have great significance in
the micromechanics of structural members made from materials reinforced by the
unidirectional fibers and bounded with convex cylindrical surfaces in the estima-
tion of their load carrying capacity under the compression and stretching of these
structural members along the fibers.

References

Akbarov, S. D. (2007): Three-dimensional instability problems for viscoelastic
composite materials and structural members. Int. Appl. Mech. 43, No 10, pp.
1069-1089.

Akbarov, S. D. (1986a): Stress state in a viscoelastic fibrous composite with curved



On the solution method for problems related to the micro-mechanics 293

structures under a low concentration. Int. Appl. Mech. vol. 22, pp. 506-513.

Akbarov, S. D. (1986b): Normal stresses in a fiber composite with curved struc-
tures having a low concentration of filler. Int. Appl. Mech. vol. 22, pp. 1065-1069.

Akbarov, S. D. (1990): The distribution of self-equilibrated stresses in fibrous
composite materials with twisted fibers. Mech. Compos. Mater. vol. 26., pp.
803-812.

Akbarov, S. D.; Guliev, M. S. (2009): Axisymmetric longitudinal wave propaga-
tion in a finite pre-strained compound circular cylinder made from compressible
material. CMES: Computer Modeling in Engineering and Sciences. Vol. 39(2), pp.
155-177.

Akbarov, S. D.; Guz, A. N. (1985a): Method of solving problems in the mechanics
of fiber composites with curved structures. Int. Appl. Mech. vol.21, pp.777-785.

Akbarov, S. D.; Guz, A. N. (1985b): Stress state of fiber composite with curved
structures with a low fiber concentration. Int. Appl. Mech. vol 21, pp. 560-565.

Akbarov, S. D.; Guz, A. N. (2000): Mechanics of curved composites. Kluwer
Academic Pubishers, Dortrecht/ Boston/ London. pp. 464.

Akbarov, S. D.; Guz, A. N. (2004): Mechanics of curved composites and some
related problems for structural members. Mechanics of Advanced Materials and
Structures. Vol. 11, pp. 445-515.

Akbarov, S. D.; Kosker, R. (2001): Fiber buckling in a viscoelastic matrix. Mech.
Comp. Mater. vol 37(4), pp.299-306.

Akbarov, S. D.; Kosker, R. (2003a): Stress distribution caused by antiphase peri-
odical curving of two neighboring fibers in a composite materials. Eur. J. Mech. A/
Solids. Vol.22, pp. 243-256.

Akbarov, S. D.; Kosker, R. (2003b): On the stress analyses in the infinite elastic
body with two neighbouring curved fibers. Composites, Part B: Engineering. vol.
34 (2), pp. 143-150.

Akbarov, S. D.; Kosker, R.; Ucan Y. (2004): Stress distribution in an elastic body
with a periodically curved row of fibers. Mech. Compos. Mater. Vol.40(3), pp.
191-202.

Akbarov, S. D.; Kosker, R. (2004): Internal stability loss of two neighbouring
fibers in a viscoelastic matrix. Int. J. Eng. Scien. Vol.42 (17/18), pp.1847-1873.

Akbarov, S. D.; Kosker, R.; Ucan, Y. (2006): Stress distribution in a composite
material with the row of anti-phase periodically curved fibers. Int. Appl. Mech.,
vol.42(4), pp. 486-493.

Babich, I. Yu. (1973): On the stability loss of a fiber in a matrix under small



294 Copyright © 2009 Tech Science Press CMES, vol.42, no.3, pp.257-296, 2009

deformations. Int. Appl. Mech. vol. 9(4), pp. 370-373.

Babich, I. Yu.; Guz, A. N.; Chekhov, V. N. (2001): The three-dimensional theory
of stability of fibers and laminated materials. Int. Appl. Mech. vol. 37(9), pp.1103-
1141.

Bazant, Z. P. B. (1968): Effect of curvature of the reinforcing fibers on the moduli
of elasticity and strength of composites. Mech.Comp. Mater. vol.4(2) pp.251-258.

Chen, H. B.; Fu, D. J., Zhang, P. Q. (2007): An Investigation of Wave Propagation
with High Wave Numbers via the Regularized LBIEM .CMES: Computer Modeling
in Engineering and Sciences, Vol. 20(2), pp. 85-96.

Corten, H. T. (1967): Fracture of reinforcing plastics. In L. J. Broutman and R:H:
Krock (eds.). Modern Composite Materials, pp.27-100, Addison-Wesley, Reading,
MA.

Dekret, V. A. (2008a): Plane instability for a composite reinforced with a periodic
row of short parallel fibers. Int. Appl. Mech., vol. 44(5), pp. 498-504.

Dekret, V. A. (2008b): Near- surface instability of composites weakly reinforced
with short fibers. Int. Appl. Mech. vol. 44 (6), pp. 619-625.

Feng, Z. -N.; Allen, H. G.; Moy, S. S. (1998): Micromechanical analyses of a
woven composite. In Proc. ECCM -8, Wood Head Publishing Limited, Naples,
Italy, vol. 4, pp. 619-625.

Fisher, F. T.; Bradshow, R. D.; Brinson, L. C. (2003): Fiber waviness in nanotube-
reinforced polymer composites – I: modulus predictions using effective nanotube
properties. Compos. Sci. Technol. Vol. 63, pp. 1689-1703.

Fisher, F. T.; Bradshow, R. D.; Brinson, L. C. (2003): Fiber waviness in nanotube-
reinforced polymer composites – II: modeling via numerical approximation of the
dilute strain concentration tensor. Compos. Sci. Technol., vol.63, pp. 1705-1722.

