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A Fictitious Time Integration Method for the Numerical
Solution of the Fredholm Integral Equation and for
Numerical Differentiation of Noisy Data, and Its Relation
to the Filter Theory

Chein-Shan Liu', Satya N. Atluri’

Abstract: The Fictitious Time Integration Method (FTIM) previously developed
by Liu and Atluri (2008a) is employed here to solve a system of ill-posed linear
algebraic equations, which may result from the discretization of a first-kind lin-
ear Fredholm integral equation. We rationalize the mathematical foundation of the
FTIM by relating it to the well-known filter theory. For the linear ordinary differ-
ential equations which are obtained through the FTIM (and which are equivalently
used in FTIM to solve the ill-posed linear algebraic equations), we find that the
fictitous time plays the role of a regularization parameter, and its filtering effect is
better than that of the Tikhonov and the exponential filters. Then, we apply this
new method to solve the problem of numerical differentiation of noisy data [such
as finding da/dN in fatigue, where a is the measured crack-length and N is the
number of load cycles], and the inversion of the Abel integral equation under noise.
It is established that the numerical method of FTIM is robust against the noise.

Keywords: Ill-posed linear equations, Regularization, Filter theory, Fictitious
Time Integration Method (FTIM)

1 Introduction

In this paper we propose a robust and easy-to-implement FTIM-based method to
solve the linear Fredholm integral equation of the first-kind:

/a " K(s.0)x(t)dt = h(s). s € [e.d], )

where K (s,t) and h(s) are known functions and x(z) is an unknown function. We
also suppose that A(s) is perturbed by random noise. Some numerical methods
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to solve the above equation are discussed in [Landweber (1951); Maleknejad and
Mahmoudi (2004); Maleknejad et al. (2006); Wang (2006)], and in the references
therein.

Also, in many applications, it is necessary to calculate the derivative of a function
measured experimentally, i.e., to differentiate noisy data. Such a problem is well-
known in fatigue-mechanics, wherein a relation for da/dN is often required to be
obtained from the measured noisy-data for the crack-length a and the number of
load-cycles N. The problem of numerical differentiation of noisy data is ill-posed:
small changes in the data may result in large changes of the derivative [Ramm and
Smirnova (2001); Ahn et al. (2006)]. We address this problem also in the present
paper, and propose a new FTIM-based solution.

A possible application of the proposed new FTIM-based numerical method is to
solve the following Abel integral equation under noise:

o0
Z;@_”#h_h@)s>a ne(0,1). .
It is known that Eq. (2) has the exact solution:
_sin(nm) d pt o)
0(s)=— ds./o (s_;)l—ndt‘ )

Nevertheless, this exact solution fails in practical applications, when the input func-
tion A(t) contains a random error, since the differential operator involved in Eq. (3)
is ill-posed and unbounded.

There were many approaches for determining the numerical solution of the Abel
integral equation [Gorenflo and Vessella (1991)]. Fettis (1964) has proposed a nu-
merical solution of the Abel equation by using the Gauss-Jacobi quadrature rule.
Kosarev (1973) proposed a numerical solution of the Abel equation by using the
orthogonal polynomials expansion. Piessens and Verbaeten (1973) and Piessens
(2000) developed an approximate solution of the Abel equation by means of the
Chebyshev polynomials of the first-kind. When the input data contains noisy er-
ror, Hao (1985,1986) used the Tikhonov regularization technique, and Murio et al.
(1992) suggested a stable numerical solution. Furthermore, Garza et al. (2001) and
Hall et al. (2003) used the wavelet method, and Huang et al. (2008) used the Taylor
expansion method to derive the inversion of noisy Abel equation.

Our strategy to tackle the problem with the numerical differentiation of noisy data
is to recast it into Eq. (1) by utilizing the Laplace transform. Then, we solve the
first-kind Fredholm integral equation by discretizing Eq. (1) into a linear system of
algebraic equations:

Ax=bh, 4)
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where A is a given matrix, and X is an unknown vector. Eq. (4) may represent the
least-squares solution of a system of equations Rx = ¢, where R is a rectangular
matrix. In such a case, A = RTR and b = R"¢, where the superscript T signifies the
transpose. The input data of b may be corrupted by noise.

