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Elastic transient analysis with MLPG(LBIE) method and
local RBFs
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Abstract: A Meshless Local Petrov-Galerkin (MLPG) method based on Local
Boundary Integral Equation (LBIE) techniques is employed here for the solution
of transient elastic problems with damping. The Radial Basis Functions (RBF) in-
terpolation scheme is exploited for the meshless representation of displacements
throughout the computational domain. On the intersections between the local do-
mains and the global boundary, tractions are treated as independent variables via
conventional boundary interpolation functions. The MLPG(LBIE)/RBF method
is applied to both transient and steady-state Fourier transform elastodynamic do-
mains. In both cases the LBIEs employ the simple elastostatic fundamental solu-
tion instead of the complicated time and frequency dependent ones. The transient
version of the present MLPG(LBIE)/RBF technique utilizes the θ -Wilson finite
difference scheme for the treatment of acceleration and velocity terms, while the
frequency domain formulation exploits the Fast Fourier Transform (FFT) for the
conversion of frequency domain solutions into time domain fields. The accuracy
of the proposed methodology is assesed with three representative numerical exam-
ples.

Keywords: Meshless methods, Meshless Local Petrov-Galerkin (MLPG), Lo-
cal Boundary Integral Equation (LBIE), elastodynamic transient analysis, elasto-
dynamic steady-state analysis

1 Introduction

The Boundary Element Method (BEM) is a very well known and robust method
for solving elastodynamic problems [Beskos (1987), Beskos (1997)]. However, in
its conventional time-domain form it uses the elastodynamic fundamental solution,
which increases the computational effort in transient problems, due to its compli-
cated form [Manolis and Beskos (1988), Dominguez (1993)]. The use of the much
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simpler elastostatic fundamental solution creates an inertia volume integral, which
requires an interior discretization in addition to the boundary mesh. A solution
to this problem is offered by the Dual Reciprocity BEM (DR/BEM) proposed by
[Nardini and Brebbia (1983)] where the inertia volume terms are transformed into
boundary integrals. This method, although elegant as a boundary approach, is not
maybe the best for time-domain applications due to its convergence problems [Ag-
nantiaris, Polyzos, and Beskos (1998)]. Another approach is the conversion of the
transient problem into a steady-state one through Fourier or Laplace Transform,
then solution of the problem in the transformed domain [Polyzos, Tsinopoulos,
and Beskos (1998)] and inversion of the obtained results into time-domain via in-
verse Fourier [Kausel and Roësset (1992)] or Laplace [Durbin (1974), Manolis and
Beskos (1981)] transform algorithms. The problems in this case is the numerical
treatment of the complex harmonic fundamental solution and the computationally
expensive fully populated final system of algebraic equations.

To circumvent this kind of problems, Atluri and co-workers proposed the Local
Boundary Integral Equation (LBIE) method [Zhu, Zhang, and Atluri (1998)] and
the Meshless Local Petrov-Galerkin (MLPG) method [Atluri and Zhu (1998)] as
alternatives to the BEM and FEM, respectively. Both methods are characterized
as "truly meshless" since no background cells are required for the numerical eval-
uation of the involved integrals. Properly distributed nodal points, without any
connectivity requirement, covering the domain of interest as well as the surround-
ing global boundary are employed instead of any boundary or finite element dis-
cretization. All nodal points belong to regular sub-domains (e.g. circles for two-
dimensional problems) centered at the corresponding collocation points. The fields
at the local and global boundaries as well as in the interior of the subdomains are
usually approximated by the Moving Least Squares (MLS) approximation scheme.
Owing to regular shapes of the sub-domains, both surface and volume integrals
are easily evaluated. The local nature of the sub-domains leads to a sparse linear
system of equations.

Depending on the weak formulation’s test functions of the MLPG method, Atluri
and coworkers developed six different MLPG methodologies numbered from one
to six [Atluri and Shen (2002a); Atluri and Shen (2002b)]. The MLPG4 method
utilizes as test functions, the fundamental solution of the differential equation (or
part of the differential equation) of the problem, resulting into a MLPG approach
equivalent to the LBIE method. For this reason, in the present work the LBIE
method is called MLPG(LBIE) method.

