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A new modelling approach based on Binary Model and
X-FEM to investigate the mechanical behaviour of textile

reinforced composites

G. Haasemann1, M. Kästner2 and V. Ulbricht3

Abstract: The purpose of this paper is the presentation of a new efficient mod-
elling strategy based on the combination of Binary Model and Extended Finite
Element Method (X-FEM). It is applied to represent the internal architecture of
textile reinforced composites where the resin-saturated fabric is characterised by
a complex geometry. Homogenisation methods are used to compute the effective
elastic material properties. Thereby, the discrete formulation of periodic bound-
ary conditions is adapted regarding additional degrees of freedom used by finite
elements which are based on the X-FEM. Finally, the results in terms of effective
material properties reveal a good agreement with parameters obtained by experi-
mental tests.
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1 Introduction

The material design process for novel textile reinforced composites requires an
integrated simulation of the material behavior and estimation of the effective prop-
erties used in a macroscopic structural analysis. Due to the high anisotropy, a large
number of parameters are necessary to formulate the macroscopic constitutive re-
lations. Therefore, the determination of these parameters based on experimental
tests is very expansive. However, the homogenisation method applied to compos-
ites provides a less laborious approach [Haasemann, Kästner, and Ulbricht (2006);
Pahr and Böhm (2008); Takashima, Nakagaki, and Miyazaki (2007)]. Here, the ba-
sic principle is the consideration of the composite at different scales. At the macro-
scale we assume the material to be homogeneous. The homogenisation method
gives the mathematical foundation for the transition between the material behaviour
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at the heterogeneous meso- or micro-scale and the macro-scale. This comprises the
definition of a representative volume element (RVE) which includes the identifi-
cation of the inner topology. Furthermore, all mechanical properties of fibre and
matrix material are needed. The FEM provides the most flexible approach to solve
the mechanical boundary value problem defined by the homogenisation theory in
conjunction with the RVE-model.

Depending on the geometric complexity of the textile reinforcement, the prepara-
tion of the RVE-model becomes a time-consuming task. This motivates the de-
velopment of new improved modelling techniques which are characterised by (i) a
high efficiency, (ii) reduced computational effort and (iii) an automated model gen-
eration. In this context, Section 2 contains a survey of conventional and advanced
modelling techniques, namely the Binary Model and the Extended Finite Element
Method (X-FEM).

One intention of this work is the development of a modelling technique, which
is improved regarding the application to composites consisting of polymer matrix
material and biaxial weft-knit made of glass fibres. Fig. 1 illustrates the general
composition of a biaxial weft-knitted fabric.

Weft knit
Warp yarn Weft yarn

Figure 1: Biaxial weft-knit

The use of this textile reinforcement is beneficial to the effective material prop-
erties. For instance a high in-plain stiffness is assured by the biaxial warp- and
weft-yarns. Furthermore, the weft-knitted structure prevents the composite from
delamination and provides an improved out-of-plane stiffness.
The fabric incorporates multiple yarn types with significantly different cross-sections.
This fact causes difficulties during the mesh generation. As shown in Section 3, the
combination of Binary Model and X-FEM provides a new approach which avoids
these problems and unifies the advantages of both modelling techniques.

In Section 4, the basic principle as well as the essential equations of the homogeni-
sation method are summarised. In order to solve the resulting boundary value prob-
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lem based on the FEM, a discrete formulation of boundary conditions is needed.
For this purpose, an extended finite element model requires special considerations
which are given in this section as well.

Finally in Section 5 the new modelling approach is applied to a polymer composite
material reinforced by a biaxial weft-knitted fabric. A comparison with experimen-
tal test data will show the accuracy of the numerical results.

2 FE-Modelling techniques

In most applications, the structure of the composite material can be considered as
shells or plates, e.g. the macroscopic shape is rather two- than three-dimensional.
However, a closer observation of many composite materials, for instance the one
considered in this paper, reveals a distinct spatial internal topology at the meso-
scale. Therefore, a FE-representation of the RVE necessitates the use of volume
elements.