In a practical application of Eq. (4) in engineering problems, the data b are rarely
given exactly; instead, the noises are unavoidable due to measurement and model-
ing errors. Therefore, we may encounter the problem that the numerical solution
of Eq. (4) may deviate from the exact one to a great extent, when A is severely
ill-conditioned and b is perturbed by noise.

The solution of ill-posed linear equations is an important issue in many engineering
problems. We are specially interested in the solution of Eq. (4) under noisy data,
when the condition number of A is large. Many numerical methods used in compu-
tational mechanics [Zhu et al. (1999); Atluri (2005); Atluri et al. (2006); Atluri and
Shen (2002); Atluri and Zhu (1998a,1998b)] lead to the requirement of solving an
ill-posed system of linear equations ultimately. Collocation methods, such as those
discussed by Liu (2007a,2007b,2007¢c) for the Trefftz method of Laplace equation
also need to solve a large system of often-ill-conditioned linear equations.

To account for the sensitivity to noise, it is customary to use a regularization method
to solve an ill-posed problem [Kunisch and Zou (1998); Wang and Xiao (2001);
Xie and Zou (2002); Resmerita (2005)], where a suitable regularization parameter
is used to suppress the bias in the computed solution by a better balance of the
approximation error and the propagated data error. Following the pioneering work
of Tikhonov and Arsenin (1977), many regularization techniques were developed.
For a large scale system the main choice is to use the iterative regularization algo-
rithm, where a regularization parameter is represented by the number of iterations.
The iterative method works if an early stopping criterion is used to prevent the
reintroduction of noisy components in the approximated solutions.

In this paper we solve an ill-posed linear system of linear equations by the FTIM-
based method, and show that it is equivalent to a new filter regularization. To
rationalize the proposed methods we show the characteristics of the filtering effect.
This paper is organized as follows. In Section 2 we briefly illustrate the Tikhonov
regularization and the inherent exponential filter, by using the linear ordinary dif-
ferential equations (ODEs). In Section 3, we explore the effect of the Fictitious
Time Integration Method (FTIM) to solve the ill-posed linear equations system,
and show its equivalence to the filter theory. Section 4 is devoted to the use of the
FTIM to solve the first-kind linear Fredholm integral equation under noise, to find-
ing the numerical derivative of noisy data, and to solve the Abel integral equation
under noise. Some conclusions are drawn in Section 5.
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2 The regularization due to Tikhonov, and the inherent exponential filter

We suppose that A is nonsingular, and thus has a singular-value decomposition:

A = Udiag{s;} VT, 6)
where s; are the singular values of A. Thus, Eq. (4) has an exact solution:

x = A~'b = Vdiag{s; ' }U"b. (6)

However, this solution may be incorrect when the data of b are noisy. The effect of
regularization is to modify s, ! for those singular values which are very small, by

where @(s) is called a filter function. So, instead of Eq. (6) we can obtain a regu-
larized solution:

x = Vdiag{w(s7)s; ' }U"b, @)

where @(s?)s;! — 0 when s; — 0.

l
The Tikhonov regularization can be employed to solve Eq. (4), when A is highly
ill-conditioned. Hansen (1992) and Hansen and O’Leary (1993) have given an illu-
minating explanation that the Tikhonov regularization of ill-posed linear problems
is a trade-off between the size of the regularized solution, and the quality to fit the
given data, namely, seeking the following minimum:

. . . 2 2
min ¢(x) = min [[|Ax—b||* +c}x]|*] (8)

The necessary condition for the optimality of ¢(x) in Eq. (8) is
[ATA+al,]x—ATb =0. )

Obviously, from the Tikhonov regularization, we can derive a filter function such
that
s

o(s) = (10)

Cos+a’

which is named the Tikhonov filter function, and « is a regularization parameter.

