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Numerical Modeling of Short-Pulse Laser Interactions
with Multi-Layered Thin Metal Films

E. Majchrzak1, B. Mochnacki2, A. L. Greer3 and J. S. Suchy4

Abstract: Multi-layered thin metal film subjected to a short-pulse laser heating is
considered. Mathematical description of the process discussed bases on the equa-
tion in which there appear the relaxation time and the thermalization time (dual-
phase-lag-model). In this study we develop a three level implicit finite difference
scheme for numerical modelling of heat transfer in non-homogeneous metal film.
At the interfaces an ideal contact between successive layers is assumed. At the stage
of computations a solution of only one three-diagonal linear system corresponds to
transition from time t to t +∆t. The mathematical model, numerical algorithm and
examples of computations are presented in the paper.

Keywords: microscale heat transfer, multi-layered metal films, laser pulse, nu-
merical simulation

1 Introduction

Heat transfer through thin films subjected to an ultrafast laser pulse is of vital im-
portance in microtechnology applications and it is a reason that the problems con-
nected with fast heating of solids has become a very active research area. Generally
speaking, the differences between the macroscopic heat conduction equation basing
on the Fourier law and the models describing the ultrafast laser pulse interactions
with metal films appear because of extremely short duration, extreme temperature
gradients and geometrical features of domain considered [Özişik and Tzou (1994);
Tamma and Zhou (1998); Al-Nimr (1997)].

From the mathematical point of view, nowadays there exist different models de-
scribing the mechanism of process discussed. The first approach leads to the so-
called continuum models. In this place the well known Cattaneo equation can be
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mentioned. Modification of Fourier law depending on the assumption of finite
speed of thermal energy propagation leads to the hyperbolic equation describing the
transient temperature field in domain considered [Chen, Borca-Tasciuc and Yang
(2004)]. In this equation the parameter τq called the relaxation time of heat carriers
appears.

The microscopic two-step parabolic model belongs also to the continuum ones
[Chen and Beraun (2001); Kaba and Dai (2005); Lin and Zhigilei (2008)].The
two-step parabolic model involves two energy equations determining the thermal
processes in the electron gas and the metal lattice. It is also possible to transform
this model to the equation containing a second order time derivative and higher or-
der mixed derivative in both time and space. Two positive constants τq, τT appear
in this equation. They correspond to the relaxation time, which is the mean time
for electrons to change their energy states and the thermalization time, which is
the mean time required for electrons and lattice to reach equilibrium [Orlande and
Özişik (1995)].

The same energy equation can be obtained on the basis of classical Fourier-Kirchhoff
equation in which the vector of heat flux q is defined in a special way (both relax-
ation and thermalization times are taken into account – see: chapter 2).

A second group of models bases on the Boltzmann transport equation (BTE). It is
a conservation equation where the conserved quantity is the number of particles
[Tian and Yang (2008)]. The general form of BTE is rather complex but it can be
modified to analyse the special cases, for instance the systems created by phonons,
electrons etc.

Microscale heat transfer processes can be also considered using the molecular ap-
proaches [Smith and Norris (2003); Theodosiou and Saravanos (2007); Liu and
Tsai (2009); Chen, Cheng and Hsu (2007)]. Here the lattice dynamic approach,
molecular dynamic approach and Monte Carlo simulations can be mentioned.

In this paper we consider the mathematical model created by the system of mi-
croscopic heat transfer equations which is supplemented by ideal thermal contact
conditions at the interfaces, non-flux conditions on the external surfaces of thin film
and initial ones corresponding to initial temperature and initial heating rate. The
short-pulse laser interaction with the film is taken into account by introduction of
internal volumetric heat sources to the microscopic heat transfer equations. The
1D problem is analyzed. For most short laser pulse interactions with thin films,
the laser spot size is much larger than film thickness. Therefore, it is reasonable to
treat the interactions as a one-dimensional heat transfer process [Chen and Beraun
(2001)], although the method proposed can be easily generalized on the 2D or 3D
tasks and also nonhomogeneous materials can be considered, e.g. [Sladek , Sladek
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and Alturi (2004)].