Several papers dealing with MLPG(LBIE) solutions of linear elastic problems have
appeared in the literature. The most representative are those of [Atluri, Sladek,
Sladek, and Zhu (2000); Sladek, Sladek, Atluri, and Keer (2000); Sladek, Sladek,
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and Keer (2003); Sladek, Sladek, and Atluri (2002); Atluri, Han, and Shen (2003);
Han and Atluri (2003); Sellountos and Polyzos (2003); Sellountos and Polyzos
(2005a); Sellountos and Polyzos (2005b); Sellountos, Vavourakis, and Polyzos
(2005); Bodin, Ma, Xin, and Krishnaswami (2006); Vavourakis, Sellountos, and
Polyzos (2006); Han and Atluri (2007); Vavourakis and Polyzos (2007); Vavourakis
and Polyzos (2008); Vavourakis (2008);] while a comprehensive presentation on
the application of the MLPG(LBIE) method to different types of boundary value
problems can be found in the review paper of [Sladek, Sladek, and Atluri (2002)]
and in the book of [Atluri (2004)].

In the context of transient analysis, first [Sladek, Sladek, and Keer (2003)] em-
ployed the conventional MLPG(LBIE) method with the MLS approximation scheme
and solved transient elastic problems working in both time and Laplace transform
domains. The main problem with their methodology was the use of derivatives of
MLS approximation functions in the approximation of the boundary traction vec-
tors, a fact that affects negatively the accuracy of the MLPG(LBIE) method as it is
pointed out in [Vavourakis, Sellountos, and Polyzos (2006)]. Later, [Sellountos and
Polyzos (2005b)] proposed a new MLPG (LBIE) method for solving transient lin-
ear elastic problems. The main characteristic of this work was the use of relatively
uniform distribution of nodal points, so in the global boundary, the MLS interpo-
lation scheme possesses the δ -property [Gosz and Liu (1996)] and the essential
boundary conditions can be imposed directly on the fictitious nodal displacements
and tractions. Its advantage, as it is compared to the work of [Sladek, Sladek, and
Keer (2003)] was the treatment of boundary displacements and tractions as inde-
pendent variables avoiding the derivatives of MLS approximation functions. Al-
though accurate, the requirement of relatively uniform distribution of nodal points
throughout the analyzed domain confines the use of the method to structures with
regular shapes.

One of the most important issues in meshless methods is the choice of the proper
interpolation functions used for the representation of the analyzed fields [Sladek,
Sladek, and Tanaka (2005); Sladek, Sladek, and Zhang (2006); Vavourakis, Sell-
ountos, and Polyzos (2006); Sladek, Sladek, and Zhang (2008)]. After the MLS
approximation, the most frequently used interpolation scheme is the RBF [Libre,
Emdadi, Kansa, Shekarchi, and Rahimian (2008); Kosec and Sarler (2008); Le,
Mai-Duy, Tran-Cong, and Baker (2008); Orsini, Power, and Morvan (2008); Ma
(2008)]. Very recently [Sellountos and Sequeira (2008b); Sellountos and Sequeira
(2008a)] developed an MLPG(LBIE) method for the solution of two-dimensional
incompressible fluid flows. The method was based on an efficient Radial Basis
Functions (RBF) scheme for the interpolation of the interior and boundary vari-
ables. The inverse matrix of the RBF was computed only once for every nodal point
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and the interpolation functions were evaluated by the inner product of the inverse
matrix with the weight vector associated to the integration point. This technique
leads to a fast and efficient meshless approach, where the locality of the method
is maintained and the system matrices are banded with small bandwidth. In the
present work a new MLPG(LBIE)-RBF methodology for solving transient elastic
problems is presented. On the global boundary, tractions are treated as independent
variables via conventional boundary interpolation functions. The proposed method
is applied to both transient and steady-state Fourier transform elastodynamic do-
mains. In both cases the LBIEs employ the simple elastostatic fundamental solu-
tion instead of the complicated time dependent or frequency dependent one. The
transient version of the present MLPG(LBIE)-RBF technique uses the θ -Wilson
[Bathe (1996)] finite difference scheme for the treatment of acceleration and veloc-
ity terms, while the frequency domain formulation exploits the Fast Fourier Trans-
form (FFT) for the conversion of frequency domain solutions into time domain
fields. The paper is organized as follows: in the next section the RBF interpola-
tion scheme is illustrated. Sections 3 and 4 explain the MLPG(LBIE) formulation
in time and Fourier transform domains, respectively. Finally in section 5, three
benchmarks are provided to demonstrate the accuracy of the proposed method.