In general, conventional volume elements with linear or quadratic shape functions
are applied to generate RVE-models [Galli, Botsisb, and Janczak-Rusch (2008);
Huang and Chiu (2008)]. As illustrated in Fig. 2, this modelling procedure requires
the alignment of element boundaries to the material interfaces.

Figure 2: Conventional mesh

Then the application to complex structured reinforcements becomes time-consuming
and causes a large number of finite elements which increases the computational
effort. As it can be clearly seen in Fig. 2, the danger of generating bad-shaped
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elements becomes potentially high. This may produce a poor convergency and
incorrect results.

Up to now, alternative modelling techniques have been developed. In general, they
are specialised in application to a specific group of composite materials. For exam-
ple, Rolfes, Ernst, Hartung, and Teßmer (2006) have shown the successful appli-
cation of the voxel approach to unidirectional fibre reinforced materials. Further-
more, the infinite element method introduced by Liu, Chen, and Chiou (2005) is
used to investigate effective material properties of particle reinforced composites.
A multitude of available publications concerning the meshless analysis of non-
homogeneous solids shows the high potential of this sophisticated method [Hagi-
hara, Tsunori, Ikeda, and Miyazaki (2007); Dang and Sankar (2008); Long, Liu,
and Li (2008)].

The development in this paper is based on the Binary Model and the X-FEM. Sub-
sequently, both techniques which are adapted for the efficient modelling of complex
structured fibre reinforced materials will be described.

2.1 Extended finite element method

Based on the partition of unity method, the X-FEM allows for a representation of
certain field discontinuities inside a finite element [Melenk and Babuska (1996)].
First applications of this powerful method were related to the modelling of cracks
and crack propagation without the need of re-meshing [Moës, Dolbow, and T.
(1999); Stazi, Budyn, Chessa, and Belytschko (2003)]. Currently, this technique
is also used to represent a micro-structure with complex geometry and even to
perform coupled atomistic-continuum simulations [Moës, Cloirec, Cartraud, and
Remacle (2003); Haasemann, Kästner, and Ulbricht (2006); Ulbricht, Kästner, Licht-
neckert, Brummund, Modler, Hufenbach, Böhm, Ebert, Grüber, Langkamp, and
Lepper (2008); Kästner and Ulbricht (2006); Kästner, Haasemann, Brummund, and
Ulbricht (2008); Chirputkar and Qian (2008)].

In the following, a two-dimensional model as shown in Fig. 3a will be used to
explain and demonstrate the fundamental principle of the X-FEM.

The geometry conforms to a unit cell of a unidirectional (UD) fibre reinforced
composite. Due to the alignment of element boundaries to the material interface,
a conventional FE-Mesh as given in Fig. 3b evince the typical non-regular shaped
elements.

Extending the approximation of the classical displacement field u by an enrich-
ment, the X-FEM enables us to model the discontinuity surface based on a regular
mesh (Fig. 4a).



New modelling approach based on Binary Model and X-FEM 39

(a) Geometry (b) Conventional FE-Mesh

Figure 3: Unit cell of a UD-composite
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Figure 4: Model generation based on the X-FEM

In general, the enriched displacement field is given by

u(ξξξ ) = ∑
I

NI(ξξξ )uI +∑
I

NI(ξξξ )aIF(ξξξ ) , (1)

where the first part, denoting the linear approximation, consists of the shape func-
tions NI depending on the local coordinates ξξξ and displacement values uI at node
I. The formulation of the enrichment, i.e. the second part in Eq. (1), is based on
additional degrees of freedom (dof) aI and the enrichment function F . Depending
on the type of discontinuity, there are several possibilities to define the function
F . Here, the intention lies in the modelling of heterogeneous materials. Besides
the local change of material properties, an arbitrary deformation may cause a dis-
continuous strain and stress field at the material interface. This can be achieved
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using the following definition, which was proposed by Moës, Cloirec, Cartraud,
and Remacle (2003).