To solve the problem formulated the three level implicit finite difference method is
developed. In particular, the version close to the control volume method approach
is discussed [Mochnacki and Suchy (1995)]. Both the ideal contact conditions
and the adiabatic ones are introduced to the FDM equations by the appropriate
definitions of thermal resistances between the nodes. This approach corresponds
to conventional homogenization of multi-layered domain. The transition from time
t to t+ ∆t reduces to the solution of one three-diagonal system of equations (the
Thomas algorithm has been applied).

To verify the algorithm proposed, the results of simulation have been compared
with the analytical solution concerning the homogeneous domain. The compari-
son allowed to analyze the influence of time and space discretization on the errors
distribution. The results have been also verified by the comparison with the ex-
perimental results for 0.1 µm gold film obtained in [Tang and Araki (1999)] and
with the solution concerning double layered gold-chromium film [Dai and Nassar
(2000)]. It should be pointed out that the transient temperature field measurements
are possible only in indirect way. In particular the variation of reflectivity is shown
to be proportional to variation of the electron temperature and the measurements
of this parameter changes can be re-calculated on the changes of temperature [Or-
lande, Özişik and Tzou (1995)].

The last example presented in this paper shows the possibilities of method appli-
cation in the case of non-homogeneous domain created by parallel layers gold-
chromium-gold-chromium.

2 Heat transport at the microscale

At first, the microscopic two-step model presented among others in [Al-Nimr (1997);
Lin and Zhigilei (2008)] will be discussed. The two-step model involves two en-
ergy equations determining the heat exchange in the electron gas and the metal
lattice. The equations creating the model discussed can be written in the form

ce(Te)
∂Te

∂ t
= ∇ [λe(Te)∇Te]−G(Te−Tl) (1)

cl(Tl)
∂Tl

∂ t
= ∇ [λl(Tl)∇Tl]+G(Te−Tl) (2)

where Te= Te(x, t), Tl= Tl(x, t) are the temperatures of electrons and lattice, respec-
tively, ce(Te), cl(Tl) are the volumetric specific heats, λe(Te), λl(Tl) are the thermal
conductivities, G is the coupling factor [Al-Nimr (1997)]. which characterizes the
energy exchange between phonon and electrons [Tian and Yang (2008)]. In the case
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of pure metals the system of equations (1), (2) under the assumption that volumetric
specific heats ce and cl are the constant values, is reduced to

ce
∂Te

∂ t
= ∇(λe∇Te)−G(Te−Tl) (3)

cl
∂Tl

∂ t
= G(Te−Tl) (4)

This simplification, according to [Al-Nimr (1997)], results from the fact that the
incident radiation and conductional heat flux are absorbed and diffused mainly by
electrons.

The equations (3), (4) using a certain elimination technique can be substituted by a
single equation containing a higher-order mixed derivative in both time and space.
From equation (4) it results that

Te = Tl +
cl

G
∂Tl

∂ t
(5)

Putting (5) into (3) one has

ce

(
∂Tl

∂ t
+

cl

G
∂ 2Tl

∂ t2

)
= ∇(λe∇Tl)+

cl

G
∇

[
λe

∂

∂ t
(∇Tl)

]
− cl

∂Tl

∂ t
(6)

this means

(ce + cl)
∂Tl

∂ t
+

cecl

G
∂ 2Tl

∂ t2 = ∇(λe∇Tl)+
cl

G
∂

∂ t
[∇(λe∇Tl)] (7)

or

(ce + cl)
[

∂Tl

∂ t
+

cecl

G(ce + cl)
∂ 2Tl

∂ t2

]
= ∇(λe∇Tl)+

cl

G
∂

∂ t
[∇λe (∇Tl)] (8)

Denoting

τT =
cl

G
, τq =

1
G

(
1
ce

+
1
cl

)−1

(9)

finally one obtains

c

[
∂T (x, t)

∂ t
+ τq

∂ 2T (x, t)
∂ t2

]
= ∇ [λ∇T (x, t)]+ τT ∇

[
λ

∂∇T (x, t)
∂ t

]
(10)

where T (x, t) = Tl(x, t) is the macroscopic lattice temperature [Özişik and Tzou
(1994)], c= cl+ ce is the effective volumetric specific heat resulting from the serial
assembly of electrons and phonons and λ= λe [Tzou and Chiu (2001)].
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The positive constants τq, τT correspond to relaxation time and thermalization time,
respectively and they are characteristic for the so-called dual-phase-lag model. The
relaxation time τq is the mean time for electrons to change their energy states,
while the thermalization time τT is the mean time required for electrons and lattice
to reach equilibrium [Orlande and Özişik (1995)].

