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Recirculation of Viscous Incompressible Flows in
Enclosures
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Abstract: The unsteady Navier-Stokes equations in primitive variables that gov-
ern viscous incompressible fluid flow are numerically solved by a simple projec-
tion method which involves an operator splitting technique of three steps in the
time discretization process. The numerical scheme does not involve any iteration,
is independent of the spatial dimension, and its costly part relies on the solution
of elliptic problems for which very efficient solvers exist regardless of the spatial
discretization. The scheme is tested with the well known two-dimensional lid-
driven cavity problem at moderate and high Reynolds numbers Re in the range
400 ≤ Re ≤ 15000. For moderate Reynolds numbers the results are compared, in
order to validate the scheme, with previously published results supposed to be cor-
rect; for these results the time when the flow converges to the asymptotic steady
state is reported. Then, going one step further: the transient stage for Re = 4000
is shown at various times before the steady state is reached; flows at Re = 10000
and 15000 are reported close from its departure from rest; flows for Re = 1000 and
3200 are also reported in rectangular cavities up to aspect ratio A = 3.

1 Introduction

Considerable efforts to solve the unsteady Navier-Stokes equations in primitive
variables, velocity and pressure, have been realized with diverse numerical schemes
to handle suitably the difficulties of the problem: the nonlinearity in the momentum
equation, the incompressibility constraint, and the coupling of the equations. Many
approaches to overcome the coupling with the incompressibility constraint have
been reported, among them the splitting up (or fractional step) methods which sub-
divide the problem in simpler subproblems in the time discretization process. These
methods may be classified into two classes: the ones that supply additional infor-
mation in one of their steps through a functional equation satisfied by the pressure,
in variational formulation within an appropriate Hilbert space framework, which is
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solved with a conjugate gradient iterative technique, Bristeau, Glowinski and Pe-
riaux (1987) and Bermúdez and Nicolás (1999), and the ones that supply, in one
of their steps also, a pressure Poisson equation which, contrary to the formers, no
iterative technique is required but a convenient boundary condition has to be cho-
sen for this elliptic equation; Karniadakis, Israeli and Orszag (1991) and Badalassi,
Ceniceros and Banerjee (2003); in both cases, the difficulties associated with the
nonlinearity and the incompressibility constraint are decoupled.

Most numerical schemes are tested on the two-dimensional benchmark problem
known as the lid-driven (or un-regularized) cavity problem which originates re-
circulation phenomena because of its velocity boundary condition. Among other
works, with numerical experiments mainly on this problem, related with primitive
variables and the kind of splitting up methods discussed in Karniadakis, Israeli and
Orszag (1991) and in Badalassi, Ceniceros and Banerjee (2003) we can mention
Orszag, Israeli and Deville (1986), Gresho and Sani (1987), and Sani, Shen, Piron-
neau and Gresho (2006), where the right choice for the boundary condition for the
pressure Poisson equation is addressed, an issue that has been under discussion for
a long time; this discussion started in Orszag, Israeli and Deville (1986), Gresho
and Sani (1987), it was retaken in Karniadakis, Israeli and Orszag (1991), conclud-
ing that a Neumann boundary condition obtained from the normal component of
the semi-discrete momentum equation must be chosen. In some way, this discus-
sion ended up in Sani, Shen, Pironneau and Gresho (2006) where it is shown that
the same solution is obtained by solving either the momentum equation coupled
with a resulting pressure Poisson equation (PPE), with Neumann boundary condi-
tion obtained by taking the normal component of the momentum equation on the
boundary, or the primitive variable equations where the incompressible constraint
is considered instead.

Despite its restriction to two-dimensional problems, the formulation in stream func-
tion and vorticity variables has been deserved a considerable attention as well.
Even though it is simpler, because the incompressibility constraint is satisfied au-
tomatically and the computation of the pressure is avoided, a nonlinearity and
coupling still remain, which may lead to the necessity of using an iterative pro-
cedure; moreover, a convenient way to build the boundary condition for the vor-
ticity must be given. On this regard we can mention Goyon (1996), Nicolás and
Bermúdez (2004), Nicolás and Bermúdez (2005), and Erturk, Corke and Gökçöl
(2005), which show also results for the lid-driven cavity problem. A recent work
with this formulation, coupled to the thermal energy equation to handled non-
isothermal flows, is the one by Arefmanesh, Najafi and Abdi (2008), where the
meshless local Petrov-Galerkin (MLPG) method is applied.

Another approach, which is not very common to solve the Navier-Stokes flows,
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is the so called velocity-vorticity formulation; Grimaldi, Pascazio, and Napolitano
(2006); Nicolás and Bermúdez (2007); Sellountos and Sequeira (2008); Moham-
madi (2008). This formulation despite its 3D scope, even the 2D case is not easy
to handle, as mentioned in the second work comparing it with the stream function
and vorticity variables formulation, or it needs an special and more sophisticated
treatment as in the first, third, and fourth works; for instance, concerning the lid
driven cavity problem, results for moderate Reynolds numbers only are reported
in the second and third mentioned works. In Mohammadi (2008), just mentioned,
a truly meshless local Petrov-Galerkin (MLPG) method, complemented with a ra-
dial basis functions (RBF) interpolation, is extended for computation of converged
steady state flows; moreover, a stabilization procedure, based on a modification
of SUPG, to handled convection dominant flows in connection with the lid driven
cavity problem, is used.

In this work the unsteady Navier-Stokes equations in primitive variables are solved
numerically using a simple projection method involving an operator splitting tech-
nique of three steps, once an appropriate second order time discretization is applied.
In the first two steps, two auxiliary velocities are computed, in the last step the final
(or true) velocity is obtained. To be more specific: step one, to compute explicitly
the first velocity with a linear extrapolation of the nonlinear term from the previous
time levels; step two, to solve a pressure Poisson equation obtained from the pro-
jection of the first velocity onto the divergence-free subspace supplemented with a
Neumann boundary condition, derived from the semi-discrete momentum equation,
with this pressure solution the second velocity is computed explicitly; step three,
to solve an elliptic problem for the final velocity with Dirichlet boundary condi-
tion; this way, the nonlinearity and the incompressibility constraint are decoupled.
Then, the numerical scheme does not involve any iteration, is independent of the
space dimension and of the shape of the region, and the costly part relies on the
solution of two elliptic problems, one for the pressure and a vectorial one for the
final velocity; to solve them very efficient solvers exist regardless of the space dis-
cretization. Actually, the ideas of our method can be adapted to Darcy isothermal
flows in porous media, or extended to handle thermal ones like in Kosec and Ŝarler
(2008), with aspect ratio A (to be defined below) in the range 1

2 ≤ A ≤ 2, where a
local RBF collocation method is applied.

For the two-dimensional results reported here, concerning the lid-driven cavity
problem, no kind of stabilization is considered, the meshes follow closely the size
dictated by the thickness of the boundary layer (of order of Re−1/2), and the same
uniform mesh for velocity and pressure is used. The results depend on the Reynolds
number and on the aspect ratio of the cavity A (A=ratio of the height to the width),
and their presentation is divided as follows. 1) Converged steady state flows for
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moderate Reynolds numbers 400 ≤ Re ≤ 5000 to validate the numerical scheme
with the results other authors have obtained with different methods, mainly us-
ing the stream function-vorticity formulation; the time Tss when the steady state
is reached is reported, an issue that is not usually considered so far when solving
the unsteady problem. 2) For Re = 4000 its transient stage is shown at different
times before the Tss is reached. 3) High Reynolds number flows, Re = 10000 and
15000, at time T = 25 starting from rest; taking into consideration that these flows
are time-dependent (oscillatory) a comparison is made, at the same time, with the
converged steady state flow of Re = 4000; such comparison gives a physical vali-
dation in line with Landau and Lifshitz (1989). 4) Flows in rectangular cavities at
steady state: a) for Re = 1000 with aspect ratio A = 2 and 3, b) for Re = 3200 with
aspect ratio A = 2, which to the best of our knowledge is being reported by the first
time here; this kind of results is not usual to be reported because since Bruneau
and Jouron (1990), where the stationary problem in primitive variables is solved,
has been pointed out that for Re = 1000 with A = 2 the flow becomes much more
unstable, which is reinforced in Goyon (1996) where this result is also reported
solving the unsteady problem in stream function and vorticity variables. On this
regard, the result here for Re = 1000 and A = 3 is reported as a validation matter
with that reported for the first time in Nicolás and Bermúdez (2005), solving also
the unsteady problem in stream function and vorticity variables.

