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An investigation on the regularized meshless method for
irregular domain problems

Rencheng Song''2, Wen Chen?3

Abstract:  The regularized meshless method (RMM) is a novel boundary-type
meshless method but by now has mainly been tested successfully to the regular do-
main problems in reports. This note makes a further investigation on its solution
of irregular domain problems. We find that the method fails to produce satisfac-
tory results for some benchmark problems. The reason is due to the inaccurate
calculation of the diagonal elements of the numerical discretization matrix in the
original RMM, which have strong effect on the resulting solution accuracy. To
overcome this severe drawback, this study introduces the weighted diagonal el-
ement approach. Our numerical experiments demonstrate the effectiveness and
accuracy of the present RMM technique.

Keywords: Regularized meshless method, irregular domain, desingularization
technique, weighted diagonal element approach, numerical integration.

1 Introduction

The partial differential equations (PDE) play an important role in science research
and engineering. As known, most PDE solutions must be obtained approximately
via numerical methods, for example, the finite difference method, the finite ele-
ment method, the boundary element method, and the meshless method, etc. Due
to the direct use of the geometry of the simulated object without replying on grid,
the meshless methods now attract more and more attentions from the mathemati-
cians and engineers, especially when studying large deformations, complex ge-
ometry, nonlinear material behavior, discontinuities and singularities. Generally,
these meshless methods can be divided into the domain-type or boundary-type
techniques, depending on if their basis functions satisfy the governing equation
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of interest. The method of fundamental solutions (MFS) is one of the collocation
based boundary type meshless methods with the merit of easy programming, high
accuracy, and fast convergence.

Since proposed by Kupradze and Aleksidze (1964), the MFS has been used to solve
various problems. Two excellent review papers of MFS are [Golberg and Chen
(1998); Fairweather and Karageorghis (1998)]. To list a few recent progresses,
see [Tsai, Lin, Young, and Aturi (2006); Young, Chen, Chen, and Kao (2007);
Ting, Hon, and Ling (2007); Liu (2008c); Marin (2008a,b)]. However, there are
two main drawbacks delay the spread of MFS, namely, factitious boundary and
ill-conditioned interpolation matrix. Many efforts have been done to overcome the
shortcomings, for example, [Kang, Lee, and Kang (1999); Chen, Chang, Chen, and
Lin (2002); Chen and Tanaka (2002); Chen and Hon (2003); Young, Chen, Chen,
and Kao (2007); Liu (2008¢)].

As seen, most problems studied by the MFS and its improved methods are the
boundary value problem (BVP) of elliptic equations. This kind of problems are
also solved by other methods, such as [Liu (2007a,b,c); Kim, Lee, and Shin (2003);
Kim and Shin (2009)]. An interesting method proposed recently is the fictitious
time integration method (FTIM) [ Liu (2008a,b, 2009); Liu and Atluri (2008a,b)],
which is verified to be efficient for the quasi-linear BVP, and especially the nonlin-
ear boundary value problems. If only linear BVP of elliptic equations are consid-
ered, a troublesome difficulty is the irregular domain of problem, since the solution
accuracy may be sensitive to the nodes distribution. In this paper, this aspect will
be mainly considered together with the overcoming of the drawbacks of MFS.

Recently, Young et al [Young, Chen, and Lee (2005)] developed a regularized
meshless method (RMM) based on the MFS, which removes the two major draw-
backs of the latter as mentioned above, by the desingularization technique of sub-
tracting and adding-back. Their numerical studies show that the RMM keeps all
merits of the MFS and is very efficient in the solution of Laplace problems [ Young,
Chen, and Lee (2005); Chen, Kao, Chen, Young, and Lu (2006)], exterior acous-
tics problem [Young, Chen, and Lee (2006)], acoustic eigenproblem [Chen, Chen,
and Kao (2006)], and anti-plane shear problem [Chen, Chen, and Kao (2008)]. But
most of the RMM numerical solutions available in reports are concerned with reg-
ular domain problems, for which the RMM seems to outperform the other mesh-
less boundary-type methods, e.g., the MFS. To our knowledge, very few irregu-
lar domain problems have been reported in RMM literatures [Young, Chen, and
Lee (2005); Chen, Kao, Chen, Young, and Lu (2006)], and the verification of the
method is inconclusive.