2 RBF interpolation scheme

In this section the RBF interpolation scheme exploited in the present paper is il-
lustrated. More details one can find in the book of [Atluri (2004)] and in the
works of [Wang and Liu (2002b), Wang and Liu (2002a)]. Recent works em-
ploying RBFs on meshless methods are those of [Wen, Aliabadi, and Liu (2008);
Kosec and Sarler (2008); Mohammadi (2008); Emdadi, Kansa, Libre, Rahimian,
and Shekarchi (2008); Libre, Emdadi, Kansa, Rahimian, and Shekarchi (2008)]
and [Orsini, Power, and Morvan (2008)]. Consider an elastic domain Ω surrounded
by a boundary Γ covered by arbitrary distributed points y j, as shown in Fig. 1.
Each point is considered as the center of a small circular domain Ω j of radius r j,
called support domain of y j. All support domains of the adjacent nodal points yk,
satisfying the condition∣∣yk−y j

∣∣< rk + r j (1)

form a domain called domain of influence of point y j (Fig. 1). At any integration
point x (Fig. 1), the interpolation of the unknown displacement field is accom-
plished by the relation

u(x) =
n

∑
i=1

Biai +
m

∑
l=1

Plbl = BT
(

yk,x
)
·a+PT (x) ·b (2)
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Figure 1: Domain of influence of the point y j and domain of definition yk of point
x

where n is the total number of the nodal points belonging to the domain of definition
of point x and m is the degree of the polynomial basis used for the interpolation.
For linear basis, m is equal to 3, while for quadratic basis, m is equal to 6. B(x)
is the RBF vector with dimension n×1 and P(x) is a monomial basis vector with
dimension m×1. Finally, both a and b are unknown vectors with dimensions n×1
and m× 1, respectively, that depend on the location of the adjacent points of the
domain of definition yk of point x. More precisely the vector B

(
yk,x

)
has the form

B
(

yk,x
)

=


W (y1,x)
W (y2,x)

...
W (yn,x)


n×1

,k = 1, ...,n (3)

where W represents a prescribed radial function. In the present work multiquadric
radial functions are employed and thus W has the form

W (y,x) =
(
r2 +Q2)0.5

(4)

where r = |y−x| is the distance between the two points and Q is a nodal parameter,
the optimal value of which is determined to be equal to [Hardy (1990)]

Q(x) = 0.815
1
n

n

∑
i=1

di (5)
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where di is the distance between every point yk in the domain of definition of the
point x and its closest nodal neighbor. The polynomial vector P has the form

PT (x) =
[

1 x y
]

1×m
(6)

for linear basis and

PT (x) =
[

1 x y x2 xy y2
]

1×m
(7)

for the quadratic basis. The determination of the unknown vectors a(yk) and b(yk)
is accomplished by constructing a set of equations that impose an interpolation
passing through all nodal points belonging to the domain of definition of yk

u(ye) =
n

∑
i=1

Bi (yk,ye)ai +
m

∑
l=1

Pl (ye)bl. (8)

Where ye,e = 1, ...,n are the interpolation nodal points in the domain of definition
of point x. In addition to the previous relation the following equation is taken into
account [Wang and Liu (2002a)]

n

∑
j=1

Pl (yk)a j (yk) = 0, l = 1, ..,m (9)

and the following system of equations is formed[
B0 P0

P0
T 0

]
(n+m)×(n+m)

[
a
b

]
n+m

=
[

u
0

]
n+m

(10)

or

A(yk)
[

a
b

]
=
[

u
0

]
. (11)

The matrix A(yk) is symmetric and consists of the submatrices B0 (yk) and P0 (yk)
that depend on the nodal points yk, and have the following form

B0 (yk) =


BT (yk,y1)
BT (yk,y2)

...
BT (yk,yn)


n×n

(12)

or

B0 =


W (y1,y1) W (y2,y1) ... W (yn,y1)
W (y1,y2) W (y2,y2) ... W (yn,y2)

... ... ... ...
W (y1,yn) W (y2,yn) ... W (yn,yn)


n×n

(13)
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and

P0 (yk) =


PT (y1)
PT (y2)

...
PT (yn)


n×m

. (14)

Finally Eq. 2 is written in the form

u(x) =
[

BT (x) PT (x)
]