All the flows reported start from the same initial condition, from rest, since the
numerical method has the ability to start from the initial condition regardless of the
Reynolds number and not from the solution obtained for a lower Reynolds number
as most numerical methods do, for instance as in Mai-Duy, Mai-Cao and Tran-
Cong (2007), where an indirect/integrated radial-basis-function network (IRBFN)
method is developed. This fact allows us to determine with no ambiguity: the
time Tss, to be defined in section 3 of Numerical Results, when the steady state is
reached in 1); the time, given by Tss, when the transient stage ends in 2); and to
show the evolution at an early time for high Reynolds numbers in 3). Actually, the
type of work in 3) has been initiated in Nicolás and Bermúdez (2004), where the
unsteady problem in stream function and vorticity variables is solved, and shares
some similarity with the work in Sahin and Owens (2003) for Re = 10000 at shorter
times than T = 25, where the unsteady problem is solved in primitive variables.
About the flows in 4), because of some aspects that will be seen in their numerical
presentation, they are in fact much more unstable flows, which agrees with what
is said in Bruneau and Jouron (1990) in connection with A = 2; in our case, this
is reflected mainly in the determination of the time Tss which implies the necessity
of long time computations, a problem that has already been appeared in mixed
convection thermal flows, Nicolás and Bermúdez (2005).
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Hereafter, the paper is organized in sections as follows: 2. Mathematical model
and numerical method, 3. Numerical results, 4. Conclusions.

2 Mathematical model and numerical method

Let Ω⊂ RN(N = 2,3) be the region of the flow of an unsteady viscous incompress-
ible fluid and Γ its boundary. This kind of flow is governed by the Navier-Stokes
equations in Ω and t > 0

ut +(u ·∇)u+∇p =
1

Re
∇

2u + f (1a)

∇ ·u = 0 (1b)

where u is the velocity, p the pressure, and f a given concentration of external
forces; the parameter Re is the Reynolds number which has a relationship with the
kinematic viscosity ν given by ν = 1

Re (obtained from Re = UL
ν

, considering the
characteristic velocity U = 1 and the characteristic length L = 1), moreover, ν = µ

ρ

with µ the dynamic viscosity. Equation (1.b) is the incompressibility constraint.
The system must be supplemented with a boundary condition for u, for instance
u = g on Γ, t ≥ 0, and an initial condition u(x,0) = u0(x) in Ω.

The difficulties to solve for u and p are the nonlinearity in the momentum equation,
the incompressibility constraint, and the coupling of the equations. The manner the
pressure should be solved plays a fundamental role since it influences directly on
the whole accuracy and efficiency of the numerical process. As mentioned in the
Introduction, these difficulties may be overcome by splitting up methods which
subdivide the problem in simpler subproblems at each time level of the time dis-
cretization, decoupling the nonlinearity and the incompressibility constraint either
by supplying additional information through a functional equation satisfied by the
pressure, in variational formulation, which is solved with conjugate gradient itera-
tive techniques, Bristeau, Glowinski and Periaux (1987) and Bermúdez and Nicolás
(1999), or by obtaining a Poisson equation for the pressure with an appropriate
Neumann boundary condition for which no iteration is required, see Karniadakis,
Israeli and Orszag (1991) and Badalassi, Ceniceros and Banerjee (2003). As it is
shown next, our numerical scheme relies on the latter kind of splitting methods and
follows closely the steps in Badalassi, Ceniceros and Banerjee (2003), restricted
here to single phase flow, where because of their particular needs space-spectral
methods are used for spatial discretization which is very different of ours.

For the time discretization of ut in (1a) the approximation

ut(x,(n+1)∆t)≈
3
2 un+1−2un + 1

2 un−1

∆t
(2)
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is used, with xε Ω and n≥ 1, where ∆t denotes the time step and u r ≈ u(x,r∆t); it
is known that this approximation is second order and unconditional stable when it
is combined implicitly with the laplacian operator, and good for long time compu-
tations, Glowinski (1984).

The corresponding semi-discrete system reads

3
2 un+1−2un + 1

2 un−1

∆t
+ (un+1 ·∇)un+1 +∇pn+1 =

1
Re

∇
2un+1 + fn+1 (3a)

∇ ·un+1 = 0 . (3b)

The nonlinear term is approximated explicitly with an extrapolation from the pre-
vious time levels n and n−1

(un+1 ·∇)un+1 ≈ 2(un ·∇)un− (un−1 ·∇)un−1 (4)

Then, splitting the momentum equation (3a) in three sub-steps, one obtains

Step 1) u∗−2un+ 1
2 un−1

∆t = −2(un ·∇)un

+ (un−1 ·∇)un−1 + fn+1 in Ω

Step 2) u∗∗−u∗
∆t = −∇pn+1 in Ω

Step 3)
3
2 un+1−u∗∗

∆t = 1
Re ∇2un+1 in Ω,

un+1|Γ = g,

(5)

where u∗ and u∗∗ are intermediate velocities, u∗∗ satisfies the incompressibility
constraint

∇ ·u∗∗ = 0 in Ω, (6)

and u∗∗ ·n = 0 on Γ.

Taking the divergence in step 2), using (6), an equation of Poisson type is obtained

∇
2 pn+1 =

1
∆t

∇ ·u∗ in Ω (7)

The elliptic equation (7) must be supplemented with a boundary condition. A
Neumann boundary condition is obtained evaluating the normal component of the
semi-discrete momentum equation (3a) once the viscous linear term ∇2u is re-
placed by its equivalent sum of a solenoidal part −∇× (∇×u) and an irrotational
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part ∇(∇ ·u), which is a vectorial identity; this solenoidal part is approximated ex-
plicitly by the linear extrapolation of the two earlier time levels and the irrotational
part being zero due to the incompressibility constraint. Then, using the approxima-
tion (4) for the nonlinear term (u·∇)u, it follows that

∂ pn+1

∂n
= n·[ 1

∆t
(−3

2
un+1 +2un− 1

2
un−1)−2((un ·∇)un +

1
Re

∇× (∇×un))

+((un−1 ·∇)un−1 +
1

Re
∇× (∇×un−1))+ fn+1] on Γ (8)

To obtain u1 and p1, required in the application of (2), a subsequence of process (5),
and (7)-(8), is carried out with an Euler first-order approximation, using a smaller
time step to preserve the second order accuracy of (2); a linear extrapolation at ∆t
and ∆t

2 , as mentioned in Nicolás and Bermúdez (2005), can also be used. More-
over, the boundary condition (8) yields second order accuracy in the velocity and
pressure in the context of single phase flow with constant viscosity, Karniadakis,
Israeli and Orszag (1991) and Badalassi, Ceniceros and Banerjee (2003).

Summing up, the scheme reads

Step 1)
u∗ = ∆t ∗ (−2(un ·∇)un(un−1 ·∇)un−1 + fn+1)+ 2un− 1

2 un−1 in Ω

Step 2)
substep 2.a)∇2 pn+1 = 1

∆t ∇ ·u∗ in Ω,

∂ pn+1

∂n |Γ = n·[ 1
∆t (−3

2 un+1 +2un− 1
2 un−1)−2((un ·∇)un + 1

Re ∇× (∇×un))

+((un−1 ·∇)un−1 + 1
Re ∇× (∇×un−1))+ fn+1]

substep 2.b) u∗∗ = −∇pn+1 ∗∆t + u∗ in Ω

u∗∗ ·n = 0 on Γ

Step 3)
( 3

2∆t I− 1
Re ∇2)un+1 = u∗∗

∆t in Ω

un+1|Γ = g
(9)

From (9) it follows that the intermediate velocities u∗, step 1), and u∗∗, substep
2.b), are computed explicitly. Then, the nonlinearity and the incompressibility
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constraint have been decoupled; the scheme is independent of the space dimen-
sion and of the shape of the region, no iteration is required, and its costly part
relies on the solution of elliptic problems, one for the pressure pn+1 with Neumann
boundary condition, and another, vectorial, for the final velocity un+1 with Dirich-
let boundary condition, for which very efficient solvers exist regardless of the space
discretization.

Remark. 1) It is known that elliptic problems with Neumann boundary condition,
like the one in substep 2.a), do not have a unique solution, it is unique only within
an arbitrary constant if a compatibility condition holds, Karniadakis, Israeli and
Orszag (1991), Temam (2001), Glowinski (1984). 2) It is also known, Temam

(2001), that the pressure equation with Neumann boundary condition ∂ pn+1

∂n |Γ = 0
is equivalent that u∗∗ be the projection of u∗ onto the divergence-free subspace
of vector fields, provided that u∗∗|Γ = 0 which, in our case, does not have any
influence in the calculation of u∗∗ in substep 2.b); however, as pointed out by

some authors ∂ pn+1

∂n |Γ = 0 is not good neither for numerical purposes, Karniadakis,
Israeli and Orszag (1991), nor to satisfy the exact pressure, Temam (2001). 3)
Concerning u∗ and u∗∗, the well defined map that associates vectors w, playing
the role of u∗, with divergence-free vectors v, playing the role of u∗∗, is called the
Leray projector, Foias, Rosa and Teman (2001). 4) On account that u is a vector
and that the elliptic problem in step 3 has a unique solution it can be easily verified
that un+1 is divergence-free.