In this study, we investigate the RMM solution of Laplace equation in irregular do-
mains, where the boundary nodes can not be uniformly placed as in regular domain
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cases. We find that the direct use of the diagonal elements calculation formulas for
the RMM, given in [Young, Chen, and Lee (2005)], fails to produce satisfactory
results in some arbitrary domain cases. And the diagonal elements are critical in
determining the accuracy and convergence of the RMM solutions.

To remedy this drawback in the original RMM, this paper introduces the weighted
diagonal elements of the RMM to guarantee its solution accuracy and convergence,
in which the weights highly depend on the boundary curve length and are ob-
tained via numerical integration. Our numerical experiments, reported in this paper,
demonstrate the effectiveness of the present RMM technique for irregular domain
problems.

2 Diagonal elements of RMM

Without loss of generality, we consider the following Laplace problem

VZu(x,y) =0, inD, (1)
M(]C,y) :f’ on Fl’ (2)

du

%(x,y) =g, only, 3)

where f and g are known functions, I' = T'; UT, = dD denotes the boundary and
D represents the computational domain.

By using the radial basis function (RBF) method [Wang and Liu (2002); Hu, Li,
and Cheng (2005)], the solution of Eqgs. 1-3 at 7 = (x,y) can be approximated by

N
u(t) = Z OCjA(l,Sj), 4
j=1
u N
5, 0= FZIaJBa,s,-), (5)

where A(t,s;) and B(t,s;) are chosen radial basis functions, {s;}"_, are the source
points, and {« j}’j\.’:] are the unknown coefficients. In the RMM, the RBF is chosen
to satisfy the governing equation of interest, namely, the so-called double layer
potentials. Thus, no inner nodes are required to discretize the governing equation.
The RMM is thus of the boundary type method.

By the collocation technique, the Eqgs. 4 and 5 are forced to satisfy Eqs. 2 and 3 on
N boundary nodes {#;}Y ;. Then the coefficients {%‘}1}’:1 can be solved from the
resulting linear system.
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In the RMM, the RBFs are the following double layer potentials,

A(ti,s)) = ) _:21:)7”»,
i
Ats) (=) m) (= s,). ) {nji)
B(tlas}> 8n ! =2 ! Jr4 ! - ;_2 )
i ij ij

where r;; = |s; —t;|, the symbol (,) denotes the inner product of vectors, n; is the
outward normal vector at s, and 7; is the outward normal vector at ;.

Since A(t;,s;) and B(t;,s;) are either singular or hypersingular when #; approaches
to s;, the desingularization technique of subtracting and adding-back is used in the
RMM to derive the diagonal elements. It is based on the discretization of the re-
duced null-fields equations [ Young, Chen, and Lee (2005); Chen and Chen (2007)]

/A(e) (t;,5)dT(s) =0, 1 €D, (6)
r

/ B (t;,5)dT(s) =0, 1; € D", (7)
r

where A®) and B\®) are related to A and B by the opposite normal direction, and D¢
is the exterior domain of D. In the RMM, Egs. 6 and 7 are discretized as

N

> A€ (t,s;)|;| =0, 1 €B, )
=1

N

> B€(t;,s;)|l;| =0, 1€B, )
j=1

where |/;| is the half distance of the source nodes s;_; and 5.

Then the non-weighted diagonal elements of RMM are given by

Alti,s0) = —A¥) (1, 57) ZA (ti,s;), ti€Ty, (10)
ﬁél

B(t;,s:) = B (t;,5) = — zB (tiysj), t €Ty, (11)
J#

based on the assumption that the source nodes are uniformly distributed. Namely,
|lj| is constant for different j. The above formulas 10 and 11 were used in [Young,
Chen, and Lee (2005); Chen, Kao, Chen, Young, and Lu (2006)] for various cases,
particularly, regular domain problems.
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In this study, we propose the weighted diagonal elements of the RMM, which are
derived directly from Eqs. 8 and 9 as

Altisi) = =AY (t;,5) = \l|2A (tsllj], teT, (12)
J#t

B(t;,s;) = B (t;,5;) = — ‘”23 (ti,s/)|lj], 4 €Ty (13)
J#

In practical calculations, the curve lengths {|/;| }1]\’: , are obtained by numerical inte-
gration, for example, the adaptive Newton-Cotes 8-panel rule [Forsythe, Malcolm,
and Moler (1977)]. To our knowledge, this method has not been reported in the lit-
eratures and is developed for handling the arbitrary placement of boundary nodes.