A−1 (yk)
[

u(yk)
0

]
= R(x)u(yk) (15)

with

Rk (x) =
n

∑
i=1

Bi (x)A−1
i,k (yk)+

m

∑
l=1

Pl (x)A−1
n+l,k (yk) (16)

representing the interpolation functions adopted in the present work. The deriva-
tives of the interpolation functions can be derived by differentiating Eq. 16 with
respect to the spatial coordinates x,y

∂Rk (x)
∂x

=
n

∑
i=1

∂Bi (x)
∂x

A−1
i,k (yk)+

m

∑
l=1

∂Pl (x)
∂x

A−1
n+l,k (yk)

∂Rk (x)
∂y

=
n

∑
i=1

∂Bi (x)
∂y

A−1
i,k (yk)+

m

∑
l=1

∂Pl (x)
∂y

A−1
n+l,k (yk) . (17)

3 Direct time domain MLPG(LBIE) formulation

Consider a two-dimensional linear and isotropic elastic domain Ω surrounded by
a surface Γ part of which is subjected to an exterior transient excitation (Fig. 2).
Then, at any point y of the body, the displacement vector u satisfies the Navier-
Cauchy partial differential equation [Manolis and Beskos (1988); Dominguez (1993)]:

µ∇
2u(y, t)+(λ + µ)∇∇ ·u(y, t)+b(y, t) = ρü(y, t) (18)

where λ µ and ρ stand for the Lamé constants and the mass density, respectively,
b indicates body forces, ∇ is the gradient operator and dots indicate differentiation
with respect to time t. In case where b represents damping forces, Eq. 18 takes the
form

µ∇
2u(y, t)+(λ + µ)∇∇ ·u(y, t) = ρü(y, t)+ζ u̇(y, t) (19)
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where ζ is a damping coefficient. The boundary conditions are assumed to be

u(y, t) = ū(y, t) ,y ∈ Γu

t(y, t) = t̄(y, t) ,y ∈ Γt (20)

with t denoting the traction vector, ū, t̄ represent prescribed vectors and Γu∪Γt ≡Γ.
Considering the static fundamental solution of Eq. 19 and employing the Betti’s

Ω

Γ

y

Ωs

Ls

y

Ωs

Γs

Ls

y
Ωs

Γs

Ls

n̂

Figure 2: Local domains and local boundaries used for the local integral represen-
tation of displacements at the point y.

reciprocal identity, one obtains the following LBIE for the circular domain centered
at any interior or boundary point y (Fig. 2).

αu(y, t)+
∫

Γs∪Ls

t∗ (y,x) ·u(x, t) dΓx =
∫

Γs∪Ls

u∗ (y,x) · t(x, t) dΓx−

ρ

∫
Ωs

u∗ (y,x) · ü(x, t) dΩx−ζ

∫
Ωs

u∗ (y,x) · u̇(x, t) dΩx (21)

where α is equal to 1 for internal points and 1/2 for points lying on the smooth
global boundary Γ. u∗, t∗ represent the fundamental displacement and traction ten-
sors, respectively, given in [Polyzos, Tsinopoulos, and Beskos (1998)], having the
form

u∗ =
1

8πµ (1−ν)
[(4ν−3) logrI+ r̂⊗ r̂] (22)
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Figure 3: Quadratic or linear interpolation of boundary tractions t(x) defined on
local boundaries Γs, using only boundary nodes

t∗ =
1

2π

[
1−2ν

2r (−1+ν)
((r̂ · n̂)I+ n̂⊗ r̂)+

1
2r (1−ν)

(r̂⊗ n̂−2r̂⊗ r̂(r̂ · n̂))+

ν

r (−1+ν)
r̂⊗ n̂

]
(23)

with r = x−y, r̂ = r/r and n̂ being the vector normal to the boundary Γ. In order
to get rid of traction vectors appearing in integrals defined on Ls, the use of the
companion solution uc is made [Atluri, Sladek, Sladek, and Zhu (2000)]. Thus the
LBIE Eq. 21 takes the form

αu(y, t)+
∫

Γs∪Ls

[t∗ (y,x)− tc (y,x)] ·u(x, t) dΓx =∫
Γs

[u∗ (y,x)−uc (y,x)] · t(x, t) dΓx−

ρ

∫
Ωs

[u∗ (y,x)−uc (y,x)] · ü(x, t) dΩx−

ζ

∫
Ωs

[u∗ (y,x)−uc (y,x)] · u̇(x, t) dΩx (24)
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where

uc =
1

2πµ
[ΨI+X r̂⊗ r̂]