For 2D and 3D arbitrary regions a spatial discretization by finite elements may be
appropriated, then a variational formulation in infinite-dimensional function spaces
must be given and then restrict such formulation on convenient finite-dimensional
finite element subspaces, Gunzburger (1989) and Glowinski (2003). For the 2D
results reported in this work concerning a rectangular cavity, these systems are
solved with the second order finite-difference option in Adams, Swarztrauber and
Sweet (1980), where the algebraic linear systems are solved by an efficient cyclic
reduction iterative process, Sweet (1977), and the non-uniqueness of the pressure
partial differential problem is handled through a weighted minimal least square
solution on the algebraic system; all the spatial derivatives of u and p elsewhere are
approximated by second order accurate finite differences either central, in interior
cell points, or by (2), forward or backward, on boundary points. Then, starting with
the time approximation (2) the whole scheme relies on second order discretizations
only.

To report the 2D results in terms of the vorticity ω and the stream function ψ , once
the final velocity u has been obtained, they are computed by

ω =
∂u2

∂x
− ∂u1

∂y
in Ω (10)
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and

∇
2
ψ = − ω in Ω. (11)

3 Numerical results

The numerical experiments take place in rectangular cavities Ω = (0,a)× (0,b),
a, b > 0, in connection with the lid-driven cavity problem. Then, the boundary con-
dition for the velocity u is given by u = (1,0) on the moving boundary (x,y = b) and
u = (0,0) elsewhere. This boundary condition gives rise to several simplifications
on the discretization of the right hand side of the Neumann boundary condition (8)
for p, for instance 1

∆t (−3
2 un+1 + 2un− 1

2 un−1)|Γ = 0. Considering that the fluid
is initially at rest the initial condition is u0 = (0,0) and since no external force is
considered, f = 0 in (1a) and thereafter.

Some of the results reported correspond to steady state flows; they are the con-
verged asymptotic flows obtained from the unsteady problem as time t approaches
to +∞ (large time, in practice). To reach convergence to the steady state, if any, a
stopping criterion must be given for the final time Tss when it occurs. Since Tss is the
time when the solution does not change any more with respect to time at any spatial
point occupied by the fluid, as mentioned in Nicolás and Bermúdez (2005) applied
here to u, Tss is determined with the point-wise discrete L∞ absolute criterion in the
closure Ω of the cavity

||un+1
hx,hy
−un

hx,hy
||∞,

with tolerance 10−5; hx and hy denote the mesh sizes in the X and Y direction of
the cavity respectively.

The results correspond to moderate and high Reynolds numbers in the range 400≤
Re ≤ 15000. The mesh sizes hx and hy, h if hx = hy = h, and the time step ∆t will
be indicated for each value of Re and of the aspect ratio A, when A 6= 1, under
study. The results are reported through the streamlines of the stream function (left)
and the iso-contours of the vorticity (right). Unless otherwise indicated, the values
used for streamlines and vorticity contours are those considered in Ghia U., Ghia
N. and Shin (1982), where the unsteady problem in stream function and vorticity
variables is solved. Other way to report the results is using the contour values in
Schreiber and Keller (1983), where the stationary problem, in stream function and
vorticity variables, is also solved; there the flow for Re = 4000 is reported instead
of Re = 3200 in Ghia U., Ghia N. and Shin (1982). However, it should be noted
that as a rule, up to Re = 10000, the contour values used in Ghia U., Ghia N. and
Shin (1982) are more difficult to satisfy than those in Schreiber and Keller (1983),
mainly concerning the vorticity; moreover, to get the right iso-vorticity contours
that fit those in Ghia U., Ghia N. and Shin (1982), supposed to be correct, is not
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a trivial task to deal with, which may be reflected on the fact that some published
works report the streamlines only. The description of the results follows the or-
der mentioned at end of the Introduction and it is split here into subsections. A
supplementary kind of validation is to report the pressure field contours as done
recently in Mohammadi (2008) mentioned in the Introduction, where the pressure
is computed through the relation between the stream function and the velocity com-
ponents, as well as in Mariani, Alonso and Peters (2008); in our case, contrary to
other formulations, we have the pressure field at hand, however, at this stage we
skip to report them.

3.1 Converged steady state flows

Figure 1 pictures the flow for Re = 1000 reached at Tss = 31.15, with h = 1
80 and

∆t = 0.01; it agrees perfectly with the one in Ghia U., Ghia N. and Shin (1982), ob-
tained with h = 1

128 , and with the streamlines in Erturk, Corke and Gökçöl (2005),
obtained with h = 1

600 (vorticity is not reported).

Figure 1: Re = 1000 at Tss = 31.15; h = 1
80

,
∆t = 0.01

Figure 2: Re = 3200 at Tss = 67; h = 1
128

,
∆t = 0.005

at Tss = 23.08, with h = 1
60 and ∆t = 0.01, and for

Re = 4000 at Tss = 86.88, with h = 1
128 and ∆t =

0.005. The flow for Re = 400 agrees perfectly with
that in Ghia U., Ghia N. and Shin (1982) obtained
with h = 1

128 . As mentioned above the result for
Re = 4000 is not reported in Ghia U., Ghia N. and
Shin (1982). However, the flow at time T = 31.25
coincides with the one obtained from the stationary
problem in Schreiber and Keller (1983). This flow
obtained at a shorter time than Tss = 86.88 shows
that effectively is easier to satisfy the contour values
in Schreiber and Keller (1983) than those in Ghia
U., Ghia N. and Shin (1982); this flow and the one
just mentioned at T = 31.25 are pictured in Figures
9 and 8 respectively in the next subsection.

It should be noted that the time steps ∆t = 0.004
for Re = 5000 and ∆t = 0.005 for Re = 4000, with
the same h, show that ∆t must decrease as Re in-
creases in order to capture the faster dynamics of
the flow.

For this range of Re, 400 ≤ Re ≤ 5000, it must be
observed that the mesh size is significant bigger, but
Re = 3200, than the ones used by the authors we

Figure 3: Re = 5000 at Tss = 121.884; h = 1
128

,
∆t = 0.004
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Figure 4: Horizontal velocity profiles in the cen-
tral line (x = 0.5) of the cavity for 400 ≤ Re ≤
5000

are comparing with. Moreover, there is concordance
between the corresponding Tss’s: Tss increases as Re
increases because the fluid motion is faster.

To reinforce the validation of the numerical
method, Figures 4 and 5 show the horizontal and
vertical velocity profiles respectively, along the verti-
cal and horizontal lines through the geometric center
of the cavity for 400 ≤ Re ≤ 5000. These profiles are
compared with those in Ghia U., Ghia N. and Shin
(1982), displaying very good agreement, including
the one for Re=400; these authors point out that
the thinning of the wall boundary layers with the
increase in Re is evident from these profiles. The
profiles for Re=400 and 1000 agree also with those
in Shu, Ding and Yeo (2005), where this kind of flows
are solved applying a local radial function-based dif-
ferential quadrature (RFB-DQ) method, which is a
meshless method, on the stream function- vorticity
formulation.

Table I shows the location of the center of the pri-

7

Figure 1: Re = 1000 at Tss = 31.15; h = 1
80 , ∆t = 0.01

Figure 2 shows the flow for Re = 3200 at Tss = 67, with h = 1
128 and ∆t = 0.005;

it coincides perfectly with the result in Ghia U., Ghia N. and Shin (1982) obtained
also with h = 1

128

The flow for Re = 5000 at Tss = 121.884, with h = 1
128 and ∆t = 0.004, is shown

in Figure 3; it has an excellent agreement with the one in Ghia U., Ghia N. and
Shin (1982) obtained with h = 1

256 , and with the streamlines in Erturk, Corke and
Gökçöl (2005), obtained with h = 1

600 (vorticity is not reported).

Flows were also computed for Re = 400 reached at Tss = 23.08, with h = 1
60 and

∆t = 0.01, and for Re = 4000 at Tss = 86.88, with h = 1
128 and ∆t = 0.005. The
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Figure 2: Re = 3200 at Tss = 67; h = 1
128

,
∆t = 0.005

at Tss = 23.08, with h = 1
60 and ∆t = 0.01, and for

Re = 4000 at Tss = 86.88, with h = 1
128 and ∆t =

0.005. The flow for Re = 400 agrees perfectly with
that in Ghia U., Ghia N. and Shin (1982) obtained
with h = 1

128 . As mentioned above the result for
Re = 4000 is not reported in Ghia U., Ghia N. and
Shin (1982). However, the flow at time T = 31.25
coincides with the one obtained from the stationary
problem in Schreiber and Keller (1983). This flow
obtained at a shorter time than Tss = 86.88 shows
that effectively is easier to satisfy the contour values
in Schreiber and Keller (1983) than those in Ghia
U., Ghia N. and Shin (1982); this flow and the one
just mentioned at T = 31.25 are pictured in Figures
9 and 8 respectively in the next subsection.