On the other hand, we can also view Eq. (9) as the steady-state counterpart of a
time-dependent differential equation:

x=—[ATA+al,]x+A"b, (11)
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where x denotes the differential of x with respect to 7. With x(0) = 0, the above
equation has a solution:

x(t) = Vdiag{o(s?)s; 11U, (12)
where
] — e tsta)
=R} 1
o(s) sra ° (13)

The wrinkle here is that typically one no longer intends to carry out the integration
to a steady-state. Indeed, the present regularization is achieved by integrating the
ODE in Eq. (11) to a finite time ¢, and ¢ plays a regularization parameter. For the
case t — oo, the filter function in Eq. (13) reduces to the Tikhonov regularization in
Eq. (10). More interestingly, when oo = 0, Eq. (13) reduces to an exponential filter
function:

o(s)=1—¢". (14)

Calvetti and Reichel (2002) gave further reasons for preferring Eq. (14) in the linear
case. In fact, they never refer to an ODE giving rise to this filter function; however,
Ascher et al. (2007) pointed this direction by deriving the above filter function from
the ODE.

3 The relation of FTIM to a filter function

Liu and Atluri (2008a) have introduced a novel method to solve a system of non-
linear algebraic equations F(x) = 0, by embedding them in a system of nonau-
tonomous first order ODEs:

y_ v
X = 1+TF(X)’ (15)

or in general,
x = ———F(x), (16)

where x’ denotes the differential of x with respect to a fictitious time-like variable
7, and v is a damping constant.

This numerical technique has been labelled the Fictitious Time Integration Method
(FTIM).

The above idea of introducing a fictitious time 7 was first proposed by Liu (2008a)
to treat an inverse Sturm-Liouville problem by transforming an ODE into a PDE.
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Then, Liu and his coworkers [Liu (2008b, 2008c¢); Liu et al. (2008)] extended this
idea to develop new methods for estimating the parameters in the inverse vibration
problems. More recently, Liu (2008d) has used the FTIM technique to solve the
nonlinear complementarity problems, whose numerical results are very accurate.
Liu (2008e) used the FTIM to solve the boundary value problems of elliptic type
partial differential equations. Then, Liu (2008f) used the FTIM to solve the m-
point boundary value problems of differential equations. Liu and Atluri (2008b)
also employed this technique of FTIM to solve mixed-complementarity problems
and optimization problems. Then, Liu and Atluri (2008c) employed the FTIM to
solve the inverse Sturm-Liouville problems under specified eigenvalues.

Here, we give a new interpretation of the FTIM, for an ill-posed linear system of
equations, from the Tikhonov filter theory point of view. In order to first apply our
presently proposed method to solve the system of algebraic equations, we demon-
strate it by considering a single equation:

F(x) =0, 17

where we only have one independent variable x. We transform it into a first-order
ODE by introducing a fictitious time variable 7, using the following transformation
of variables from x to y:

y(1) = q(7)x, (18)

where ¢(7) is a differentiable function, ¢(0) = 1 and g(e0) = o and the time-like
function ¢(7) is chosen by the user. Here, 7 is a variable which is independent of x;
hence, y =dy/dt = ¢'(7)x. Adding the equation y' = ¢'(7)x to Eq. (17) we obtain:

Y =4 (1)x—F(x). (19)
By using Eq. (18) we can derive
_q(7)y < y )
= —F|—. 20
GV e

This is a first-order ODE for y(7). The initial condition for the above equation is
¥(0) = x, which is however an unknown and requires a guess.

Multiplying Eq. (20) by an integrating factor of 1/¢(7), we can obtain

d.Y>:_1F<>’) )1
i ats) =" (0 ey
Further, using y/q(7) = x, Eq. (21) leads to

X =———F(x). (22)
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Therefore, we have transformed the algebraic Eq. (17) into a first-order nonau-
tonomous ODE. Under certain condition we expect that the solution of Eq. (22)
starting from an initial guess of x(0) can approximate the true solution x of Eq. (17).