X =
1

4(1−ν)
r2

r2
0

r̂⊗ r̂

Ψ =
1

4(1−ν)

[
5−4ν

2(3−4ν)

(
1− r2

r2
0

)
+(4ν−3) lnr0

]
(25)

tc =
1

2π

[(
dΨ

dr
− X

r

)
((r̂ · n̂)I+ n̂⊗ r̂)− 2

r
X (r̂⊗ n̂−2r̂⊗ r̂(r̂ · n̂))−

2
dX
dr

r̂⊗ r̂(r̂ · n̂)+
(

2(1−ν)
1−2ν

−2

)(
dΨ

dr
− dX

dr
− X

r
r̂⊗ n̂

)]
(26)

and r0 is the radius of the circular domain Ωs. Adopting the RBF interpolation
scheme of Eq. 16 for displacements and considering traction vectors defined on Γs

as independent variables interpolated with standard quadratic or linear boundary
interpolation functions (Fig. 3), Eq. 24 can be written as

α ·u(y)+
∫

Γsq∪Ls

[t∗ (y,x)− tc (y,x)]Rk (x) dΓx ·uk+∫
Γsu

[t∗ (y,x)− tc (y,x)] · ū(x) dΓx =∫
Γsq

[u∗ (y,x)−uc (y,x)] · t̄(x) dΓx+∫
Γsu

[u∗ (y,x)−uc (y,x)]Nk (x) dΓx · tk−

ρ

∫
Ωs

[u∗ (y,x)−uc (y,x)]Rk (x) dΩx · ük−

ζ

∫
Ωs

[u∗ (y,x)−uc (y,x)]Rk (x) dΩx · u̇k (27)

where uk, tk are the time dependent nodal displacement and traction vectors, Γsu,Γst

represent parts of the global boundary where displacements ū and tractions t̄, re-
spectively, are prescribed, Rk stands for the RBF interpolation functions given by
Eq. 16 and Nk corresponds to the standard boundary interpolation functions.

Writing Eq. 27 in the form

αu(y)+ H̃k
q ·uk + H̃k

L ·uk + H̄u = Ḡq + G̃k
u ·qk−ρṼk · ük−ζ Ṽk · u̇k (28)
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and replacing the first and second time derivatives of displacements by the finite
difference type expressions of the implicit time integration scheme of θ - Wilson
[Bathe (1996)], i.e.

üt+θ∆t =
6

θ 2∆t2

(
ut+θ∆t −ut

)
− 6

θ∆t
u̇t −2üt

u̇t+θ∆t =
3

θ∆t

(
ut+θ∆t −ut

)
−2u̇t − θ∆t

2
üt (29)

one obtains[
αI+ H̃k

q + H̃k
L +

1
θ∆t

(
6ρ

θ∆t
+3ζ

)
Ṽk
]
·uk,t+θ∆t − G̃k

u ·qk,t+θ∆t =

− H̄t+θ∆t
u + Ḡt+θ∆t

q +ρṼk
[

6
θ 2∆t2 ut +

6
θ∆t

u̇t +2üt
]
+

ζ Ṽk
[

3
θ∆t

ut +2u̇t +
θ∆t

2
üt
]

(30)

or

A ·ut+θ∆t +H ·ut+θ∆t −G · tt+θ∆t = Ft+θ∆t (31)

with θ being a parameter of the time stepping scheme receiving the specific value
θ = 1.4 for stability and accuracy [Bathe (1996)]. It is apparent that Eq. 31 has the
same form with the corresponding one in a typical BEM formulation where dis-
placements and tractions are independent variables. The difference here is the local
nature of Eq. 31, which leads to a banded system of algebraic equations and not to
a fully populated system as in BEM. By applying Eq. 31 for all nodes, imposing
the boundary conditions Eq. 20 and rearranging the system coefficients, the final
algebraic system of equations is obtained

Ã ·X = b (32)

where the vector X consists of all the unknown nodal displacements and boundary
tractions for the time moment t + θ∆t. Finally, by solving the above system of
equations with an LU decomposition solver, the nodal values of displacements and
boundary tractions are provided. After the solution for the time moment t + θ∆t
is obtained, the displacements, tractions, velocities and accelerations for the time
moment t +∆t are computed using the following formulas [Bathe (1996)]

