
Copyright © 2009 Tech Science Press CMES, vol.40, no.3, pp.271-305, 2009

Micromechanical analysis of aligned and randomly
oriented whisker-/ short fiber-reinforced composites

S.H. Pyo1 and H.K. Lee1,2

Abstract: This paper presents a micromechanical approach for predicting the
elastic and multi-level damage response of aligned and randomly oriented whisker-/
short fiber-reinforced composites. Based on a combination of Eshelby’s microme-
chanics and the evolutionary imperfect interface approach, the effective elastic
moduli of the composites are derived explicitly. The modified Eshelby’s tensor for
spheroidal inclusions with slightly weakened interface [Qu (1993b)] is extended in
the present study to model whiskers or short fibers having mild or severe imperfect
interfaces. Aligned and random orientations of spheroidal reinforcements are con-
sidered. A multi-level damage model in accordance with the Weibull’s probabilistic
function is then incorporated into the micromechanical framework to describe the
sequential, progressive imperfect interfaces in the composites. Numerical exam-
ples corresponding to uniaxial tensile loadings are solved to illustrate the potential
of the proposed micromechanical framework for predicting the elastic and multi-
level damage response of the composites. Furthermore, comparisons between the
present predictions and experimental data in the literature are made to further high-
light the capability of the proposed micromechanical framework.

Keywords: Multi-level damage modeling, Modified Eshelby’s tensor, Progres-
sive imperfect interface, Spheroidal reinforcements, Aligned and random orienta-
tions.

1 Introduction

Nowadays, there have been growing interests in whisker- or short fiber-reinforced
composites in various engineering application such as automotive, electronics and
construction fields because of their ease of fabrication, economy and superior me-
chanical/electrical properties [Huang (2001); Nguyen and Khaleel (2004); Maity,
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Jacob, Das, Alam, and Singh (2008)]. In general, fibers (e.g., glass, carbon, SiC,
TiB, dispersed carbon nanotube, etc.) are embedded in the form of whiskers or
short fibers in the matrix. Those composites have more balanced properties, which
leads to an improved through-the-thickness stiffness/strength and a better ability to
formulate complex shapes [Huang (2001)]. Several methodologies were made in
order to predict mechanical behavior of composite materials [e.g., Takashima, Nak-
agaki, and Miyazaki (2007); Pahr and Böhm (2008)]. However, it is difficult to pre-
dict the overall behavior of those composites numerically or experimentally due to
the complexity of their microstructure and damage mechanisms (e.g., fiber/matrix
debonding, matrix microcracking) [Nguyen and Khaleel (2004)]. That is, one could
say that the condition of perfect bonding at the interface between inclusions and
the matrix is often inappropriate in addressing the physical nature and mechan-
ical behavior of the interface [Gao (1995)]. Therefore, several approaches have
been proposed for evaluating the effective elastic properties of composites with
these discontinuous reinforcements considering various damage phenomena [e.g.,
Joseph, Thomas, and Pavithran (1996); Tucker III and Liang (1999); Hine, Rudolf
Lusti, and Gusev (2002); Arbelaiz, Fernández, Ramos, Retegi, Llano-Ponte, and
Mondragon (2005); Chen and Ke (2008); Oyekoya, Mba, and El-Zafrany (2008)].

Micromechanics, which encompasses mechanics related to the microstructure of
materials, can be applied to study and elucidate the influence of defects such as
microcracks, flaws, pores, and inclusions, including impurities and precipitates,
on the elastic and mechanical behavior of materials [Mura (1982); Nemat-Nasser
and Hori (1993); Luo and Stevens (1996)]. An elastoplastic model for two-phase
metal matrix composites containing randomly located yet aligned spheroidal inclu-
sions based on ensemble-volume averaging procedure was proposed by Ju and Sun
(2001) and Sun and Ju (2001). Micromechanical damage constitutive models for
aligned and randomly oriented discontinuous fiber reinforced composites are pre-
sented by Lee and Simunovic (2000, 2001). Sun, Ju, and Liu (2003) proposed an
elastoplastic damage model for spheroidal inclusions reinforced composites con-
sidering partial debonding of inclusions. Recently, elastic and elastoplastic damage
models for spherical and cylindrical inclusions reinforced composites considering
multi-level damage process based on the Eshelby’s micromechanics were proposed
in our preceding works [Lee and Pyo (2007, 2008a, 2008b, 2009); Pyo and Lee
(2009a, 2009b)].