Ganesh, V. K.; Naik, N. K. (1996): Failure behavior of plane weave fabric lam-
inates under on- axis uniaxial tensile loading, III –effect of fabric geometry. J.
Compos. Mater. vol.30, pp. 1823-1856.

Gato, C.; Shie, Y. (2008): Numerical Simulations of Dynamic Fracture in Thin
Shell Structures .CMES: Computer Modeling in Engineering and Sciences, vol.33
(3), pp. 269-292.

Guz, A. N. (1999): Fundamentals of the Three-Dimensional Theory of Stability of
Deformable Bodies. Springer-Verlag, Berlin Heideberg, pp. 556.

Guz, A. N.; Dekret, V. A. (2008): On two models in the three-dimensional theory
of stability of composites. Int. Appl. Mech. Vol.44(8), pp. 839-854.

Guz, A. N.; Lapusta, Yu. N. (1986): Stability of a fiber near a free surface. Int.



On the solution method for problems related to the micro-mechanics 295

Appl. Mech.Vol. 22 (8), pp. 711-719.

Guz, A. N.; Lapusta, Yu. N. (1988): Stability of fibers near a free cylindrical
surface. Int. Appl. Mech. Vol. 24(10), pp. 939-944.

Guz, A. N.; Lapusta, Yu. N. (1999): Three-dimensional problems of the near-
surface instability of fiber composites in compression (Model of a piecewise- uni-
form medium) (survey). Int. Appl. Mech. Vol. 35(7), pp.641-670.

Guz, A. N.; Rushchitsky, J. J.; Guz, I. A. (2008): Comparative computer mod-
eling of carbon-polimer composites with carbon or graphite microfibers or carbon
nanofibers. CMES: Computer Modeling in Engineering and Sciences, vol. 26(3),
pp. 139-156.

Guz, A. N.; Tomashevski, V. T.; Shulka, N. A.; Yakovlev, V. S. (1988): Tech-
nological stresses and strains in composite materials. Vitsaya Skola, Kiev(in Rus-
sian).

Hsaio, H. M.; Daniel, I. M. (1996): Elastic properties of composites with fiber
waviness. Composites A, vol. 27(10), pp. 931-941.

Jochum, Ch.; Grandidier, J. C. (2004): Microbuckling elastic modelling ap-
proach of a single carbon fibre embedded in an epoxy matrix. Comp. Sci.Techn.
vol. 64, pp. 2441-2449.

Kantarovich, L. V., Krilov, V. I. (1962): Approximate methods in advanced cal-
culus. Moscow: Fizmatgiz, (in Russian), pp. 708.

Kosker, R.; Akbarov, S. D. (2003): Influence of the interaction between peri-
odically curved fibers on the stress distribution in a composite material. Mech.
Compos. Mater. Vol. 39(2), pp.165-176.

Lapusta, Yu. N. (1988): Stability of fibers near the free surface of a cavity during
finite precritical strains. Int. Appl. Mech. vol. 24(5), pp. 453-458.

Liu, Y. H.; Chen, S. S.; Li, J.; Cen, Z. Z. (2008): A Meshless Local Natural
Neighbour Interpolation Method Applied to Structural Dynamic Analysis. CMES:
Computer Modeling in Engineering and Sciences, Vol. 31(3), pp. 145-156.

Lin, S. -M.; Lee, S. -Y.; Tsai, C. -C.; Chen, C. -W; Wang, W. -R.; Lee, J. -F.
(2008): Wave modes of an elastic tube conveying blood.CMES: Computer Model-
ing in Engineering and Sciences, vol. 34(1), pp. 34-54.

Lu, Y. Y.; Zhu, J. (2007): Perfectly matched layer for acoustic waveguide modeling—
benchmark calculations and perturbation analysis. CMES: Computer Modeling in
Engineering and Sciences, Vol 22 (3) , pp. 235-248.

Manusfied, E. H.; Purslow, D. (1974): The influence of fibre waviness on the
moduli of unidirectional fibre reinforced composites. Aeronautical Research Coun-
cil Current paper, No 1339.



296 Copyright © 2009 Tech Science Press CMES, vol.42, no.3, pp.257-296, 2009

Qian, D.; Dickey, E. C.; Andrews, R.; Rantell, T. (2000): Load transfer and
deformation mechanisms of carbon nanotube-plytyrene composites. Appl. Phys.
Lett,,vol. 76(20), pp. 2868-2870.

Tarnopolsky, Yu. M.; Jigun, I. G.; Polyakov, V. A. (1987): Spatially-reinforced
composite materials: Handbook. Mashinostroyenia, Moscow. (in Russian).

Wang, H. X.; Wang, S. X. (2008): Analysis of Dynamic Fracture with Cohesive
Crack Segment Method. CMES: Computer Modeling in Engineering and Sciences,
Vol. 35 (3), pp. 253- 274.

Watson, G. M. (1958): Theory of Bessel functions. Cambridge at the University
Press, pp. 804.

Yoda, T.; Kodama, N. (2006): Nonlinear Dynamic Response Analysis of Steel
Frames under Seismic Action. CMES: Computer Modeling in Engineering and
Sciences, vol. 11(1), pp. 139-156.

Zhuk, Yu. A.; Guz, I. A. (2007): Features of plane wave propagation along the
layers of a pre-strained nanocomposites. Int. Appl. Mech., vol. 43(4), pp. 361-379.