üt+∆t = üt +
1
θ

(
üt+θ∆t − üt

)
u̇t+∆t = u̇t +∆tüt +

∆t
2θ

(
üt+θ∆t − üt

)
ut+θ∆t = ut +∆tu̇t +

1
2

∆t2üt +
∆t2

6θ

(
üt+θ∆t − üt

)
(33)
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4 Indirect FFT/ MLPG(LBIE) formulation

Consider again the linear and isotropic elastic domain of the previous section. By
applying the exponential Fast Fourier Transform (FFT) to the equation of motion
(Eq. 19) and the corresponding boundary conditions (Eq. 20) one obtains

µ∇
2u(y,ω)+(λ + µ)∇∇ ·u(y,ω)+ω (ρω + jζ )u(y,ω) = 0 (34)

and

u(y,ω) = ū(y,ω) ,y ∈ Γu

t(y,ω) = t̄(y,ω) ,y ∈ Γt (35)

where j = (0,−1) is the imaginary unit and ω the frequency of the Fourier trans-
form, which is imaginary for the reasons explained later. By considering the static
fundamental solution of Eq. 34 and employing the Betti’s reciprocal identity, one
obtains the following LBIE for the circular domain centered at any interior or
boundary point y (Fig. 2).

αu(y)+
∫

Γs∪Ls

t∗ (y,x) ·u(x) dΓx =
∫

Γs∪Ls

u∗ (y,x) · t(x) dΓx+

ω (ρω + jζ )
∫

Ωs

u∗ (y,x) ·u(x) dΩx (36)

where u∗, t∗ represent the static fundamental solution tensors of displacements and
tractions given by Eq. 22 and Eq. 23. By taking into account the companion solu-
tion Eq. 25 and Eq. 26, the LBIE Eq. 36 becomes

αu(y)+
∫

Γs∪Ls

[t∗ (y,x)− tc (y,x)] ·u(x) dΓx =∫
Γs

[u∗ (y,x)−uc (y,x)] · t(x) dΓx+

ω (ρω + jζ )
∫

Ωs

[u∗ (y,x)−uc (y,x)] ·u(x) dΩx (37)

By adopting the RBF interpolation scheme of Eq. 16 for displacements and con-
sidering traction vectors on Γs as independent variables interpolated with standard
linear or quadratic boundary interpolation functions (Fig. 3), Eq. 37 obtains the
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form

αu(y)+
∫

Γsq∪Ls

[t∗ (y,x)− tc (y,x)]Rk (x) dΓx ·uk+∫
Γsu

[t∗ (y,x)− tc (y,x)] · ū(x) dΓx =∫
Γsq

[u∗ (y,x)−uc (y,x)] · t̄(x) dΓx+∫
Γsu

[u∗ (y,x)−uc (y,x)]Nk (x) dΓx · tk+

ω (ρω + jζ )
∫

Ωs

[u∗ (y,x)−uc (y,x)]Rk (x) dΩx ·uk (38)

or

α ·uω (x)+ H̃k
q ·uk

ω + H̃k
L ·uk

ω + H̄uω
= Ḡqω

+ G̃k
u · tk

ω +ω (ρω + jζ ) Ṽk ·uk
ω (39)

or

Kω ·uω −G · tω = Fω (40)

where uk
ω , tk

ω are the harmonic nodal displacement and traction vectors.

As it was previously mentioned Eq. 40 has the same form with the system of equa-
tions in a typical frequency domain BEM formulation where displacements and
tractions are independent variables. However the system of algebraic equations
Eq. 32 is banded and not fully populated as in the BEM. By applying Eq. 40 for all
nodes, imposing the boundary conditions Eq. 35 and rearranging the system coef-
ficients the algebraic system of equations Eq. 32 is obtained. This system can be
solved by an LU decomposition solver and the nodal values of displacements and
boundary tractions are calculated for all frequencies of the FFT spectrum. Finally
the time history of all fields is obtained via the inverse FFT.

It should be mentioned here that for minimizing the aliasing phenomena, the expo-
nential window method proposed by [Kausel and Roësset (1992)] is adopted, where
complex frequencies with a small imaginary part of the form ωc = ω− jc are used.
The constant c is equal to 0.7∆ω , where ∆ω is the frequency step. After solving
numerically the problem in the frequency domain and then applying the inverse
Fourier transform, the time response is rescaled with the aid of the exponential
factor.