The well known macroscopic energy equation

c
∂T (x, t)

∂ t
=−∇ ·q(x, t) (11)

can be transformed to the microscale when in the place of classical Fourier law
q(x, t) =−λ∇T (x, t) one introduces the following formula

q(x, t + τq) =−λ∇T (x, t + τT ) (12)

Using the Taylor series expansions the following first-order approximation of equa-
tion (12) can be taken into account

q(x, t)+ τq
∂q(x, t)

∂ t
=−λ

[
∇T (x, t)+ τT

∂∇T (x, t)
∂ t

]
(13)

or

−q(x, t) = τq
∂q(x, t)

∂ t
+λ∇T (x, t)+ τT λ

∂∇T (x, t)
∂ t

(14)

This formula should be introduced to equation (11) and then

c
∂T (x, t)

∂ t
= τq

∂

∂ t
[∇q(x, t)]+∇ [λ∇T (x, t)]+ τT ∇

[
λ

∂∇T (x, t)
∂ t

]
(15)

Substituting −∇q by c(∂T / ∂ t) one obtains

c

[
∂T (x, t)

∂ t
+ τq

∂ 2T (x, t)
∂ t2

]
= ∇ [λ∇T (x, t)]+ τT ∇

[
λ

∂∇T (x, t)
∂ t

]
(16)

this means the same equation as equation (10).

In this paper the problem of heat diffusion in the presence of volumetric internal
heat sources Q(x, t) is considered. It can be shown that in this case the equation
(16) must be supplemented by additional components, in particular

c

[
∂T (x, t)

∂ t
+ τq

∂ 2T (x, t)
∂ t2

]
= ∇ [λ∇T (x, t)]+

τT ∇

[
λ

∂∇T (x, t)
∂ t

]
+ Q(x, t)+ τq

∂Q(x, t)
∂ t

(17)
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3 Multi-layered domain

Let us consider a multi-layered thin film of thickness L = L1 + L2 + ... + LM (as
in Figure 1) with an initial temperature distribution T (x, 0) = T0, constant thermal
properties of successive layers and ideal thermal contact between the layers.

 

Figure 1: Multi-layered domain

The 1D problem is analyzed (heat transfer in direction perpendicular to the layers is
taken into account). A front surface x= 0 is irradiated by a laser pulse and according
to ref. [Tang and Araki (1999)], the conductional heat transfer can be modeled by
the equation (17) with internal volumetric heat sources Q(x, t), at the same time for
x= 0 and x= L the non-flux conditions can be assumed. In this paper the following
formula [Kaba and Dai (2005); Tang and Araki (1999)] determining the capacity
of internal heat sources has been applied

Q(x, t) =

√
β

π

1−R
tpδ

I0 exp

[
− x

δ
−β

(t−2tp)
2

t2
p

]
(18)

where I0 is the laser intensity which is defined as total energy carried by a laser
pulse per unit cross-section of the laser beam, tp is the characteristic time of laser
pulse, δ is the characteristic transparent length of irradiated photons called the
absorption depth, R is the reflectivity of the irradiated surface and β= 4ln2 [Chen
and Beraun (2001)]. The local and temporary value of Q(x, t) results from the
distance x between surface subjected to laser action and the point considered.
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So, the following system of equations is taken into account

x ∈Ωm : cm

[
∂Tm(x, t)

∂ t
+ τqm

∂ 2Tm(x, t)
∂ t2

]
=

∂

∂x

[
λm

∂Tm(x, t)
∂x

]
+ τT m

∂

∂ t

[
∂

∂x

(
λm

∂Tm(x, t)
∂x

)]
+Qm(x, t)+ τqm

∂Qm(x, t)
∂ t

(19)

where m= 1, 2, ..., M identifies the layers of domain considered.