In this paper, the RMM with Eqgs. 10 and 11 is called as the non-weighted RMM,
while the RMM with Eqs. 12 and 13 is called as the weighted RMM. Numerical
comparisons of these two methods for arbitrary domain problems will be presented
in the following Section 3.

3 Numerical results and discussions

This section will give numerical comparisons of the non-weighted and weighted
RMMs in the solution of the two benchmark problems. The first one is the Dirichlet
problem in the gear-shape irregular domain. The second example has an elliptic
domain with the mixed-type boundary conditions and is given to show that the
traditional non-weighted RMM even fails to a simple regular domain problem if
the uniform distribution of boundary nodes is not employed.

In this study, the error at point (x;,y;) is defined as

Eij = |u(xi,y;) —(xi, ), (14)

where u# and i are the analytical and numerical solutions, respectively. The total
average error on the whole domain is defined as

Z Z (15)

11]

where P and Q are the numbers of y; and x; in the domain.

Case 1: Dirichlet problem in gear-shape domain

The boundary node (r, 0) on the gear-shape domain is generated by

- %(n2—|—2n+2—2(n—|—l)cos(ne)). (16)
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Figure 1: Nodes distribution of gear-shape domain (N = 60).

The case n = 3 is investigated. The exact solution of this problem is u(x,y) =
¢%>*sin(0.5y). The discrete nodes distribution is shown in Fig. 1.

The solution contours of the two methods are plotted in Fig. 2. Clearly, the non-
weighted RMM solutions are distorted. In stark contrast, the weighted RMM solu-
tions are very close to the exact ones. Fig. 3 shows the convergence curves of the
two methods. The weighted RMM appears to converge quickly with the increasing
node number N, while the non-weighted RMM solution errors oscillate at first and
then converge slowly.

Case 2: Mixed-type boundary problem in elliptic domain

This case is a mixed-type boundary condition problem in the elliptic domain. The
major and minor semi axes are R; = 1.0 and R, = 0.5, respectively. Its exact solu-
tion is u(x,y) = x+ y subject to the following boundary conditions:

3
f=Ricos(0)+Rysin(6), 0¢€ [O,TE),

3
g=cos(0)+sin(0), O¢€ [—7r

2
2771'-]7

where f and g are the functions in Egs. 2 and 3.

It is noted that the boundary nodes are of nonuniform distribution in this regu-
lar domain case. Fig. 4 shows the nodes configuration and Fig. 5 displays the
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Figure 2: The solution contours of Case 1 (N = 60): (a) Exact solution, (b) Non-
weighted RMM, (¢) Weighted RMM.
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Figure 3: The convergence curves of Case 1:

Weighted RMM.
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Figure 4: Nodes distribution of elliptic domain (N = 60).

solution contours. It is clearly observed from Fig. 5 that the weighted RMM dra-
matically outperforms the non-weighted RMM in comparison with the analytical
solutions. Fig. 6 shows the convergence curves, from which we can see that the
weighted RMM converges more quickly than the non-weighted RMM. In fact, the
non-weighted RMM fails in this regular domain case, since the nonuniform bound-
ary nodes are used.

4 Concluding remarks

Our numerical experiments demonstrate the effectiveness of the weighted RMM,
proposed by this paper, in the numerical solution of irregular domain problems.
The present weighted diagonal elements conserve the discrete accuracy of the null-
fields equation, which is lost in the non-weighted RMM for arbitrary domain prob-
lems. On the other hand, the non-weighted RMM dose not succeed even in regular
domain problems with nonuniform distribution of boundary nodes, let alone in ir-
regular domain problems. It is noted that, for regular domains with equally-spaced
boundary nodes, the weighted RMM can be reduced to the non-weighted RMM.
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by Natural Science Foundation of China (Project No. 10672051). The first author
was then a visiting research fellow to the Engineering Mechanics Department of
Hohai University.
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Figure 5: The solution contours of Case 2 (N = 60): (a) Exact, (b) Non-weighted
RMM, (c)Weighted RMM.
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