5 Numerical examples

The achieved accuracy of the MLPG(LBIE)/RBF method illustrated in the previous
sections is demonstrated in the present section with the solution of three represen-
tative transient elastic problems.
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5.1 Rectangle under uniform tension

The first problem concerns the uniform tension of a 2m ×4m rectangle by a step
load of 1 Pa as it is depicted in Fig. 4. The considered material properties, i.e.

A

B

C

L

H

t

P

P(t)

1

Figure 4: Rectangle under uniform step-type tension.

Young modulus, Poisson ratio, mass density and damping coefficient are E=100000
Pa, ν = 0.25, ρ = 1Kg/m3 and ζ = 0, respectively. 2701 nodes (37× 73) have
been used for the solution of the problem, while the support domains have been
considered to be the same for all the points and equal to 0.1333 m. In the direct
time domain MLPG(LBIE)/RBF formulation the time step ∆t of the θ - Wilson
scheme is 0.0067 s, while in the FFT-MLPG(LBIE)/RBF formulation 128 FFT
points for the time of 0.15 s have been considered. The displacement at points B
and C, the traction at point A and the normal stress σyy at point B are shown in
Fig. 5, Fig. 6, Fig. 7 and Fig. 8, respectively. The obtained results are compared
to the analytical ones provided in the book of [Dominguez (1993)]. Observing the
plots of Fig. 5-Fig. 8, one can say that the results taken by the FFT - MLPG(LBIE)
formulation seem to be more accurate than these obtained by the direct time domain
- MLPG(LBIE) scheme.
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Figure 5: Time history of vertical displacement uy, at the point C(1, 4) illustrated
in Fig. 4.

Figure 6: Time history of vertical displacement uy, at the point B(1, 2) illustrated
in Fig. 4.
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Figure 7: Time history of normal traction component ty, at the point A(1, 0) illus-
trated in Fig. 4.

Figure 8: Time history of normal stress σyy, at the point B(1, 2) illustrated in Fig.
4.
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In the sequel, the same problem with damping coefficient ζ = 10 Ns/m has been
solved and the time history of traction component ty shown for ζ = 0 in Fig. 7, is
presented in Fig. 9. The effect of damping on the obtained results is apparent.

Figure 9: Time history of normal traction component ty, at the point A(1, 0) illus-
trated in Fig. 4. The damping coefficient is ζ = 10 Ns/m.

5.2 Hollow cylinder subjected to an internal pressure - case 1

A hollow cylinder subjected to a step load internal pressure of 1 Pa (Fig. 10 (a)) is
considered. The material properties are E = 94.6769 Pa, ν = 0.2308, ρ = 1Kg/m3

and ζ = 0. The inner and outer diameters of the cylinder have been taken equal
to 1m and 9.4m, respectively. Due to the symmetry of the problem, only one half
was modeled. The cylinder has been discretized with 4015 nodes and their arrange-
ment is shown in Fig. 10 (nr = 55, nθ = 73 ). The support domains are the same
for the nodal points having the same radial distance from the center of the cylin-
der. Thus the minimum and the maximum radii of the support domains considered
in the present problem are 0.304 m and 0.984 m, respectively. In the direct time
domain-MLPG(LBIE) formulation the time step ∆t of the θ - Wilson scheme, has
been taken equal to 0.00631s, while in the FFT-MLPG(LBIE) formulation 64 FFT
points for the time of 1.15s have been considered. The time histories corresponding
to the radial displacement ur, the radial stress σrr and the angular stress σθθ of the
nodal point A(2.02, 0) (Fig. 10) are demonstrated in Fig. 11, Fig. 12 and Fig. 13, re-
spectively, and compared to the analytical and numerical results provided by [Chou
and Koenig (1966)] and [Carrer and Mansur (1999)]. The conclusion here is that
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Figure 10: Hollow cylinder subjected to a stepwise internal (a) and external (b)
pressure.

the agreement between numerical and analytical results is very good with the di-
rect domain-MLPG(LBIE) results being slightly better than those obtained by the
FFT-MLPG(LBIE) formulation.