The boundary conditions on the contact surfaces between sub-domains have the
form of continuity ones, this means

x ∈ Γm :

{
Tm(x, t) = Tm+1(x, t)
qm(x, t) = qm+1(x, t)

, m = 1,2, ...,M−1 (20)

On the outer surfaces of the system the no-flux conditions are introduced

x ∈ Γ0 : q1(x, t) = 0, x ∈ ΓM : qM(x, t) = 0 (21)

The initial conditions are assumed in the following way

t = 0 : Tm(x,0) = Tm0,
∂Tm(x, t)

∂ t

∣∣∣∣
t=0

= 0 (22)

4 Numerical model

At the stage of numerical computations the finite difference method has been used.
A geometrical mesh is shown in Figure 2. One can see that the internal nodes close
to the external or internal boundaries are located at the distance of 0.5h from Γm.
Additionally a time grid

t0 < t1 < ... < t f−2 < t f−1 < t f < ... < tF < ∞ (23)

with constant time step ∆t is introduced.

 

Figure 2: The mesh
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We shall seek the differential analogue of 1D operator ∇(λ∇T ) for a 3-point star
– as in Figure 2. At the distances of 0.5h on the arms of the star, auxiliary points
were distinguished. We shall make use of the approximation of a derivative by
mean quotient. Thus(

λ
∂T
∂x

) f

i+0.5
= λ

f−1
i+0.5

T f
i+1−T f

i

h(
λ

∂T
∂x

) f

i−0.5
= λ

f−1
i−0.5

T f
i −T f

i−1

h

(24)

An index f shows that the implicit differential scheme will be used here, at the
same time the thermal conductivities are taken for time t f−1 to obtain the linear
form of final FDM equations.

The conductivities λ in directions i+1 and i−1 will be approximated by the mean
harmonics of the conductivities in the star nodes, namely

λ
f−1

i+0.5 =
2λ

f−1
i λ

f−1
i+1

λ
f−1

i +λ
f−1

i+1

, λ
f−1

i−0.5 =
2λ

f−1
i λ

f−1
i−1

λ
f−1

i +λ
f−1

i−1

(25)

Then(
λ

∂T
∂x

) f

i+0.5
=

T f
i+1−T f

i

R f−1
i+1

,

(
λ

∂T
∂x

) f

i−0.5
=

T f
i −T f

i−1

R f−1
i−1

(26)

where

R f−1
i+1 =

0.5h

λ
f−1

i

+
0.5h

λ
f−1

i+1

, R f−1
i−1 =

0.5h

λ
f−1

i

+
0.5h

λ
f−1

i−1

(27)

are the thermal resistances from the node i to the nodes i+ 1 and i−1.

Still making use of the mean quotient definition, we can write

∂

∂x

(
λ

∂T
∂x

) f

i
=

1
h

[(
λ

∂T
∂x

) f

i+0.5
−
(

λ
∂T
∂x

) f

i−0.5

]
(28)

or

∂

∂x

(
λ

∂T
∂x

) f

i
=

T f
i+1−T f

i

R f−1
i+1

Ψi+1 +
T f

i−1−T f
i

R f−1
i−1

Ψi−1 (29)
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where Ψi+1 = Ψi−1 = 1/h.

The FDM approximation of equations (19) for transition t f−1→ t f takes a form

ci
T f

i −T f−1
i

∆t
+ ciτqi

T f
i −2T f−1

i +T f−2
i

(∆t)2 =
∂

∂x

(
λ

∂T
∂x

) f

i
+

τTi

∆t

[
∂

∂x

(
λ

∂T
∂x

) f

i
− ∂

∂x

(
λ

∂T
∂x

) f−1

i

]
+Q f

i + τqi

(
∂Q
∂ t

) f

i
(30)

and next

ci
T f

i −T f−1
i

∆t
+ ciτqi

T f
i −2T f−1

i +T f−2
i

(∆t)2 =

T f
i+1−T f

i

R f−1
i+1

Ψi+1 +
T f

i−1−T f
i

R f−1
i−1

Ψi−1 +
τTi

∆t

(
T f

i+1−T f
i

R f−1
i+1

Ψi+1 +
T f

i−1−T f
i

R f−1
i−1

Ψi−1

)
−

τTi

∆t

(
T f−1

i+1 −T f−1
i

R f−1
i+1

Ψi+1 +
T f−1

i−1 −T f−1
i

R f−1
i−1

Ψi−1

)
+Q f

i + τqi

(
∂Q
∂ t

) f

i
(31)

The last equation can be written in the form

AiT
f

i−1 +BiT
f

i +CiT
f

i+1 = DiT
f−1

i−1 +EiT
f−1

i +FiT
f−1

i+1

+
τqi

(∆t)2 T f−2
i −

Q f
i

ci
−

τqi

ci

(
∂Q
∂ t

) f

i
(32)

where

Ai =
Ψi−1

ciR
f−1
i−1

(
1+

τTi

∆t

)
(33)