F(ξξξ ) := ∑
I

NI|ϕI|−

∣∣∣∣∣∑I

NIϕI

∣∣∣∣∣ (2)

This formulation includes values of the level-set function ϕI := ϕ(ξξξ I) at the loca-
tion ξξξ I of element nodes. As can be seen in the following equation, the level-set
function corresponds to the signed distance between any location ξξξ inside the ele-
ment domain and the closest point at the interface ξ̄ξξ [Wang, Lim, Khoo, and Wang
(2007)].

ϕ(ξξξ ) := min
∣∣∣ξξξ − ξ̄ξξ

∣∣∣sign
[
(ξξξ − ξ̄ξξ ) ·n

]
(3)

In Eq. (3), n denotes a unit normal vector at the interface.
The choice of the enrichment function according to Eq. (2) assures the following
properties:

• Representation of discontinuities in the strain and stress field,

• Unaffected displacement field continuity and

• Restriction of the displacement field enrichment to elements which include a
part of the interface.

Due to the last aspect, only those nodes in Fig. 4a marked by a blue dot require
additional dof aI . Finally, the mesh can be subdivided into so called X-elements
and ordinary finite elements.

A derivation of FE-equations requires a subdivision of the considered domain Ω
into regions Ωe occupied by finite elements. The virtual work principle in con-
junction with the approximation of the displacement field by Eq. (1) leads to the
equilibrium equations Ku = f, where f is the load vector and the stiffness matrix K
can be expressed by

K =
⋃∫

Ωe

BT DBdΩ . (4)

The symbol ∪ denotes the assembly of all element matrices and the matrix B de-
fines the transformation between strain εεε and all dof, i.e. displacement dof u as well
as additional dof a. Since the material stiffness matrix D depends on the location
inside the element domain and B represents a discontinuous strain distribution, the
numerical evaluation of the integral in Eq. (4) requires special attention. For that
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purpose, the element sub-domains defined by the material interface are subdivided
again into triangle- or tetrahedral-shaped regions ΩS for 2D- or 3D-elements, re-
spectively. As an example, Fig. 4b shows the triangulation of the element which is
bordered with a thick line in Fig. 4a. Using the integration stations of these sub-
domains ΩS allows for a numerical integration procedure which accounts for the
discontinuity in C and B since each triangle or tetrahedron has a unique correlation
to the underlying material. In the example, triangle 1 and 2 are assigned to the
matrix material and triangle 3 and 4 belong to the fibre material.

2.2 Binary Model

The Binary Model provides a very efficient approach to model composites with
highly complex textile reinforcement. It was first introduced by Carter, Cox, and
Fleck (1994) to simulate the mechanical behavior of through-the-thickness angle
interlock woven composites. Further development and application have been re-
ported in modelling failure due to broken fibres and simulation of the dynamic be-
haviour [Xu, Cox, McGlockton, and Carter (1995); McGlockton, Cox, and McMeek-
ing (2003); Haasemann (2003)].

In a first step of generating the Binary Model, the mechanical properties of a fibre
reinforced composite are subdivided as follows:

• The axial stiffness of all yarns are represented by tows,

• All other properties of matrix material and the transverse stiffness of fibres
and Poisson’s effects are assigned to the so called effective medium.

This separation requires a significant difference between the stiffness of fibre and
matrix material. As a result of this step we have a region, which is equivalent to
the volume of the composite, occupied by the effective medium. Superimposed
tow-lines run along the center of each yarn. The next modelling step comprises the
transition of this Binary Model into a FE-Model.

As shown in Fig. 5, this leads to a regular mesh of volume elements representing
the effective medium combined with line elements mapping the characteristics of
all tows.

As reported by Xu, Cox, McGlockton, and Carter (1995), the computation of all
elastic parameters to be assigned to line and volume elements is based on mate-
rial properties of the composite constituents, i.e. matrix and fibre. Considering a
composite which is dominated by orthogonal aligned fibres, the anisotropic elastic
properties of the effective medium can be estimated using an analytical model of an
unidirectional composite [Cox and Dadkhah (1995)]. With respect to the coordinate
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Figure 5: Binary Model

system given in Fig. 5, this leads to the following relations, where the superscripts
(em) and (ud) refer to effective medium and UD-composite, respectively.