It should be noted that the time steps ∆t = 0.004
for Re = 5000 and ∆t = 0.005 for Re = 4000, with
the same h, show that ∆t must decrease as Re in-
creases in order to capture the faster dynamics of
the flow.

For this range of Re, 400 ≤ Re ≤ 5000, it must be
observed that the mesh size is significant bigger, but
Re = 3200, than the ones used by the authors we
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tral line (x = 0.5) of the cavity for 400 ≤ Re ≤
5000

are comparing with. Moreover, there is concordance
between the corresponding Tss’s: Tss increases as Re
increases because the fluid motion is faster.

To reinforce the validation of the numerical
method, Figures 4 and 5 show the horizontal and
vertical velocity profiles respectively, along the verti-
cal and horizontal lines through the geometric center
of the cavity for 400 ≤ Re ≤ 5000. These profiles are
compared with those in Ghia U., Ghia N. and Shin
(1982), displaying very good agreement, including
the one for Re=400; these authors point out that
the thinning of the wall boundary layers with the
increase in Re is evident from these profiles. The
profiles for Re=400 and 1000 agree also with those
in Shu, Ding and Yeo (2005), where this kind of flows
are solved applying a local radial function-based dif-
ferential quadrature (RFB-DQ) method, which is a
meshless method, on the stream function- vorticity
formulation.

Table I shows the location of the center of the pri-
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that in Ghia U., Ghia N. and Shin (1982) obtained
with h = 1

128 . As mentioned above the result for
Re = 4000 is not reported in Ghia U., Ghia N. and
Shin (1982). However, the flow at time T = 31.25
coincides with the one obtained from the stationary
problem in Schreiber and Keller (1983). This flow
obtained at a shorter time than Tss = 86.88 shows
that effectively is easier to satisfy the contour values
in Schreiber and Keller (1983) than those in Ghia
U., Ghia N. and Shin (1982); this flow and the one
just mentioned at T = 31.25 are pictured in Figures
9 and 8 respectively in the next subsection.
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flow for Re = 400 agrees perfectly with that in Ghia U., Ghia N. and Shin (1982)
obtained with h = 1

128 . As mentioned above the result for Re = 4000 is not reported
in Ghia U., Ghia N. and Shin (1982). However, the flow at time T = 31.25 coincides
with the one obtained from the stationary problem in Schreiber and Keller (1983).
This flow obtained at a shorter time than Tss = 86.88 shows that effectively is easier
to satisfy the contour values in Schreiber and Keller (1983) than those in Ghia U.,
Ghia N. and Shin (1982); this flow and the one just mentioned at T = 31.25 are
pictured in Figures 9 and 8 respectively in the next subsection.

It should be noted that the time steps ∆t = 0.004 for Re = 5000 and ∆t = 0.005 for
Re = 4000, with the same h, show that ∆t must decrease as Re increases in order to
capture the faster dynamics of the flow.

For this range of Re, 400 ≤ Re ≤ 5000, it must be observed that the mesh size is
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(1982), displaying very good agreement, including
the one for Re=400; these authors point out that
the thinning of the wall boundary layers with the
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Figure 4: Horizontal velocity profiles in the central line (x = 0.5) of the cavity for
400≤ Re≤ 5000

significant bigger, but Re = 3200, than the ones used by the authors we are com-
paring with. Moreover, there is concordance between the corresponding Tss’s: Tss

increases as Re increases because the fluid motion is faster.

To reinforce the validation of the numerical method, Figures 4 and 5 show the hor-
izontal and vertical velocity profiles respectively, along the vertical and horizontal
lines through the geometric center of the cavity for 400 ≤ Re ≤ 5000. These pro-
files are compared with those in Ghia U., Ghia N. and Shin (1982), displaying very
good agreement, including the one for Re=400; these authors point out that the
thinning of the wall boundary layers with the increase in Re is evident from these
profiles. The profiles for Re=400 and 1000 agree also with those in Shu, Ding and
Yeo (2005), where this kind of flows are solved applying a local radial function-
based differential quadrature (RFB-DQ) method, which is a meshless method, on
the stream function- vorticity formulation.

Table I shows the location of the center of the primary vortex as well as the min
of the stream function and the value of the vorticity in this center. Comparing
with Ghia U., Ghia N. and Shin (1982), using the meshes in there, and others, the
differences in each case are less than 3% for the stream function and less than 6%
for the vorticity.

We would like to remark that to get the converged steady state flow for Re = 7500,
shown also in Ghia U., Ghia N. and Shin (1982), is straight forward; the reason that
we are skipping it is that in addition to validate our results for Re = 1000 and 5000
with those in Ghia U., Ghia N. and Shin (1982), including Re = 3200, we want also
to compare them with those in Erturk, Corke and Gökçöl (2005) to emphasize that
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Figure 5: Vertical velocity profiles in the central
line (y = 0.5) of the cavity for 400 ≤ Re ≤ 5000

mary vortex as well as the min of the stream func-
tion and the value of the vorticity in this center.
Comparing with Ghia U., Ghia N. and Shin (1982),
using the meshes in there, and others, the differences
in each case are less than 3% for the stream function
and less than 6% for the vorticity.

We would like to remark that to get the converged
steady state flow for Re = 7500, shown also in Ghia
U., Ghia N. and Shin (1982), is straight forward;
the reason that we are skipping it is that in addi-
tion to validate our results for Re = 1000 and 5000
with those in Ghia U., Ghia N. and Shin (1982), in-
cluding Re = 3200, we want also to compare them
with those in Erturk, Corke and Gökçöl (2005) to
emphasize that these converged steady state flows
can be obtained, with the precision required, with
a significant coarser mesh size than h = 1

600 used
there; this size can be a necessity for the other higher
Reynolds numbers shown there (10000, 15000 and
20000) but not for those smaller ones. In Erturk,
Corke and Gökçöl (2005) the stationary problem
in stream function and vorticity variables is solved
through the false transient technique; then, the high
Reynolds number flows shown are forced to be con-

verging to a steady state flow, that is, converging to
a solution of the stationary problem, which in turn
may be not unique, Temam (2001) among others.

Table I. Characteristics of the center of the pri-
mary vortex for several values of Re.

Re h x y ψ (min) ω

400 1
140 0.564 0.614 -0.111 -2.259

400 1
128 0.563 0.617 -0.111 -2.273

400 1
60 0.567 0.617 -0.114 -2.331

1000 1
140 0.536 0.571 -0.119 -2.121

1000 1
128 0.539 0.570 -0.119 -2.128

1000 1
80 0.538 0.575 -0.120 -2.146

3200 1
128 0.523 0.547 -0.122 -1.964

5000 1
256 0.520 0.543 -0.120 -1.763

5000 1
128 0.523 0.539 -0.121 -1.863

3.2. The transient stage for Re = 4000

Results for Re = 4000, starting from rest, with
h = 1

128 and ∆t = 0.005 are reported to show the
evolution of the flow during its transient stage at
different times until Tss = 86.88 when the steady
state is reached, as has been already mentioned in
the previous subsection.

Figure 6: Re = 4000 at T = 12.5; h = 1
128

,
∆t = 0.005

8

Figure 5: Vertical velocity profiles in the central line (y = 0.5) of the cavity for
400≤ Re≤ 5000

these converged steady state flows can be obtained, with the precision required,
with a significant coarser mesh size than h = 1

600 used there; this size can be a
necessity for the other higher Reynolds numbers shown there (10000, 15000 and
20000) but not for those smaller ones. In Erturk, Corke and Gökçöl (2005) the
stationary problem in stream function and vorticity variables is solved through the
false transient technique; then, the high Reynolds number flows shown are forced
to be converging to a steady state flow, that is, converging to a solution of the
stationary problem, which in turn may be not unique, Temam (2001) among others.

3.2 The transient stage for Re = 4000

Results for Re = 4000, starting from rest, with h = 1
128 and ∆t = 0.005 are reported

to show the evolution of the flow during its transient stage at different times until
Tss = 86.88 when the steady state is reached, as has been already mentioned in the
previous subsection.

In Figures 6, 7, 8, and 9 the flows at T = 12.5, T = 25, T = 31.25, and T ss = 86.88
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Table 1: Characteristics of the center of the primary vortex for several values of Re.