Ci =
Ψi+1

ciR
f−1
i+1

(
1+

τTi

∆t

)
(34)

Bi =− 1
∆t

(
1+

τqi

∆t

)
−Ai−Ci (35)

Di =
Ψi−1

ciR
f−1
i−1

τTi

∆t
(36)

Fi =
Ψi+1

ciR
f−1
i+1

τTi

∆t
(37)
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Ei =− 1
∆t

(
1+

2τqi

∆t

)
−Di−Fi (38)

Finally

AiT
f

i−1 +BiT
f

i +CiT
f

i+1 = G f
i (39)

where

G f
i = DiT

f−1
i−1 +EiT

f−1
i +FiT

f−1
i+1 +

τqi

(∆t)2 T f−2
i −

Q f
i

ci
−

τqi

ci

(
∂Q
∂ t

) f

i
(40)

The same equations are accepted for the nodes close to external and internal bound-
aries. If a central node is located near an internal boundary Γm for which an ideal
contact is assumed, then one should remember that in formulas determining the
thermal resistances, the values of thermal conductivities corresponding to different
sub-domains must be introduced. No-flux condition given for Γ0 and ΓM is mod-
elled by substitution of very big number (e.g. 1010) in place of thermal resistance in
direction to an external boundary, at the same time the ’missing’ left or right hand
sides temperatures can be assumed in an optional way (e.g. ambient temperatures).
A start point of numerical simulation process results from the initial conditions, in
particular T 0

i = T 1
i = T0, i = 1,2, ...,N. The system of FDM equations (39) has

been solved using the Thomas algorithm [Majchrzak and Mochnacki (2004)] for
three-diagonal linear system.

5 Examples of computations

To test the accuracy and effectiveness of the method proposed, at first the following
task has been solved. The single layer of thickness L = 10−4 which thermophysical
parameters equal λ = 1, c= 1, τq = 1/π2 + 100, τT = 1/π2 + 10−6, Q(x, t) = 0 is
considered. So, the following equation is taken into account

∂T (x, t)
∂ t

+
(

1
π2 +100

)
∂ 2T (x, t)

∂ t2 =
∂ 2T (x, t)

∂x2 +
(

1
π2 +10−6

)
∂ 3T (x, t)

∂ t∂x2 (41)

Additionally

T (0, t) = 0, T (L, t) = 0 (42)

and

T (x,0) = sin(104
πx),

∂T (x, t)
∂ t

∣∣∣∣
t=0

=−π
2 sin(104

πx)
(43)
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Analytical solution of the problem formulated above is [Dai and Nassar (2001)]:

T (x, t) = exp(−π
2t)sin(104

πx) (44)

Using the algorithm presented in the previous chapter under the assumption that
N= 200 (h= 5·10−7) and ∆ t= 0.001 the transient temperature field has been found.
In Figure 3 the comparison of numerical and analytical solutions for times t= 0.02,
0.04, 0.06, 0.08 and 0.1 is shown. A good agreement between both solutions is
visible.

To show convergence, the error of numerical solution is calculated [Dai and Nassar
(2001)]

B f =

√
1
N

N

∑
i=1

(
T f

i −T f
di

)2
(45)

where T f
di is the analytical solution at the node i for time t f . Figure 4 illustrates

the courses of curves at the central point (x= 0.5·10−4) for time steps ∆t= 0.001,
0.005 and 0.01, respectively, while in Figure 5 the errors of numerical solutions are
shown. Figure 6 shows the influence of mesh step on the results of computations.
Summing up, the exactness of numerical solution is connected with the proper
choice of time and mesh steps but very essential feature of numerical algorithm
consisting in the error decrease with time is visible in every case of discretization.