E(em)
1 = E(em)

2 = 2(1+ν
(ud)
xy )G(ud)

xy

E(em)
3 = E(ud)

y

ν
(em)
13 = ν

(em)
23 = ν

(ud)
xy (5)

ν
(em)
12 = ν

(ud)
xy

G(em)
12 = G(ud)

xy

G(em)
13 = G(em)

23 = G(ud)
xy

Local coordinates (x,y,z) with fibres aligned to the x-axis are used to define all
UD-parameters in equation (5).
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Finally, the rule-of-mixture gives the effective Young’s modulus of tows

Et = Em + v f (E f +Em) , (6)

where v f is the fibre volume fraction and Em, E f the Young’s moduli of fibre and
matrix material, respectively. Since tows and effective medium are superimposed
to each other, the Young’s modulus of line elements is derived as

El = Et −Eem (7)

with Eem denotes the Young’s modulus of the underlying effective medium. Eq. (7)
avoids a multiple consideration of the matrix material.

2.3 Comparison of X-FEM and Binary Model

In general, a FE-mesh representing the architecture of a composite with biaxial
weft-knit reinforcement can be generated based on the X-FEM as well as on the
Binary Model. However, besides all beneficial properties, both modelling strategies
exhibit different disadvantages which will be outlined subsequently.

Although the Binary Model provides a very convenient concept for representing
even highly complex structured yarns, it does not account explicitly for the be-
haviour at the interface between yarn and matrix regions. Instead, the effective
medium is used to describe the influence of geometry and material properties only
implicitly. This requires the derivation of constitutive equations such as given in
Eq. (5). A further application of the Binary Model to include material nonlinearities
such as plasticity and viscosity requires suitable approximations of these properties.
As already investigated by the authors, there is no solution to this task which is as
straightforward as in the case of linear elasticity.

Applying the X-FEM to fibre reinforced composites avoids these difficulties since
all material interfaces are represented explicitly based on the enrichment in Eq. (1).
But new problems arise from modelling different yarns with significantly different
dimensions of the cross sections. For example, the diameters of weft-knit and warp-
yarn are approximately 0.1 mm and 3.0 mm, respectively. Since the interpolation of
the material interface inside one X-element is basically linear, at least 2×2 or better
3×3 elements are necessary to model the cross-section of the weft-knit. In order to
retain a regular mesh, the number of elements used for the entire unit cell becomes
extremely high. In view of modelling the warp- and weft-yarn, the element size,
limited due to the small cross-section of the weft-knit, is unnecessarily small. This
aspect motivates the development of a modelling strategy which combines X-FEM
and Binary Model.
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3 Combination of X-FEM and Binary Model

The comparison in Section 2.3 shows that the Binary Model is the most efficient
way to represent the complex geometry of weft-knits whereas the X-FEM proves
its superiority for modelling the weft- and warp-yarns. Thus, we are incorporating
both modelling techniques in one FE-model. With respect to the composite material
considered in this paper, line elements are used to model the geometry of all weft-
knits and X-elements contain the interfaces between warp- and weft-yarns. As
summarized in Tab. 1, all elements which are not cut by the material interfaces
remain ordinary finite elements.

Table 1: Finite element representation

Composite component Element type

Weft-knit Line elements
Interface between warp-
and weft-yarns

X-elements

Domain without mate-
rial interfaces

Ordinary elements

With this combination of both modelling strategies all advantageous properties are
unified.
The following considerations concern the integration of line elements into an exist-
ing mesh of ordinary and extended volume elements. In general, all nodes of line
and volume elements are merged, i.e. the number of global dof is determined by the
number of volume element nodes only. With respect to the geometry of the weft-
knit, this restriction on placing line element nodes causes either very small-sized or
non-regular shaped volume elements.

In order to avoid these unfavourable consequences, we account for the case of po-
sitioning such nodes inside a volume element. Then, a multiple point constrain
(MPC) is used to enforce compatibility between the displacement field inside the
volume element and the displacements {ui}line of the so call MPC-node i. As
shown in Fig. 6, the location of such MPC-node is given by the local coordinates
ξξξ t = {ξ t

1,ξ
t
2,ξ

t
3}T .