The primary objective of the present study is to develop a three-dimensional (3D)
micromechanics based progressive damage model to predict the effective elastic
moduli and damage evolution in aligned and randomly oriented whisker- and short
fiber-reinforced composites. Short fibers (or whiskers) embedded in the composites
are modeled as spheroidal reinforcements in the present study. Moreover, the Es-
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helby’s tensor for an ellipsoidal inclusion with slightly weakened interface derived
by Qu (1993a, b) is extended in order to model spheroidal reinforcements having
imperfect interfaces in the composites. Fibers (or whiskers) are assumed to be non-
interacting, randomly dispersed yet aligned or randomly oriented and initially em-
bedded firmly in the matrix with perfect bonded interfaces. It is also assumed that
the progression of imperfect interface is governed by multi-level damage process
based on Weibull’s statistical function [Lee and Pyo (2008a)] where the average
internal stresses of perfectly bonded fibers (phase 1) and the Weibull parameters
are the controlling factors.

Following the multi-level damage process proposed in our preceding work [Lee and
Pyo (2008a)], a three-level elastic damage model is adopted for a complete descrip-
tion of the sequential progression of imperfect interface in the composites, which
is illustrated in Figure 1. As seen in Figure 2, aligned and random orientations of
spheroidal reinforcements are considered in accordance with Lee and Simunovic
(2000), Sun and Ju (2004), and Qiu and Weng (1990). In order to illustrate the
potential of the proposed micromechanical framework, numerical examples of the
composites under uniaxial tension are presented. Parametric studies of model pa-
rameters are conducted to clearly address the influence of the parameters on the
progression of imperfect interface in the composites. Finally, the applicability of
the proposed micromechanical framework is highlighted by comparing the present
predictions with available experimental data in the literature.

The present paper is organized as follows. Effective elastic moduli of composites
containing randomly located and aligned spheroidal reinforcements is microme-
chanically constructed in Section 2. Effective elastic moduli of composites con-
taining randomly oriented reinforcements are explicitly derived based on the ori-
entational averaging approaches proposed by Lee and Simunovic (2000), Sun and
Ju (2004), and Qiu and Weng (1990) in Section 3. In Section 4, a multi-level dam-
age model [Lee and Pyo (2008a)] for progressive imperfect interface in accordance
with the Weibull’s probabilistic function is recapitulated and internal stresses of
reinforcements are formulated. A series of parametric analysis to address the in-
fluence of model parameters on the progressive imperfect interface in the compos-
ites with aligned and 3D randomly oriented reinforcements are conducted in the
Sections 5 and 6, respectively. Finally, the present prediction are compared with
experimental data [Fu, Lauke, Mäder, Yue, and Hu (2000); Gorsse and Micracle
(2003)] to highlight the capability of the proposed micromechanical framework in
Section 7.
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2 Effective elastic moduli of composites containing aligned spheroidal rein-
forcements

Let us consider an initially perfectly bonded two-phase composite consisting of an
elastic matrix (phase 0) with bulk modulus κ0 and shear modulus µ0, and randomly
located yet aligned elastic spheroidal reinforcements (phase 1) with bulk modulus
κ1 and shear modulus µ1. All reinforcements are assumed to be non-interacting
and initially embedded firmly in the matrix with perfect interfaces.

As external loads or deformations continue to increase, some initially perfectly
bonded reinforcements are transformed statistically to reinforcements with mild
imperfect interface (phase 2). Some reinforcements with mild imperfect interface
are then transformed to reinforcements with severe imperfect interface (phase 3).
Finally, all reinforcements are transformed to completely debonded reinforcements
that are regarded as spheroidal voids (phase 4). The schematic of this multi-level
damage transition is shown in Figure 1.