Applying the concept in Eq. (22) to the following system of equations:
ATAx—ATb =0, (23)

we can derive a FTIM for solving Eq. (23) through the system of ODE:s:

1 1
X =———ATAx+ —

T
4() a0 P @9

By introducing the transformation:

T 1
(= / —de, (25)
0 q(8)
Eq. (24) can be further reduced to

x=—ATAx+ATb, (26)

where X = dx/dt. Thus, the time-varying linear system (24) is transformed into
a linear system (26) with constant coefficients. Thus, with x(0) = 0, the above
equation has a solution:

x(t) = Vdiag{o(s7)s; ' }U"b, (27)
where
o(s)=1—e7". (28)

Comparing Eq. (27), which results from the application of the FTIM [Liu and Atluri
(2008a)] to Eq. (7), which results from the Tikhonov regularization, the interpreta-
tion of FTIM as a regularization method to solve ill-posed system of linear equa-
tions is apparent.

There are many choices of the time-like function ¢(7); however, we only consider
g(t)=(1+1)",0<y<1. (29)
Thus, by Eq. (25) we have

[ In(1+7) y=1,

t_{ S+ =1 0<y<l. (30)
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Inserting them into Eq. (28) we can obtain the following equivalent filter functions:

o(s) = L=y =1 31)
B l—exp(ﬁ,[(lqt’r)]_y—l}) 0<y<l.

Substituting Eq. (23) for F into Eq. (15) we can obtain

%
X = ———[ATAx—ATb). (32)
147
A similar derivation leads to another filter function:
o(s)=1- % (33)
(I+1)vs
Exponential filter
———- Tikhonov filter
—— - FTIM filter with y=1
10 — |- = = FTIM filter with y=0.5
FTIM filter with y=0.2
] FTIM filter with v=0.5
0.8 — FTIM filter with v=0.2
0.6 —
o |
04 —
0.2 —
0.0 — T \HHH‘W \HHT\{W I H/HH\‘ T \HHH‘ T \HHH‘ T \HHH‘
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Figure 1: Comparison of different filters for r = T = 50 and o = 0.01 arising from
the FTIM, with the familiar Tikhonov filter.

Fig. 1 compares these filter functions appearing in Egs. (10), (14), (31) and (33),
where we let t = 7 =50 and o = 0.01. Of course they both tend to O as s — 0
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and to 1 as s — 1. But even for mid-range values of s there is a similarity in the
general shape. It appears that the choice of 7 ~ 1/(2¢r) makes the Tikhonov filter
and the exponential filter particularly close, and that the exponential filter switches
from O to 1 more sharply. The new filters have a more significiant effect on the
filtering of low singular values. When y — 0, the new filter is close to the expo-
nential filter, and indeed, the exponential filter is a special case of the new filter
with ¥ = 0. The damping constant v also influences the filtering effect profoundly.
Thus, we conclude that the general FTIM method of solving an ill-posed system of
linear equations may be interpreted as leading, as a special case, to the Tiknonov
regularization method.

4 Applications
4.1 The Fredholm integral equation

To demonstrate the applications of the FTIM, we first consider the first-kind Fred-
holm integral equation, because it is known to be severely ill-posed:

/ " Kis.0)x(t)dt = h(s). s € [e.d]. (34)

Let us discretize the intervals of [a,b] and [c,d] into m; and m; subintervals by
noting At = (b —a)/my and As = (¢ —d)/my. Let xj := x(t;) be a numerical value
of x at a grid point ¢, and let K; ; = K (s;,¢;) and h; = h(s;), where t;j = a+ (j — 1) At
and s; = ¢+ (i — 1)As. Through a trapezoidal rule, Eq. (34) can be discretized into

At < At _
?Kmxl + At Z Ki,jx]' + ?K,’7ml+1xml+1 =h,i=1,....my+1, 35)
=

which are algebraic equations denoted by:
Rx =h, (36)

where R is a rectangular matrix with dimensions (my + 1) x (m; +1). Here, h =
(R s hmys1)T, and

X = (X1, Xy 1) 37
is the vector of unknowns. The data 4; may be corrupted by noise, such that:
hj=hj+oR(j), (38)

where R(j) are random numbers in [—1, 1].
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Then the FTIM can be used to solve the following least-squares error algebraic
equation:

Ax =b, (39)
where
A:=R'R, b:=R"h. (40)

We test our approach above, by considering the numerical solution of the following
first-kind Fredholm integral equation:

T
[ eetatoyar = Zsinbs, s € 0,7/2), 1)
which has an exact solution x(¢) = sinz. By fixing m; = my = 50 and under a noise
with o = 0.1 the numerical results are shown in Fig. 2. For the FTIM the ODEs are
integrated by the group-preserving scheme (GPS) [Liu (2001)] with a time stepsize
0.001, while for the exponential filter the time stepsize must be decreased to 0.0003.
When m; = 100 is increased we found that the exponential filter cannot be applied
with a time stepsize 0.0001, but the FTIM is still applicable under v = 0.1, of which
the numerical solution has a maximum error 0.051.

As a second example, we consider the problem of finding x(¢) in the following
equation:

1
/ [sin(s+1) + €' cos(s —1)]x(t)dt = 1.4944cos s+ 1.4007 sins, s € [0,1],  (42)
0

where x(t) = cost is the exact solution. We use the following parameters m; =
my =50,v=0.1,y=0.1 and € = 103 in the FTIM to calculate the numerical
solution under a noise with o = 0.01. Through 25 steps it is convergent to the true
solution with a maximum error 0.029 as shown in Fig. 3. Even under a large noise
our calculated result is better than that calculated by Maleknejad et al. (2006).

4.2 Finding the derivative of noisy data

In many applications it may be necessary to calculate the derivative of a func-
tion measured experimentally, i.e., to differentiate noisy data, such as determining
da/dN from the measured crack-growth a, versus the number of cycles, N. The
problem of numerical differentiation of noisy data is ill-posed: small changes of
the data may result in large changes of the derivative.
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Figure 2: The numerical results obtained by applying the FTIM to a Fredholm

integral equation.
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Figure 3: Comparison of the numerical and exact solutions of a Fredholm integral

equation under noise.

We begin with the following identity:

/Oxy(s)ds = f(x)—f(0), 0<x<a,

(43)
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where y(x) is the differential of f(x). To regularize the above first-kind Volterra
integral equation we add a regularization term ay(x), such that

() + [ 5()ds = ()= £0), @

which is a second-kind Volterra integral equation.

Let us discretize the interval of [0, 4] into n subintervals by noting Ax = a/n, and let
yi :=y(x;) be a numerical value of y at a grid point x;. Then, through a trapezoidal
rule, Eq. (44) can be discretized to
i—1
ay,-+A2xy1+Ax22y,+A2xyi:f,-f(0),i:2,...,n+1. (45)
j=
Under a noise of f; = f; + oR(i) with ¢ = 0.1, we apply the FTIM to solve the
above system of linear equations by using n = 50, v = 200 and a = 0.005, which,
as shown by the solid line fitted with symbols X is compared with the exact solution
f(x) = 3x? as shown in Fig. 4 with a dashed line. Also we calculate the derivative
by a backward finite difference scheme, whose results are shown in Fig. 4 by the
solid line fitted with solid circles. It is obvious that the FTIM is much better than

that calculated by the finite difference scheme.

From the numerical results shown in Fig. 4 it can be seen that the above two meth-
ods are not accurate enough. We propose a third approach by considering the
Laplace transform of f'(x):

/me—Sxf’(x)dx = S/me_“'xf(x)dx - £(0), o
X 0

where both f(x) and f’(x) are assumed to be defined in a finite interval of [0, a].
Outside this interval we let f = f = 0. Let y(x) = f(x), then we wave

/a e Zy(x)dx = s/a e f(x)dx— f(0). (47)
0 0

Inserting the discretized noised data on the right-hand side, as that done in Section
4.1, we can derive the following algebraic equations:

Ax n Ax .
7Ki71y1 +Ax Y K jyj+ 7Ki,m+1ym+l =hi,i=1,....m+1, (48)
=

where y; = y(x;), xi = (i— 1)Ax = (i— 1)a/m, s; = (i— 1)As = (i— 1)a/m, K;; =
exp(—s;x;), and

hi =s; 7Ki,1f1+M2Ki,jfj+7Ki,m+1fm+l - fi- (49)
i



A Fictitious Time Integration Method 255

———- Exact

—3¢— FTIM applied to the Volterra Equation
——— FTIM applied to the Fredholm Equation
- -

Finite Difference

Figure 4: Comparison of different numerical methods for the numerical derivatives
of noisy data, with the exact result.