5.3 Hollow cylinder subjected to an internal pressure - case 2

In the work of [Soares (2007)] the transient hollow cylinder problem of the previous
section (Fig. 10 (a)) with internal pressure p(t) = 0.22 · 108Pa, ri = 3.048m, ro =
15.240m, E = 6.5277 · 108Pa, ν = 0.2308, ρ = 1804Kg/m3 and ζ = 0 has been
solved. The same problem is considered here and the internal radial displacement
ur (Fig. 10 (a), point B(3.048,0)) is evaluated and compared to the one obtained by
[Soares (2007)] in Fig. 14. The minimum and the maximum radii of the support
domains considered in the present problem are 0.511m and 1.44m, respectively.
In the direct time domain-MLPG(LBIE) formulation the time step ∆t of the θ -
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Figure 11: Time variation of radial displacement ur, at the point A(2.02, 0) illus-
trated in Fig. 10 (a)

Figure 12: Time variation of radial stress σrr, at the point A(2.02, 0) illustrated in
Fig. 10 (a)
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Figure 13: Time variation of angular stress σθθ , at the point A(2.02, 0) illustrated
in Fig. 10 (a)

Wilson scheme, is equal to 0.000459s, while in the FFT-MLPG(LBIE) formulation
256 FFT points for the time of 0.45s have been considered. 3969 total nodes are
used with nr = 49,nθ = 81 (Fig. 10).

Figure 14: Time variation of inner radial displacement ur, at the point B(3.048, 0)
illustrated in Fig. 10 (a)
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5.4 Hollow cylinder subjected to an external pressure

Finally, [Frangi and Novati (1999)] using a time domain BEM solved the previous
transient problem considering a cylinder with very large internal and external radii
subjected to an external radial tension. The interesting point of this problem is that
its solution is the same with the rectangle in tension described in section 5.1. Here
the problem has been solved for p(t) = 1Pa, ri = 200m, ro = 204m, E = 100000Pa,
ν = 0.25, ρ = 1Kg/m3 and ζ = 0. The time history of the radial traction tr and the
radial displacement ur at the points C(200, 0) and D(204, 0) (Fig. 10 (b)), respec-
tively, have been evaluated and compared to the analytical solution of the problem.
The corresponding diagrams are shown in Fig. 15 and Fig. 16. 28519 total nodes
are used with nr = 19,nθ = 1501 (Fig. 10). The minimum and the maximum radii
of the support domains are 1.0074m and 1.0254m, respectively. The time step of
the θ -Wilson scheme is ∆t = 0.000555s and in the FFT-MLPG(LBIE) formulation
128 FFT points for the time of 0.15s have been considered.

Figure 15: Time history of radial traction tr at the point C(200, 0) illustrated in Fig.
10 (b)

6 Conclusions

A meshless local boundary integral equation (LBIE) method for solving two di-
mensional transient elastodynamic problems with and without damping has been
proposed. For the meshless representation of displacements throughout the ana-
lyzed domain, the local Radial Basis Functions (RBF) interpolation scheme is em-
ployed. On the intersections between the local domains and the global boundary,
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Figure 16: Time history of radial displacement ur at the point D(204, 0) illustrated
in Fig. 10 (b)

tractions are treated as independent variables via boundary interpolation functions,
thus avoiding derivatives of RBF interpolation functions. The method is applied
to both transient and steady-state Fourier transform domains. More precisely, the
θ -Wilson finite difference scheme is exploited for the treatment of acceleration and
velocity terms in the transient version of the method, while for the indirect solu-
tion of transient problems an efficient direct and inverse Fast Fourier Transform
technique is employed. The achieved accuracy of the proposed methodology is as-
sessed with the solution of three representative benchmarks. On the basis of the
obtained results, the following conclusions can be drawn:

• The method works with a very good accuracy in both transient and steady-
state Fourier transform elastodynamic domains.

• Comparing the results obtained in the present work with those taken by [Sel-
lountos and Polyzos (2005b)], one can say that both techniques provide sim-
ilar accuracy. However, the meshless LBIE methodology proposed in [Sel-
lountos and Polyzos (2005b)] uses the MLS approximation scheme for the
meshless representation of displacements and tractions and thus, due to the
lack of delta property, it works only for uniform distribution of points.

• In the paper of [Vavourakis, Sellountos, and Polyzos (2006)], one of the con-
clusions was that meshless LBIE methods employing MLS approximation
schemes are more accurate than those based on RBFs. This inconsistency
with the present work is due to the treatment of displacements and trac-
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tions on the global boundary. More precisely, in [Vavourakis, Sellountos,
and Polyzos (2006)] the RBF interpolation of a boundary parameter was ac-
complished with the neighboring boundary points only and not with all points
(boundary plus the internals) belonging to the support domain of the consid-
ered node, a fact that decreases the accuracy of RBF interpolation scheme.
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