Re h x y ψ (min) ω

400 1
140 0.564 0.614 -0.111 -2.259

400 1
128 0.563 0.617 -0.111 -2.273

400 1
60 0.567 0.617 -0.114 -2.331

1000 1
140 0.536 0.571 -0.119 -2.121

1000 1
128 0.539 0.570 -0.119 -2.128

1000 1
80 0.538 0.575 -0.120 -2.146

3200 1
128 0.523 0.547 -0.122 -1.964

5000 1
256 0.520 0.543 -0.120 -1.763

5000 1
128 0.523 0.539 -0.121 -1.863

are successively pictured. Characteristics of the evolution until Tss = 86.88, Figure
9, can be clearly observed. However, we remark on some aspects: At T = 12.5,
Figure 6, the recirculation of the flow is starting, as expected, from the right wall;
this being implied by the appearance of the first secondary vortex in the right bot-
tom corner of the streamlines and the vorticity coming out from the right wall.
On the flow at T = 25, Figure 7, concerning the small structures, one more sec-
ondary vortex has appeared in the left bottom corner and one more starts appear-
ing near the upstream top corner. All these three secondary vortices remain until
Tss = 86.88, increasing their sizes and/or the number of iso-contours only. The
number of streamlines in the primary vortex is increasing from five to six from
T = 12.5 to T = 25, then to seven, and not more from there on. The iso-contours
of the vorticity at T = 25, Figure 7, in contrast with what happens for the higher
Reynolds numbers Re = 10000 and 15000 at the same time, shown in the next sub-
section, are uniformly well formed and they are leaving the center of the cavity
tending to concentrate into the solid and fixed walls as time goes on. Concerning
the flows at T = 31.25, Figure 8, and at Tss = 86.88, Figure 9, which are the times
already commented in the previous subsection in connection with Schreiber and
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mary vortex as well as the min of the stream func-
tion and the value of the vorticity in this center.
Comparing with Ghia U., Ghia N. and Shin (1982),
using the meshes in there, and others, the differences
in each case are less than 3% for the stream function
and less than 6% for the vorticity.

We would like to remark that to get the converged
steady state flow for Re = 7500, shown also in Ghia
U., Ghia N. and Shin (1982), is straight forward;
the reason that we are skipping it is that in addi-
tion to validate our results for Re = 1000 and 5000
with those in Ghia U., Ghia N. and Shin (1982), in-
cluding Re = 3200, we want also to compare them
with those in Erturk, Corke and Gökçöl (2005) to
emphasize that these converged steady state flows
can be obtained, with the precision required, with
a significant coarser mesh size than h = 1

600 used
there; this size can be a necessity for the other higher
Reynolds numbers shown there (10000, 15000 and
20000) but not for those smaller ones. In Erturk,
Corke and Gökçöl (2005) the stationary problem
in stream function and vorticity variables is solved
through the false transient technique; then, the high
Reynolds number flows shown are forced to be con-

verging to a steady state flow, that is, converging to
a solution of the stationary problem, which in turn
may be not unique, Temam (2001) among others.

Table I. Characteristics of the center of the pri-
mary vortex for several values of Re.

Re h x y ψ (min) ω

400 1
140 0.564 0.614 -0.111 -2.259

400 1
128 0.563 0.617 -0.111 -2.273

400 1
60 0.567 0.617 -0.114 -2.331

1000 1
140 0.536 0.571 -0.119 -2.121

1000 1
128 0.539 0.570 -0.119 -2.128

1000 1
80 0.538 0.575 -0.120 -2.146

3200 1
128 0.523 0.547 -0.122 -1.964

5000 1
256 0.520 0.543 -0.120 -1.763

5000 1
128 0.523 0.539 -0.121 -1.863

3.2. The transient stage for Re = 4000

Results for Re = 4000, starting from rest, with
h = 1

128 and ∆t = 0.005 are reported to show the
evolution of the flow during its transient stage at
different times until Tss = 86.88 when the steady
state is reached, as has been already mentioned in
the previous subsection.

Figure 6: Re = 4000 at T = 12.5; h = 1
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Figure 6: Re = 4000 at T = 12.5; h = 1
128 , ∆t = 0.005

Figure 7: Re = 4000 at T = 25; h = 1
128

, ∆t =
0.005

Figure 8: Re = 4000 at T = 31.25; h = 1
128

,
∆t = 0.005

In Figures 6, 7, 8, and 9 the flows at T = 12.5,
T = 25, T = 31.25, and Tss = 86.88 are succes-
sively pictured. Characteristics of the evolution un-
til Tss = 86.88, Figure 9, can be clearly observed.
However, we remark on some aspects: At T = 12.5,
Figure 6, the recirculation of the flow is starting, as
expected, from the right wall; this being implied by
the appearance of the first secondary vortex in the
right bottom corner of the streamlines and the vor-
ticity coming out from the right wall. On the flow at
T = 25, Figure 7, concerning the small structures,
one more secondary vortex has appeared in the left
bottom corner and one more starts appearing near
the upstream top corner. All these three secondary
vortices remain until Tss = 86.88, increasing their
sizes and/or the number of iso-contours only. The
number of streamlines in the primary vortex is in-
creasing from five to six from T = 12.5 to T = 25,
then to seven, and not more from there on. The
iso-contours of the vorticity at T = 25, Figure 7, in
contrast with what happens for the higher Reynolds
numbers Re = 10000 and 15000 at the same time,
shown in the next subsection, are uniformly well

Figure 9: Re = 4000 at Tss = 86.88; h = 1
128

,
∆t = 0.005

formed and they are leaving the center of the cavity
tending to concentrate into the solid and fixed walls
as time goes on. Concerning the flows at T = 31.25,
Figure 8, and at Tss = 86.88, Figure 9, which are the
times already commented in the previous subsection
in connection with Schreiber and Keller (1983) and
Ghia U., Ghia N. and Shin (1982), it is observed that
the only difference is on the size of some contours of
the vortices, for instance the most inner circle in the
principal vortex has been increased notoriously.

3.3. High Reynolds number flows, Re = 10000 and
15000, at time T = 25

First of all, it is pointed out that the Re = 10000
flows as in Sahin and Owens (2003), at very early
times from t = 0, at T = 2, 6, 8, 10 and 12, were
obtained with no difficulty at all. Preliminaries re-
sults for Re = 10000 indicate that no steady state
is obtained according to our way, based on its defi-
nition, to measure Tss. This coincides with the con-
clusion of several authors who have solved the un-
steady problem: the flow is time-dependent as soon
as Re > 7500; that is, a transition from flows that
converge to a steady state to oscillatory flows ap-
pears. Of course, this can only be observed if com-
putations for large times are possible. To this end,
our preliminary computations have been performed
until time T = 5000, a time large enough compared
with the Tss’s of the converged steady state flows in
subsection 3.1.

Results are presented for Re = 10000 and 15000
at time T = 25 starting from the initial condition
at rest, that is, u(x, t) = 0 at t = 0. For the for-
mer case the discretization parameters are h = 1

128
and ∆t = 0.004, and h = 1

256 and ∆t = 0.0025

9

Figure 7: Re = 4000 at T = 25; h = 1
128 , ∆t = 0.005

Keller (1983) and Ghia U., Ghia N. and Shin (1982), it is observed that the only
difference is on the size of some contours of the vortices, for instance the most
inner circle in the principal vortex has been increased notoriously.

3.3 High Reynolds number flows, Re = 10000 and 15000, at time T = 25

First of all, it is pointed out that the Re = 10000 flows as in Sahin and Owens
(2003), at very early times from t = 0, at T = 2, 6, 8, 10 and 12, were obtained with
no difficulty at all. Preliminaries results for Re = 10000 indicate that no steady
state is obtained according to our way, based on its definition, to measure Tss. This
coincides with the conclusion of several authors who have solved the unsteady
problem: the flow is time-dependent as soon as Re > 7500; that is, a transition from
flows that converge to a steady state to oscillatory flows appears. Of course, this
can only be observed if computations for large times are possible. To this end, our
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In Figures 6, 7, 8, and 9 the flows at T = 12.5,
T = 25, T = 31.25, and Tss = 86.88 are succes-
sively pictured. Characteristics of the evolution un-
til Tss = 86.88, Figure 9, can be clearly observed.
However, we remark on some aspects: At T = 12.5,
Figure 6, the recirculation of the flow is starting, as
expected, from the right wall; this being implied by
the appearance of the first secondary vortex in the
right bottom corner of the streamlines and the vor-
ticity coming out from the right wall. On the flow at
T = 25, Figure 7, concerning the small structures,
one more secondary vortex has appeared in the left
bottom corner and one more starts appearing near
the upstream top corner. All these three secondary
vortices remain until Tss = 86.88, increasing their
sizes and/or the number of iso-contours only. The
number of streamlines in the primary vortex is in-
creasing from five to six from T = 12.5 to T = 25,
then to seven, and not more from there on. The
iso-contours of the vorticity at T = 25, Figure 7, in
contrast with what happens for the higher Reynolds
numbers Re = 10000 and 15000 at the same time,
shown in the next subsection, are uniformly well
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formed and they are leaving the center of the cavity
tending to concentrate into the solid and fixed walls
as time goes on. Concerning the flows at T = 31.25,
Figure 8, and at Tss = 86.88, Figure 9, which are the
times already commented in the previous subsection
in connection with Schreiber and Keller (1983) and
Ghia U., Ghia N. and Shin (1982), it is observed that
the only difference is on the size of some contours of
the vortices, for instance the most inner circle in the
principal vortex has been increased notoriously.