 

Figure 1: Schematics of multi-level damage evolution in a composite with: (a) two-
phase composite state (initial state); (b) three-phase composite state; (c) four-phase
composite state; (d) five-phase composite state (cf. Lee and Pyo, 2008a)
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Figure 2: Schematics of aligned (a) and 3D randomly oriented (b) spheroidal rein-
forcements

The effective stiffness tensor C∗ for multi-phase, linear elastic composites contain-
ing arbitrarily non-aligned and/or dissimilar inclusions can be derived as [Ju and
Chen (1994)]

C∗ = C0 ·

{
I+

4

∑
r=1

[
φr(Ar +Sr)−1 · {I−φrSr · (Ar +Sr)−1}−1]} (1)

where “” is the tensor multiplication, Cr is the elasticity tensor of the r-phase, I
is the fourth-rank identity tensor, φr denotes the volume fraction of the r-phase
inclusion, Sr denotes Eshelby’s tensor of the r-phase, and the fourth-rank tensor Ar

is defined as Ar ≡ (Cr−C0)
−1 ·C0.

The interior-point Eshelby’s tensors S1 for perfectly bonded spheroidal reinforce-
ments and S4 for completely debonded spheroidal reinforcements (voids) were ex-
plicitly given by Ju and Sun (1999) as

(S1,4)i jkl =
1

4(1−ν0)

[
S(1)

IK δi jδkl +S(2)
IJ (δikδ jl +δilδ jk)

]
(2)

where ν0 denotes the Poisson’s ratio of the matrix and δi j signifies the Kronecker
delta. The components of the second-rank tensors S(1)

IK and S(2)
IJ can be found in Ju

and Sun (1999).

The Eshelby’s tensor for an ellipsoidal inclusion with slightly weakened interface
proposed by Qu (1993a, b) can be written as

SM
i jkl =

1
Ω

∫
Ω

SO
i jkl(x)dV (x) = SO

i jkl +(Ii jpq−SO
i jpq)HpqrsLrsmn(Imnkl−SO

mnkl) (3)
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where Ω denotes an ellipsoidal subdomain in a homogeneous and linearly elastic
solid, L signifies the fourth-rank elasticity tensor, SO

i jkl is the original Eshelby’s
tensor and the fourth-rank tensor H is given by Qu (1993a, b)

Hi jkl =
1

4Ω

∫
s
(ηikn jnl +η jkninl +ηiln jnk +η jlnink)dS (4)

In the case of ellipsoidal inclusions, Hi jkl can be expressed as [Qu (1993b)]

Hi jkl = αPi jkl +(β −α)Qi jkl (5)

in which

Pi jkl =
3

16π

∫
π

0

[∫ 2π

0
(δikn̂ jn̂l +δ jkn̂in̂l +δil n̂kn̂ j +δ jl n̂kn̂i)n−1dθ

]
sinφdφ (6)

Qi jkl =
3

4π

∫
π

0

[∫ 2π

0
n̂in̂ jn̂kn̂ln−3dθ

]
sinφdφ (7)

where unit normal vector n can be defined as [Qu (1993b)]

n̂ =
(

sinφ cosθ

a1
,
sinφ sinθ

a2
,
cosφ

a3

)T

(8)

with

n =
√

n̂in̂i (9)

in which ai denotes the radius of the inclusions, and α and β represent the com-
pliances in the tangential and normal directions of the interface [Qu (1993a, b)].
Further details of the Eshelby’s tensor for an ellipsoidal inclusion with slightly
weakened interfaces can be found in Qu (1993a, b).