In the case of an X-element with the dof-vector {uI aI}T
x of node I, a MPC leads to
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Figure 6: Combination of X-elements with line elements

the equations

{ui}line =
8

∑
I=1

[TI(ξξξ t)]
{

uI

aI

}
x

(8)

where the matrix [TI] is given by

[TI] =

 N̄I 0 0 N̄IF̄I 0 0
0 N̄I 0 0 N̄IF̄I 0
0 0 N̄I 0 0 N̄IF̄I

 . (9)

In Eq. (9), N̄I := N(ξξξ t)I and F̄I := F(ξξξ t)I are the shape functions and enrichment
functions, respectively, evaluated at the location ξξξ t . Defining a vector {u}x which
contains all dof of the X-element, Eq. (8) can be replaced by

{ui}line = [T̄(ξξξ t)]{u}x , (10)

where the matrix [T̄] is composed of values given in Eq. (9) for all nodes I ∈
{1, . . . ,8}.
Since both nodes of one line element are not necessarily MPC-nodes, we have to
distinguish between two combinations. In the first case which is illustrated in Fig. 6
by line element L1, the dof of one node can be merged with the dof u1 of volume
element node N1. The final transformation can be expressed by

{u}line =
[

I 0
0 T̄2

]{
u1

ux

}
, (11)
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where I is the identity matrix and {u}line - the dof of the line element. The subscript
of T̄2 refers to the node number.

The line element L2 in Fig. 6 represents the second case, where all dof of both
nodes, which are located beside the nodes of volume elements, are treated by MPC.
Then the displacement continuity is achieved by the equation

{u}line =
[

T̄2

T̄3

]
{u}x . (12)

Denoting the matrices in Eq. (11) and (12) by [T], the stiffness matrix [k]L of the
line element is transformed by

[T]Lgl = [T]T [k]L[T] . (13)

Note that the resulting matrix [T]Lgl addresses only dof of volume elements, i.e. the
number of global dof is not changed due to the existence of line elements.

The numerical implementation of these MPC requires further differentiation since
e.g. the two nodes of one line element may be placed in two adjacent volume el-
ements or the types of the underlying volume elements are different. However, as
the specific relations can be derived based on the equation given before, these cases
are not detailed here.

4 Homogenisation Method

4.1 Basic equations of the homogenisation method

Homogenisation methods are widely used in order to estimate macroscopic or ef-
fective material properties and to replace any heterogeneous material by a homo-
geneous equivalent medium. There is a number of approaches which are based
on different assumptions and requirements [Hollister and Kikuchi (1992); Pierard
(2006)]. Furthermore, these methods can be classified into analytically or numeri-
cally solved problems. Since the first one can not deal with complex fabric archi-
tectures, we are using a systematic mathematical approach which is based on the
energy equivalence [Hill (1963)]. The resulting boundary value problem can be
solved by numerical methods such as the FEM. In the following, the basic assump-
tions and equations of this homogenisation are summarised.

First of all, a scale separation is required to clearly identify the level of a homo-
geneous and heterogeneous material, respectively. Certainly, a structure made of
composite material having the characteristic length L is assigned to the macroscopic
level. Regarding the textile reinforced material, we will furthermore distinguish be-
tween a meso- and micro-scale. Thereby, the geometry of the fabric architecture
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with the characteristic length l belongs to the meso-structure where the domain of
a yarn embedded in matrix material is considered to be homogeneous. The next
finer resolution belongs to the micro-level which then shows a small collection or
even just a single fibre inside the yarn and its surrounding matrix. For the deriva-
tion of relations between quantities defined at two different scales, a representative
volume element of volume V and surface A covering the heterogeneous domain
Y = {−→y = yi−→e , |yi|< a

2} is defined. Since the textile geometry can be considered
as a periodic array of identical patterns, the domain of the RVE conforms to a unit
cell. In order to consider the macroscopic structure as homogeneous, the following
relation

L� a� l (14)

between the characteristic measures must be required. Considering the respective
lengths, this relation is valid for the homogenisation at the micro-scale, too.