3.3. High Reynolds number flows, Re = 10000 and
15000, at time T = 25

First of all, it is pointed out that the Re = 10000
flows as in Sahin and Owens (2003), at very early
times from t = 0, at T = 2, 6, 8, 10 and 12, were
obtained with no difficulty at all. Preliminaries re-
sults for Re = 10000 indicate that no steady state
is obtained according to our way, based on its defi-
nition, to measure Tss. This coincides with the con-
clusion of several authors who have solved the un-
steady problem: the flow is time-dependent as soon
as Re > 7500; that is, a transition from flows that
converge to a steady state to oscillatory flows ap-
pears. Of course, this can only be observed if com-
putations for large times are possible. To this end,
our preliminary computations have been performed
until time T = 5000, a time large enough compared
with the Tss’s of the converged steady state flows in
subsection 3.1.

Results are presented for Re = 10000 and 15000
at time T = 25 starting from the initial condition
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In Figures 6, 7, 8, and 9 the flows at T = 12.5,
T = 25, T = 31.25, and Tss = 86.88 are succes-
sively pictured. Characteristics of the evolution un-
til Tss = 86.88, Figure 9, can be clearly observed.
However, we remark on some aspects: At T = 12.5,
Figure 6, the recirculation of the flow is starting, as
expected, from the right wall; this being implied by
the appearance of the first secondary vortex in the
right bottom corner of the streamlines and the vor-
ticity coming out from the right wall. On the flow at
T = 25, Figure 7, concerning the small structures,
one more secondary vortex has appeared in the left
bottom corner and one more starts appearing near
the upstream top corner. All these three secondary
vortices remain until Tss = 86.88, increasing their
sizes and/or the number of iso-contours only. The
number of streamlines in the primary vortex is in-
creasing from five to six from T = 12.5 to T = 25,
then to seven, and not more from there on. The
iso-contours of the vorticity at T = 25, Figure 7, in
contrast with what happens for the higher Reynolds
numbers Re = 10000 and 15000 at the same time,
shown in the next subsection, are uniformly well
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formed and they are leaving the center of the cavity
tending to concentrate into the solid and fixed walls
as time goes on. Concerning the flows at T = 31.25,
Figure 8, and at Tss = 86.88, Figure 9, which are the
times already commented in the previous subsection
in connection with Schreiber and Keller (1983) and
Ghia U., Ghia N. and Shin (1982), it is observed that
the only difference is on the size of some contours of
the vortices, for instance the most inner circle in the
principal vortex has been increased notoriously.

3.3. High Reynolds number flows, Re = 10000 and
15000, at time T = 25

First of all, it is pointed out that the Re = 10000
flows as in Sahin and Owens (2003), at very early
times from t = 0, at T = 2, 6, 8, 10 and 12, were
obtained with no difficulty at all. Preliminaries re-
sults for Re = 10000 indicate that no steady state
is obtained according to our way, based on its defi-
nition, to measure Tss. This coincides with the con-
clusion of several authors who have solved the un-
steady problem: the flow is time-dependent as soon
as Re > 7500; that is, a transition from flows that
converge to a steady state to oscillatory flows ap-
pears. Of course, this can only be observed if com-
putations for large times are possible. To this end,
our preliminary computations have been performed
until time T = 5000, a time large enough compared
with the Tss’s of the converged steady state flows in
subsection 3.1.

Results are presented for Re = 10000 and 15000
at time T = 25 starting from the initial condition
at rest, that is, u(x, t) = 0 at t = 0. For the for-
mer case the discretization parameters are h = 1

128
and ∆t = 0.004, and h = 1

256 and ∆t = 0.0025
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Figure 9: Re = 4000 at Tss = 86.88; h = 1
128 , ∆t = 0.005

preliminary computations have been performed until time T = 5000, a time large
enough compared with the Tss’s of the converged steady state flows in subsection
3.1.

Results are presented for Re = 10000 and 15000 at time T = 25 starting from the
initial condition at rest, that is, u(x, t) = 0 at t = 0. For the former case the dis-
cretization parameters are h = 1

128 and ∆t = 0.004, and h = 1
256 and ∆t = 0.0025

for the latter. The presentation of these results is two fold: a) to make a comparison
between some high Reynolds flows, assumed to be time-dependent, with converged
asymptotic steady state flows at the same early time, taking the representative flow
given by Re = 4000; b) to see how the evolution of small structures, given by the
sub-vortices, changes as the Reynolds number increases in line with Landau and
Lifshitz (1989), where it is stated that the number of sub-vortices increases as Re
increases, this in connection with the transition to turbulence, which gives some
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Figure 10: Re = 10000 at T = 25; h = 1
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Figure 11: Re = 10000 at T = 25; h = 1
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for the latter. The presentation of these results is
two fold: a) to make a comparison between some
high Reynolds flows, assumed to be time-dependent,
with converged asymptotic steady state flows at the
same early time, taking the representative flow given
by Re = 4000; b) to see how the evolution of
small structures, given by sub-vortices change as the
Reynolds number increases in line with Landau and
Lifshitz (1989), where it is stated that the number of
sub-vortices increases as Re increases, this in connec-
tion with the transition to turbulence, which gives
some clue for real turbulence in 3D, Mohammadi and
Pironnneau (1994).

Figure 10 pictures the flow, at T = 25, for Re =
10000, streamlines on the left and iso-vorticity con-
tours on the right, using the contour values in Ghia
U., Ghia N. and Shin (1982), whereas Figure 11
shows 40 iso-contours by the fault. In both Fig-
ures the flow shows an irregular form in the stream-
lines and vorticity contours compared with the flow
for Re = 4000, at the same time, in Figure 7 in
the previous subsection. Almost the same occurs

Figure 12: Re = 15000 at T = 25; h = 1
256

,
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Figure 13: Re = 15000 at T = 25; h = 1
256

,
∆t = 0.0025

for Re = 15000 in Figures 12 and 13, with the
same iso-contours. However, the number of sub-
vortices is bigger for Re = 15000, Figure 12: there
are six secondary vortices (one hardly visible below
the bigger one in the left top corner) instead of four
(a small tertiary vortex below the secondary sub-
vortex in the bottom right corner) in Figure 10 for
Re = 10000, and such activity is reflected in the
corresponding 40 iso-contours, Figure 13; it should
be noted that the number of these small structures
is three for Re = 4000, Figure 7. Moreover, the
”inner egg” in the primary vortex, Figure 12, has
moved more clockwise, and up, than the one in Fig-
ure 10 which is a consequence of the faster fluid mo-
tion for Re = 15000. For both Reynolds numbers,
the vorticity is spread all over the cavity whereas for
Re = 4000, Figure 7, it is abandoning the center of
the cavity.

3.4. Flows with aspect ratio A ≥ 2 for Re = 1000
and A = 2 for Re = 3200.

The flow for Re = 1000 with aspect ratio A = 3
at T = 150 is shown in Figure 14. The reason it is
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for the latter. The presentation of these results is
two fold: a) to make a comparison between some
high Reynolds flows, assumed to be time-dependent,
with converged asymptotic steady state flows at the
same early time, taking the representative flow given
by Re = 4000; b) to see how the evolution of
small structures, given by sub-vortices change as the
Reynolds number increases in line with Landau and
Lifshitz (1989), where it is stated that the number of
sub-vortices increases as Re increases, this in connec-
tion with the transition to turbulence, which gives
some clue for real turbulence in 3D, Mohammadi and
Pironnneau (1994).

Figure 10 pictures the flow, at T = 25, for Re =
10000, streamlines on the left and iso-vorticity con-
tours on the right, using the contour values in Ghia
U., Ghia N. and Shin (1982), whereas Figure 11
shows 40 iso-contours by the fault. In both Fig-
ures the flow shows an irregular form in the stream-
lines and vorticity contours compared with the flow
for Re = 4000, at the same time, in Figure 7 in
the previous subsection. Almost the same occurs
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for Re = 15000 in Figures 12 and 13, with the
same iso-contours. However, the number of sub-
vortices is bigger for Re = 15000, Figure 12: there
are six secondary vortices (one hardly visible below
the bigger one in the left top corner) instead of four
(a small tertiary vortex below the secondary sub-
vortex in the bottom right corner) in Figure 10 for
Re = 10000, and such activity is reflected in the
corresponding 40 iso-contours, Figure 13; it should
be noted that the number of these small structures
is three for Re = 4000, Figure 7. Moreover, the
”inner egg” in the primary vortex, Figure 12, has
moved more clockwise, and up, than the one in Fig-
ure 10 which is a consequence of the faster fluid mo-
tion for Re = 15000. For both Reynolds numbers,
the vorticity is spread all over the cavity whereas for
Re = 4000, Figure 7, it is abandoning the center of
the cavity.