 

Figure 3: Analytical (lines) and numer-
ical (symbols) solutions (N = 200, ∆ t=
0.001)

 

Figure 4: Course of curve at the central
point

The second example concerns the gold layer with thickness L= 0.2 µm. The layer
is subjected to a short-pulse laser irradiation (R= 0.93, I0= 13.7 J/m2, tp= 96 fs, δ =
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5 nm). Thermophysical parameters of material are the following: λ = 317 W/(mK),
c= 2.4897 MJ/(m3K), τ q= 8.5ps (1ps = 10−12s), τ T = 90ps. The mesh step: h=
1nm, time step: ∆t= 0.005 ps. The results of simulation have been compared with
the experimental data quoted in [Tang and Araki (1999)]. In Figure 7 the heating
(cooling) curves at the point corresponding to x= 0 are shown (on the vertical axis
the dimensionless temperature [T (0, t)- T0] / (Tmax − T0) is marked). The good
agreement of numerical simulation and experiment is clearly visible.

Figure 8 illustrates the differences between the solution obtained using the model
discussed here and the solution resulting from Fourier one.

 

Figure 5: Errors of the numerical so-
lutions with different time steps (N =
200)

 

Figure 6: Errors of the numerical so-
lutions with different meshes (∆ t=
0.001)

In the paper [Dai and Nassar (2000)] the problem of heat transport in a double-
layered thin film (gold and chromium) subjected to a laser pulse has been discussed.
For the same input data (the necessary differences have been introduced in the def-
inition of Q(x, t)), a similar example has been solved using the approach presented
here, and the results proved to be close to the results shown in the quoted paper.
The layer of thickness L= 100nm being a composition of gold layer L1= 50nm and
chromium layer L2= 50nm is subjected to a short-pulse laser heating (R= 0.93, I0=
13.7 J/m2, tp= 96 fs, δ = 15.3 nm). Thermophysical parameters of sub-domains are
the following: λ = 17 W/(mK), c= 2.4897 MJ/(m3K), τq= 8.5ps, τT = 90ps (gold),
λ = 93 W/(mK), c= 3.2148 MJ/(m3K), τ q= 0.136ps, τ T = 7.86ps (chromium). The
mesh step: h= 0.5nm, time step: ∆t= 0.005 ps.

In Figure 9 the normalized heating (cooling) curves at the points close to external
surface (1), interface (3) and in the middle of gold (2) layer are shown.

The last example concerns the multi-layer domain (gold-chromium-gold-chromium).
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Figure 7: Comparison with experimen-
tal data ([Tang and Araki (1999)]

 

Figure 8: Comparison of dual-phase-
lag model (DPLM) and Fourier model

 

Figure 9: Heating (cooling) curves 1 –
x = 0.25 nm, 2 – x = 24.75 nm, 3 – x =
49.75 nm

 

Figure 10: Temperature profiles

The thicknesses of successive layers are the same L1= L2= L3= L4= 25nm. Ther-
mophysical parameters of sub-domains are assumed as in previous example. In
Figure 10 the temperature profiles for times 0.4, 0.6, 0.8 and 1ps are shown, while
the next Figure shows the heating (cooling) curves, more exactly the temperature
rise over T0, at the points corresponding to the external boundary x= 0 (1) and inter-
faces Γ1(2), Γ2(3), Γ3(4). One can see that because of short duration of laser pulse
and a low value of absorption depth, the changes of temperature for domains ’of
secondary importance’ are small.
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Figure 11: Heating (cooling) curves for multi-layered domain

6 Final remarks

The model presented basing on the dual-phase-lag approach contains both the re-
laxation time τq and additionally the thermalization time τT . In literature concern-
ing the micro-scale heat transfer [Escobar at al. (2006); Smith and Norris (2003)]
one can find also the models for which only the relaxation time is taken into ac-
count. In this place the well known Cataneo equation can be mentioned. Accord-
ing to present opinions resulting mainly from experiments [Özişik and Tzou (1994);
Tang and Araki (1999); Chen et al. (2004)] it seems that the assumption concern-
ing a non-zero value of τT gives the results closer to real physical conditions of
microscale heat transfer.

The algorithm presented can be simply generalized on the cases of 2D or 3D tasks,
but at the stage of computations the problems connected with a very large number
of nodes and a short time interval can appear.

The model presented here can be used for analysis of heat transfer proceeding in
the multi-layered domains being a composition of optional number of thin films
with different parameters. The FDM algorithm proposed here allows to treat such
a domain as a conventionally homogeneous one. The application of Thomas algo-
rithm for implicit FDM schemes causes that the algorithm proposed is very quick
and effective.

Acknowledgement: The paper is a part of project MTKD-CT-2006-042468.
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