The data are given by f; = f (xi) + oR(i). Then, similarly we apply the FTIM to
solve Eq. (48). Under the following parameters m = 50, At = 1074, v = 0.01,
Y=1, and € = 0.01 we calculate y;, whose results are plotted in Fig. 4 by the thick
solid line. It is much better than the results obtained from the above two approaches
under the same noise level of o =0.1.

Next, we consider a crack propagation problem, to estimate the crack propagating
rate da/dN, where a is the measured crack-length and N is the number of load
cycles [Broek (1982); Sih (1991)]. Theoretically, the crack propagating rate da/dN
versus a has a power law relation: da/dN = caP. We suppose that the measured
data of a are scattered along an unknown curve as shown in Fig. 5(a) with

a: = a(N) + oR(i), (50)

where for definiteness and for the purpose of comparison we take a(N) = 0.02N'?
and o = 10. Usually, it is very difficult to estimate the rate da/dN versus a by using
the scattered noisy data. However, when we apply the FTIM to solve Eq. (48) under
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the following parameters m = 20000, AT = 1074, v =0.05, Y=1, and € =0.01,
we can calculate da/dN versus a at the measured points, whose results are plotted
in Fig. 5(b) by the dashed line. It can be seen that the estimated rate is close to the
exact one of da/dN = caP, where B = 1/6 and ¢ = 0.024/0.028. The estimated
curve is rather smooth, because the Laplace transform used in Eq. (47) and the
FTIM used in the integration of Eq. (48) can filter the random noise.

1000 —
800 —|

600 —|

a 400 —
200 —|

0

-200 T T T T T T
1 10 100 1000 10000

0.15 —
(b) N

0.10 —

da

dN

R L I B L I R B A

0 100 200 300 400 500 600 700 800 900 1000
Figure 5: Comparison of the numerical and exact solutions for obtaining da/dN

versus a from the measured noisy data for crack-length a versus the number of
cycles, N.

Finally, we consider the Abel integral equation (2) of the following case: n = 1/3,
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¢(s) =10s/9, h(s) =53, 0 < s < 1. Let
S,‘ i:l
76 = | (S_(t)dt 51)

be the discretized data of f(s), and A(t;) = h(t;) + GR(i) be the discretized data
of A(t). Such that through some calculations we have f(s;) = 57s?/[9sin(nm)] +
sToR(i) /.

The numerical solution of the Abel equation is obtained by

)= sin(:n)

O (si f(si), (52)

where we apply the FTIM method in Eq. (48) to calculate f'(s;). We use m = 100,
AT =10"* v =0.001, Yy=1,and € = 10~* in this calculation. Even under a large
noise with o = 0.1, the numerical result as shown in Fig. 6 by the dashed line is
close to the exact solution.

12 —

Exact solution

———- Numerical solution

0.4
\ \ \ \ \

0.0 0.2 0.4 0.6 0.8 1.0
S

Figure 6: Comparison of the numerical and exact solutions of an Abel integral
equation under noise.
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5 Conclusions

In this paper we have applied the Fictitious Time Integration Method (FTIM) to
solve a system of ill-posed linear equations. The mathematical foundation of the
FTIM was explored by comparing it to the filter theory. We found that the fictitous
time plays the role of a regularization parameter, and its filtering effect is better
than that of the Tikhonov and the exponential filters. The influence of other two pa-
rameters in the time-like function g was also discussed. We applied this new filter
to solve the first-kind Fredholm integral equation under noise, to solve the problem
of numerical differentiation of noisy data, and to solve the Abel integral equation
under noise. Numerical examples showed that the present theory is robust against
the noise, when solving ill-posed linear problems.
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