3.4. Flows with aspect ratio A ≥ 2 for Re = 1000
and A = 2 for Re = 3200.

The flow for Re = 1000 with aspect ratio A = 3
at T = 150 is shown in Figure 14. The reason it is
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clue for real turbulence in 3D, Mohammadi and Pironnneau (1994).

Figure 10 pictures the flow, at T = 25, for Re = 10000, streamlines on the left and
iso-vorticity contours on the right, using the contour values in Ghia U., Ghia N.
and Shin (1982), whereas Figure 11 shows 40 iso-contours by the fault. In both
Figures the flow shows an irregular form in the streamlines and vorticity contours
compared with the flow for Re = 4000, at the same time, in Figure 7 in the previous
subsection. Almost the same occurs for Re = 15000 in Figures 12 and 13, with
the same iso-contours. However, the number of sub-vortices is bigger for Re =
15000, Figure 12: there are six secondary vortices (one hardly visible below the
bigger one in the left top corner) instead of four (a small tertiary vortex below the
secondary sub-vortex in the bottom right corner) in Figure 10 for Re = 10000, and
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for the latter. The presentation of these results is
two fold: a) to make a comparison between some
high Reynolds flows, assumed to be time-dependent,
with converged asymptotic steady state flows at the
same early time, taking the representative flow given
by Re = 4000; b) to see how the evolution of
small structures, given by sub-vortices change as the
Reynolds number increases in line with Landau and
Lifshitz (1989), where it is stated that the number of
sub-vortices increases as Re increases, this in connec-
tion with the transition to turbulence, which gives
some clue for real turbulence in 3D, Mohammadi and
Pironnneau (1994).

Figure 10 pictures the flow, at T = 25, for Re =
10000, streamlines on the left and iso-vorticity con-
tours on the right, using the contour values in Ghia
U., Ghia N. and Shin (1982), whereas Figure 11
shows 40 iso-contours by the fault. In both Fig-
ures the flow shows an irregular form in the stream-
lines and vorticity contours compared with the flow
for Re = 4000, at the same time, in Figure 7 in
the previous subsection. Almost the same occurs
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for Re = 15000 in Figures 12 and 13, with the
same iso-contours. However, the number of sub-
vortices is bigger for Re = 15000, Figure 12: there
are six secondary vortices (one hardly visible below
the bigger one in the left top corner) instead of four
(a small tertiary vortex below the secondary sub-
vortex in the bottom right corner) in Figure 10 for
Re = 10000, and such activity is reflected in the
corresponding 40 iso-contours, Figure 13; it should
be noted that the number of these small structures
is three for Re = 4000, Figure 7. Moreover, the
”inner egg” in the primary vortex, Figure 12, has
moved more clockwise, and up, than the one in Fig-
ure 10 which is a consequence of the faster fluid mo-
tion for Re = 15000. For both Reynolds numbers,
the vorticity is spread all over the cavity whereas for
Re = 4000, Figure 7, it is abandoning the center of
the cavity.

3.4. Flows with aspect ratio A ≥ 2 for Re = 1000
and A = 2 for Re = 3200.

The flow for Re = 1000 with aspect ratio A = 3
at T = 150 is shown in Figure 14. The reason it is
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for the latter. The presentation of these results is
two fold: a) to make a comparison between some
high Reynolds flows, assumed to be time-dependent,
with converged asymptotic steady state flows at the
same early time, taking the representative flow given
by Re = 4000; b) to see how the evolution of
small structures, given by sub-vortices change as the
Reynolds number increases in line with Landau and
Lifshitz (1989), where it is stated that the number of
sub-vortices increases as Re increases, this in connec-
tion with the transition to turbulence, which gives
some clue for real turbulence in 3D, Mohammadi and
Pironnneau (1994).

Figure 10 pictures the flow, at T = 25, for Re =
10000, streamlines on the left and iso-vorticity con-
tours on the right, using the contour values in Ghia
U., Ghia N. and Shin (1982), whereas Figure 11
shows 40 iso-contours by the fault. In both Fig-
ures the flow shows an irregular form in the stream-
lines and vorticity contours compared with the flow
for Re = 4000, at the same time, in Figure 7 in
the previous subsection. Almost the same occurs
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for Re = 15000 in Figures 12 and 13, with the
same iso-contours. However, the number of sub-
vortices is bigger for Re = 15000, Figure 12: there
are six secondary vortices (one hardly visible below
the bigger one in the left top corner) instead of four
(a small tertiary vortex below the secondary sub-
vortex in the bottom right corner) in Figure 10 for
Re = 10000, and such activity is reflected in the
corresponding 40 iso-contours, Figure 13; it should
be noted that the number of these small structures
is three for Re = 4000, Figure 7. Moreover, the
”inner egg” in the primary vortex, Figure 12, has
moved more clockwise, and up, than the one in Fig-
ure 10 which is a consequence of the faster fluid mo-
tion for Re = 15000. For both Reynolds numbers,
the vorticity is spread all over the cavity whereas for
Re = 4000, Figure 7, it is abandoning the center of
the cavity.

3.4. Flows with aspect ratio A ≥ 2 for Re = 1000
and A = 2 for Re = 3200.

The flow for Re = 1000 with aspect ratio A = 3
at T = 150 is shown in Figure 14. The reason it is
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Figure 13: Re = 15000 at T = 25; h = 1
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such activity is reflected in the corresponding 40 iso-contours, Figure 13; it should
be noted that the number of these small structures is three for Re = 4000, Figure
7. Moreover, the "inner egg" in the primary vortex, Figure 12, has moved more
clockwise, and up, than the one in Figure 10 which is a consequence of the faster
fluid motion for Re = 15000. For both Reynolds numbers, the vorticity is spread
all over the cavity whereas for Re = 4000, Figure 7, it is abandoning the center of
the cavity.

3.4 Flows with aspect ratio A≥ 2 for Re = 1000 and A = 2 for Re = 3200

.

The flow for Re = 1000 with aspect ratio A = 3 at T = 150 is shown in Figure 14.
The reason it is reported at this time is due to the fact that with the stopping criterion
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to reach the steady state, that is, to determine Tss, the corresponding converged
result is far from being the steady flow even though the tolerance was decreased to
10−9. However, for larger times than T = 150 no change is observed; under this
criterion, it may be considered as a steady state flow. As commented below this
case is compared with another one supposed to be correct which is assumed to be
a steady state flow under the same criterion.

reported at this time is due to the fact that with the
stopping criterion to reach the steady state, that is,
to determine Tss, the corresponding converged result
is far from being the steady flow even though the
tolerance was decreased to 10−9. However, for larger
times than T = 150 no change is observed; under
this criterion, it may be considered as a steady state
flow. As commented below this case is compared
with another one supposed to be correct which is
assumed to be a steady state flow under the same
criterion.

Figure 14: Re = 1000, A = 3, hx×hy = 1
100
× 3

300
,

∆t = 0.0001, T = 150

This flow is obtained with hx×hy = 1
100× 3

300 and
∆t = 0.0001; this mesh is significantly coarser than
hx×hy = 1

320× 3
960 that has been used in Nicolás and

Bermúdez (2005), which was determined from mesh
size and time step independence studies to justify the
flow is correct since it was supposed to be a new flow
in that time. Three primary vortices are formed, the
upper and middle ones have nine contours (then, this
number coincides with the number of contours in the
primary vortex for A = 1, Figure 1), the lower one
has four; a small secondary vortex appears in the
right lower corner. Despite the significant difference

in mesh size the result agrees perfectly with the one
in Nicolás and Bermúdez (2005), the number of con-
tours being the same in each principal vortex, the
only difference is that the small secondary vortex
there appears in the left bottom corner. The coin-
cidence with the vorticity contours being also iden-
tical. Moreover, the min/max values of the stream
function in all the cavity Ω reported in Nicolás and
Bermúdez (2005) for the mesh under consideration
are -0.1192/0.0135, ours are -0.1190/0.0135.

Table II shows the min/max values of the stream
function in each primary vortex, the corresponding
coordinates of these values, and the vorticity values
in these locations; in Nicolás and Bermúdez (2005)
the location of the min/max (absolute) is not spec-
ified.

Table II. Properties of the primary vortices for
Re = 1000 and A = 3.

Vortex x y ψ(min/max) ω

Top 0.54 2.58 -0.1190 -2.139

Middle 0.35 1.84 0.0135 0.466

Bottom 0.47 0.82 -0.0002 -0.007

The flow for Re = 3200 with aspect ratio A = 2
in Figure 15, is obtained with hx × hy = 1

100 × 2
200

and ∆t = 0.0001 at T = 200. To assure that this
flow does not change any more, additional calcula-
tions were made until T = 500. Table III shows the
extreme values of the stream function in each pri-
mary vortex, the coordinates of these values, and the
vorticity values. As far as we know this is the first
time this flow is being reported.