The volume average

F := 〈f(y)〉= 1
V

∫
Y

f(y)dV (15)

is used to link any physical quantity f(y) at the heterogeneous configuration to the
respective homogeneous value F. In case of the small strain tensor, this leads to the
relation

E =
1
V

∫
∂Y

(u⊗n)s dA , (16)

where u is the displacement vector, n - the unit normal vector, ∂Y - the domain of
the RVE surface and ()s is used to denote a symmetry operation on the enclosed
tensor.

Applying Eq. (15) to the heterogeneous stress field σσσ(y) leads to the relations

ΣΣΣ := 〈σσσ(y)〉= 1
V

∫
∂Y

t⊗ydA (17)

with the vector of surface traction t := σσσ · n. Furthermore, the absence of body
forces is presumed to derive the expression based on the surface integral. Note that
Eq. (16) as well as (17) show, that the specification of respective boundary values
suffice to gain a specific macroscopic strain or stress state.

In order to solve the mechanical field equations, boundary conditions are required.
These can be obtained based on the Hill-Mandel lemma

ΣΣΣ : E = 〈σσσ(y)〉 : 〈εεε(y)〉 . (18)

It can be shown, that the following formulations of boundary conditions satisfy this
energy equivalence.
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• Linear displacements u(y) = E ·y,

• Constant tractions t(y) = ΣΣΣ ·n(y) and

• Periodic displacements u(y+)−u(y−) = E ·(y+−y−) and anti-periodic trac-
tions t(y+) =−t(y−).

Here, two coordinates denoted by the superscript + and− refer to associated points
at opposed surfaces.

In general, the results computed with periodic boundary conditions and anti-periodic
tractions have the best agreement to experimental data. Hence, the following anal-
ysis will be focused on the discrete formulation of these boundary conditions re-
garding X-elements.

The general approach to compute the macroscopic linear elastic material tensor C
based on periodic boundary conditions can be described as follows:

1. Generating a FE-model of the RVE which represents the inner architecture
of the composite material,

2. Applying periodic boundary conditions where one component of E is one,
e.g. EKL = 1, and all remaining strain components are zero,

3. Solving the boundary value problem and

4. Computing the macroscopic stress ΣΣΣ(EKL) according to equation (17).

Since we have chosen EKL = 1, the macroscopic stress corresponds to Ci jKL =
Σi j(EKL). From this relation it follows, that the computation of the entire macro-
scopic material tensor C requires the solution of all six unit-deformations.

4.2 Periodic boundary conditions and X-FEM

A solution of the homogenisation problem with FEM requires the discrete formu-
lation of boundary conditions based on degrees of freedom (dof). To improve the
modelling efficiency, it is reasonably to introduce a vector ∆yα := yα+−yα−, α ∈
{1,2,3} were α is the pair number of surfaces. So this consideration are limited to
RVE’s with 6 surfaces. However, they can have any shape and orientation. The only
restriction comes from the geometric periodicity in what follows that ∆yα = const.

Using ∆yα to describe periodic displacements leads to the equation

∆uα = E ·∆yα (19)
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with ∆uα := u(yα+)−u(yα−). These generalised displacements ∆uα are indepen-
dent of y which motivates the definition of three master nodes in the FE-Model,
each associated to the surface pair α . Then, the displacements of respective nodes
of the RVE-model are linked to the associated master node according to the peri-
odic boundary conditions. Finally, the displacement values computed by Eq. (19)
are assigned.

To account for nodes at the surface mesh belonging to an X-element, it is required
to derive boundary conditions which have to be applied to additional dof aI . As
illustrated in Figure 7, we have to distinguish between two cases, depending on
whether the material interface inside an X-element (i) penetrates the unit cell sur-
face or (ii) remains inside the unit cell.