Concerning Re = 1000 with A = 3 it should
be noted, observing the streamlines and the iso-
vorticity contours, that the high activity of the flow
takes place in the upper and middle part of the cav-
ity. On the contrary, for the flow with A = 2, not
reported here, the (high) activity is distributed al-
most uniformly in the upper and lower part of the
cavity where the two primary vortices are formed as
can be observed in the results reported in Bruneau
and Jouron (1990), Goyon (1996), and Nicolás and
Bermúdez (2005). It is worth to observe that this
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Figure 14: Re = 1000, A = 3, hx×hy = 1
100 × 3

300 , ∆t = 0.0001, T = 150

This flow is obtained with hx×hy = 1
100× 3

300 and ∆t = 0.0001; this mesh is signifi-
cantly coarser than hx×hy = 1

320× 3
960 that has been used in Nicolás and Bermúdez

(2005), which was determined from mesh size and time step independence studies
to justify the flow is correct since it was supposed to be a new flow in that time.
Three primary vortices are formed, the upper and middle ones have nine contours
(then, this number coincides with the number of contours in the primary vortex for
A = 1, Figure 1), the lower one has four; a small secondary vortex appears in the
right lower corner. Despite the significant difference in mesh size the result agrees
perfectly with the one in Nicolás and Bermúdez (2005), the number of contours
being the same in each principal vortex, the only difference is that the small sec-
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ondary vortex there appears in the left bottom corner. The coincidence with the
vorticity contours being also identical. Moreover, the min/max values of the stream
function in all the cavity Ω reported in Nicolás and Bermúdez (2005) for the mesh
under consideration are -0.1192/0.0135, ours are -0.1190/0.0135.

Table II shows the min/max values of the stream function in each primary vortex,
the corresponding coordinates of these values, and the vorticity values in these
locations; in Nicolás and Bermúdez (2005) the location of the min/max (absolute)
is not specified.

Table 2: Properties of the primary vortices for Re = 1000 and A = 3.

Vortex x y ψ(min/max) ω

Top 0.54 2.58 -0.1190 -2.139

Middle 0.35 1.84 0.0135 0.466

Bottom 0.47 0.82 -0.0002 -0.007

The flow for Re = 3200 with aspect ratio A = 2 in Figure 15, is obtained with
hx×hy = 1

100 × 2
200 and ∆t = 0.0001 at T = 200. To assure that this flow does not

change any more, additional calculations were made until T = 500. Table III shows
the extreme values of the stream function in each primary vortex, the coordinates
of these values, and the vorticity values. As far as we know this is the first time this
flow is being reported.

Concerning Re = 1000 with A = 3 it should be noted, observing the streamlines
and the iso-vorticity contours, that the high activity of the flow takes place in the
upper and middle part of the cavity. On the contrary, for the flow with A = 2,
not reported here, the (high) activity is distributed almost uniformly in the upper
and lower part of the cavity where the two primary vortices are formed as can be
observed in the results reported in Bruneau and Jouron (1990), Goyon (1996), and
Nicolás and Bermúdez (2005). It is worth to observe that this behavior occurs also
for Re = 3200 with A = 2, Figure 15, excepting that here the sub-vortices on the
bottom are bigger.

4 Conclusions

2D viscous incompressible flows have been reported for moderate and high Reynolds
numbers Re in the range 400 ≤ Re ≤ 15000 from numerical solutions of the un-
steady Navier-Stokes equations in primitive variables using a simple projection
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Figure 15: Re = 3200, A = 2, hx×hy = 1
100
× 2

200
,

∆t = 0.0001, T = 200

behavior occurs also for Re = 3200 with A = 2, Fig-
ure 15, excepting that here the sub-vortices on the
bottom are bigger.

Table III. Properties of the primary vortices for
Re = 3200 and A = 2.

Vortex x y ψ(min/max) ω

First 0.53 1.57 -0.1192 -1.9752

Second 0.46 0.70 0.0186 0.3849

5 Conclusions

2D viscous incompressible flows have been reported
for moderate and high Reynolds numbers Re in the
range 400 ≤ Re ≤ 15000 from numerical solutions
of the unsteady Navier-Stokes equations in primitive
variables using a simple projection method that in-
volves an operator splitting technique of three steps
in the time discretization. These flows take place
in rectangular cavities and correspond to the well
known lid-driven cavity problem; they have been
obtained with significant coarse meshes and, de-
pending on the Reynolds number, have been clas-
sified as: i) converged asymptotic steady state flows,

400 ≤ Re ≤ 5000; ii) the evolution of Re = 4000
flow in its transient stage; iii) flows at high Reynolds
numbers, Re = 10000 and 15000, at T = 25; iv)
flows in rectangular cavities of aspect ratio A ≥ 2 for
Re = 1000 and 3200. Interesting properties concern-
ing the small structures given by the sub-vortices
have been observed from this numerical study in con-
nection with subjects ii) and iii). About the strange
phenomenon that has been observed in iv) for the
Re = 1000 flow, with A = 3, on the determina-
tion of Tss when the flow must reach its steady state
gives us a source of further investigation, mainly
for flows with A ≥ 4. Concerning the small struc-
tures observed at early times for some high Reynolds
numbers in iii), an important issue for investiga-
tion is to find out how the number, and their sizes,
of those structures increase as the Reynolds num-
ber increases further, for a fixed time, as well as
when the time increases further, large time compu-
tations, for a fixed Reynolds number. Some prelim-
inary computations show that the results in order
to represent the correct flow a mesh size and time
step independence studies need to be done; on the
other hand, for such high Reynolds numbers, and
long time computations, very small mesh sizes and
very small time steps are required. Then, for this
kind of huge computations our scheme might require
an additional improvement: some kind of parallel
procedure in space, like in Grimaldi, Pascazio, and
Napolitano (2006); or in time, like in Trindade and
Pereira (2007). Preliminary results show also that
our numerical scheme can deal with non-isothermal
flows in connection with natural and mixed convec-
tion problems like the ones in Arefmanesh, Najafi
and Abdi (2008) mentioned in the Introduction, re-
lated to the stream function-vorticity approach cou-
pled to the thermal energy equation, where for lid
driven cavity flows an inlet velocity isothermal mech-
anism on the left wall is added to the one on the top
wall.
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Figure 15: Re = 3200, A = 2, hx×hy = 1
100 × 2
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Table 3: Properties of the primary vortices for Re = 3200 and A = 2.

Vortex x y ψ(min/max) ω

First 0.53 1.57 -0.1192 -1.9752

Second 0.46 0.70 0.0186 0.3849

method that involves an operator splitting technique of three steps in the time
discretization. These flows take place in rectangular cavities and correspond to
the well known lid-driven cavity problem; they have been obtained with signifi-
cant coarse meshes and, depending on the Reynolds number, have been classified
as: i) converged asymptotic steady state flows, 400 ≤ Re ≤ 5000; ii) the evolu-
tion of Re = 4000 flow in its transient stage; iii) flows at high Reynolds numbers,
Re = 10000 and 15000, at T = 25; iv) flows in rectangular cavities of aspect ratio
A ≥ 2 for Re = 1000 and 3200. Interesting properties concerning the small struc-
tures given by the sub-vortices have been observed from this numerical study in
connection with subjects ii) and iii). About the strange phenomenon that has been
observed in iv) for the Re = 1000 flow, with A = 3, on the determination of Tss
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when the flow must reach its steady state gives us a source of further investigation,
mainly for flows with A ≥ 4. Concerning the small structures observed at early
times for some high Reynolds numbers in iii), an important issue for investiga-
tion is to find out how the number, and their sizes, of those structures increase as
the Reynolds number increases further, for a fixed time, as well as when the time
increases further, large time computations, for a fixed Reynolds number. Some pre-
liminary computations show that the results in order to represent the correct flow a
mesh size and time step independence studies need to be done; on the other hand,
for such high Reynolds numbers, and long time computations, very small mesh
sizes and very small time steps are required. Then, for this kind of huge computa-
tions our scheme might require an additional improvement: some kind of parallel
procedure in space, like in Grimaldi, Pascazio, and Napolitano (2006); or in time,
like in Trindade and Pereira (2007). Preliminary results show also that our nu-
merical scheme can deal with non-isothermal flows in connection with natural and
mixed convection problems like the ones in Arefmanesh, Najafi and Abdi (2008)
mentioned in the Introduction, related to the stream function-vorticity approach
coupled to the thermal energy equation, where for lid driven cavity flows an inlet
velocity isothermal mechanism on the left wall is added to the one on the top wall.
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