Interface

case (i)

case (ii)

a
2
(+)

a
4
(+)

a
6
(+)

a
1
(−)

a
3
(−)

a
5
(−)

Figure 7: Distinction of different cases regarding the coupling of additional dof

Expressing the periodic boundary conditions based on the displacement field ap-
proximation in Eq. (1) shows, that for case (i) the associated dof a have to be
linked. Regarding our example in Fig. 7 we have

a(−)
1 = a(+)

2 and

a(−)
3 = a(+)

4 .
(20)

An examination of elements belonging to case (ii) reveals, that the enrichment func-
tion becomes F(ξξξ ) = 0 ∀ ξξξ ∈ ∂Y . From this follows, that all additional dof at
the unit cell surface of these elements need not to be linked unlike to case (i).
Furthermore, since any restrictions regarding these dof will lead to displacement
constraints inside the element, no boundary conditions have to be applied at all.
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Thus, dof a(−)
5 and a(+)

6 of the mesh example in Fig. 7 remain unchanged. The

same applies for the dof a(−)
3 and a(+)

4 . However, this requirement conflicts with
Eq. (20) where the additional dof of node 3 and 4 are linked. In order to avoid this
problem, we have to prevent adjacent X-elements belonging to case (i) and (ii).

(b)(a)
Figure 8: Modification of (a) element sizes and (b) location of element boundaries
to avoid incompatible boundary conditions

As illustrated in Fig. 8, this can be achieved by changing the location of element
boundaries or smaller element sizes.

5 Application to Textile Reinforced Composites

5.1 Geometry and material properties of the unit cell

Subsequently, the new modelling technique will be applied to the textile reinforced
composite material described in Section 1. Before a FE-mesh can be created, the
inner geometry of the composite at the meso-scale must be determined. Due to
the complex architecture, this requires a detailed analysis which is documented in
Haasemann (2008). Thereby, optical and computer tomography scans are used to
evaluate predefined geometric parameters. These can be classified into two groups
of parameters describing in-plane and out-of-plane distances, respectively. Since
the application of a computer tomography is expensive, mathematical dependencies
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are developed in order to compute out-of-plane parameters based on the in-plane
geometry. After all dimensions are gathered, we can establish a geometric model
of the textile reinforcement as shown in Fig. 1. Finally, the FE-mesh of the unit
cell at the meso-level based on the combination of X-FEM and Binary Model can
be generated (Fig. 9).

Figure 9: FE-mesh of a unit cell representing a textile reinforced composite

Thereby, all elements representing pure matrix material are set to be transparent.
In order to visualise the interfaces of warp- and weft-yarns, the tetrahedra used for
integration are shown instead of the entire X-elements. As can be seen in Fig. 9,
the biaxial weft-knit in this composite consists of three layers of warp-yarns, two
layers of weft-yarns and two systems of weft-knits.

As further requirement, the linear elastic material properties of all composite con-
stituents must be known. One part of the RVE-domain consists of pure matrix
material which is an epoxy resin. The Young’s modulus (EM = 3000MPa) and
Poisson’s ratio (νM = 0.3) are determined experimentally.

The remaining RVE-domain is filled with glass fibres saturated by matrix material.
Since the weft-knit is represented by line elements, only the axial Young’s modulus
Ewk is required. This can be estimated using the rule-of-mixture

Ewk = Em + vwk(E f −Em) , (21)

where the fibre volume fraction is given by vwk = 65%. According to Altenbach,
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Altenbach, and Rikards (1996), the Young’s modulus of glass fibres amounts to
E f = 78000MPa.

For modelling the unit cell at the meso-level, all fibre-matrix domains established
by warp- and weft-yarns are considered to be homogeneous. Since both groups of
domains have nearly the same fibre volume fraction of about vwy = 60%, the small
difference is neglected. The homogenisation of a RVE at the micro-level is one
possibility to obtain the effective material properties. In order to generate a RVE-
model, there are different solutions. According to the fibre distribution in the real
composite, a statistically representative volume element can be chosen. However,
due to the high modelling effort, it is more efficient to define a unit cell. For this
approach, we assume that the effective material behaviour is transversely isotropic.

Figure 10: Deformation E22 = 1 of a microscopic unit cell with vW = 60%

Then the hexagonal arrangement of fibres results in a unit cell such as shown in
Fig. 3. After applying all boundary conditions according to the periodic displace-
ment and anti-periodic traction, six cases of unit deformations have to be solved.
One example where E22 = 1 is shown in Fig. 10. Due to the significant difference
between the stiffness of both UD-constituents, the local strain distribution ε22 inside
the fibre domain is nearly zero whereas the remaining matrix domain is subjected
to larger deviation from unity. All independent results expressed by engineering
constants are summarised in Tab. 2.

As an alternative to the numerical approach, the elastic material properties can be
estimated based on analytical models which have been developed in a broad range.
The results of one model which is derived in Skudra, Bulavs, and Rocens (1975)
are given in Tab. 2. In comparison to the numerical computation, the analytical
elastic parameters represent a material which has a slightly higher stiffness. The
influence on the macroscopic material properties of these different results will be
investigated in the following section.
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Table 2: Material properties of fibre-matrix domain

Engineering Numerical Analytical
parameter results results

E1 47 710 48 000
E2 = E3 10 210 10 960
ν23 0.33 0.41
ν13 = ν12 0.25 0.29
G13 = G12 4 070 4410

5.2 Results and verification

As described in Section 4, the computation of macroscopic effective linear elas-
tic material properties requires the simulation of six unit cell deformations. One
typical example with E12 = 1 is shown in Fig. 11.

Figure 11: Deformation E12 = 1 of the unit cell

Here again, for a better view inside the unit cell, the domain of pure matrix material
is transparent. The colour scale in Fig. 11 represents the local shear strain γ12.
According to the macroscopic strain, the local distribution is dominated by γ12 ≈ 1.

In order to verify the numerical results, experimental tests have been performed.
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As documented in Haasemann (2008), the analysis of test data obtained by tensile,
bending and shear tests provides a complete characterisation of the elastic in-plain
properties.

The comparison of in-plain Young’s modulus E(α) and Poisson’s ratio ν(α) de-
pending on the textile orientation α are shown in Fig. 12 and 13.

Young’s Modulus  E(α) [MPa]
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Figure 12: Polar diagram of in-plane
Young’s modulus

Poisson’s Ratio  ν(α)
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Figure 13: Polar diagram of in-plane
Poisson’s ratio

Here it is assumed that α = 0 corresponds to the warp-yarn orientation. The results
based on the numerical and analytical approach described in Section 5.1 to compute
the effective material properties of the yarn-matrix domain are represented in both
polar plots by solid and dashed lines, respectively. Thereby it can be seen, that
there is no significant difference between the homogenised results.

In the following we will summarise some general elastic properties of the compos-
ite based on these two polar plots. Since the fibre volume fraction related to the unit
cell of warp- and weft-yarn are equal, there is almost no deviation between E(0◦)
and E(90◦). The same applies to ν(0◦) and ν(90◦). The curve of the Young’s
modulus is characterised by a significant drop around 45◦ which is due to the ab-
sence of any yarn in this direction. Furthermore, the Poisson’s ratio at 0◦ and 90◦

is quite small. This is caused by the straight warp- and weft-yarns which obstruct
the Poisson’s effect.

Comparing numerical and experimental results we find a good agreement which
emphasises the quality of the proposed modelling technique. The reason for small
deviation may be found by considering the influence of technological aspects and
internal stresses.
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6 Conclusions

This paper has presented a new modelling technique based on the combination of
X-FEM and Binary Model. It is especially developed for the efficient generation
of FE-meshes representing the inner architecture of textile reinforced composites.
The approach utilises its main advantages with the application to biaxial weft-knit
reinforcement. Thereby, regular shaped elements based on the X-FEM represent
the material interface between pure matrix material and yarn-matrix domains while
the weft-knit is modelled with line elements. So the element size of the underlying
base mesh does not depend on the small cross-section given by the weft-knit.

The application of the new modelling technique in this paper is focused on the
computation of effective material properties based on homogenisation techniques.
As it was shown, the use of periodic displacement boundary conditions in con-
junction with elements based on the X-FEM requires special considerations. For
this, different cases for the formulation of constraints regarding additional dof are
analysed.

Finally, the combination of X-FEM and Binary Model is applied to a particular
composite with biaxial weft-knit reinforcement. There, a good agreement of nu-
merical and experimental results is obtained and proves the ability of this new
modelling technique.
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