By carrying out the lengthy algebra but straightforward, the Eshelby’s tensor for
a spheroidal inclusion (a1 6= a2 = a3) with imperfect interface embedded in an
isotropic linear elastic and infinite matrix are (newly) derived based on Qu (1993a,
b)’s modified Eshelby’s tensor in Eq. (3) as follows:

(Sn+1)i jkl =
1

4(1−ν0)

[
SM(2n−1)

IK δi jδkl +SM(2n)
IJ (δikδ jl +δilδ jk)

]
(10)

where n = 1, 2 (1 and 2 indicate the mild and severe imperfect interface stages,
respectively). In addition, the components of the second-rank tensors SM(2n−1)

IK and
SM(2n)

IJ read
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SM(2n−1)
11 = S(1)

11 +
1

12a[1−ν0][γ2−1]2
9ς10(γ){(βn−αn)(ζ1(γ)ς1(γ)−2ζ3(γ)ς9(γ))+αnζ4(γ)ς1(γ)

−8αnζ5(γ)ς3(γ){1+3ς2(γ)}

+{2ς3(γ)−4µ0(1+3ς2(γ))}
{

3(βn−αn)(2ζ2(γ)ς9(γ)−ζ3(γ)ς1(γ)
+2αnζ5(γ)ς4(γ)

}
 (11)

SM(2n−1)
12 = SM(2n−1)

13 = S(1)
12 +

1
16a[1−ν0][γ2−1]23{µ0ς5(γ)+ ς6(γ)}{(βn−αn)(2ζ3(γ)ς9(γ)−ζ1(γ)ς1(γ))−αnζ4(γ)ς1(γ)}

−16αnζ5(γ)ς12(γ){1+3ς2(γ)}
+4ς12(γ){3(βn−αn)(2ζ2(γ)ς9(γ)−ζ3(γ)ς1(γ))+2αnζ5(γ)ς4(γ)


(12)

SM(2n−1)
21 = SM(2n−1)

31 = S(1)
21 +

3
8a[1−ν0][γ2−1]2

4γ2µ0

(βn−αn)
(

ζ1(γ)[−2+2ν0− γ2(2ν0−1)]
−4γ2ζ2(γ)+4ζ3(γ)[1+ν0(γ2−1)]

)
+αn(ζ4(γ)[−2+2ν0− γ2(2ν0−1)]−4γ2ζ5(γ))


−g2(γ)

{
(βn−αn)(3ζ1(γ)ς15(γ)−4ζ2(γ)ς16(γ)−2ζ3(γ)ς14(γ))

+αn(3ζ4(γ)ς15(γ)−4ζ5(γ)ς16(γ))

}
+4g(γ)

{
(βn−αn)(2ζ2(γ)ς11(γ)−ζ1(γ)ς17(γ)−ζ3(γ)ς19(γ))

+αn(ζ5(γ)ς11(γ)−ζ4(γ)ς17(γ))

}


(13)

SM(2n−1)
22 = SM(2n−1)

23 = SM(2n−1)
32 = SM(2n−1)

33 = S(1)
22 +

3
32a[1−ν0][γ2−1]2

ς5(γ)ς6(γ){ζ1(γ)(βn−αn)+2αnζ4(γ)}

+{µ0ς5(γ)+ ς6(γ)}
{

(αn−βn)(ζ1(γ)ς18(γ)+8ζ3(γ)ς8(γ))
−2αnζ4(γ)ς7(γ)

}
+16ς12(γ){(αn−βn)(ζ2(γ)ς8(γ)+ζ3(γ)ς13(γ))−2αnζ5(γ)ς8(γ)}

 (14)

SM(2n)
11 = S(2)

11 +
2αnµ0ζ5(γ)[1+3ς2(γ)]2

3a[1−ν0][γ2−1]2
(15)

SM(2n)
12 = SM(2n)

13 = SM(2n)
21 = SM(2n)

31

= S(2)
12 +

3µ0ς2
20(γ)[4(βn−αn)ζ3(γ)+αn(ζ4(γ)+2ζ5(γ))]

8a[1−ν0][γ2−1]2
(16)
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SM(2n)
22 = SM(2n)

23 = SM(2n)
32 = SM(2n)

33

= S(2)
22 +

3µ0ς2
5 (γ)[(βn−αn)ζ1(γ)+2αnζ4(γ))]

128a[1−ν0][γ2−1]2
(17)

where γ denotes the aspect ratio (a1/a2) of the reinforcements and ς1(γ), . . . , ς20(γ),
ζ1(γ), . . . , ζ5(γ) and g(γ) are listed in Appendix A.

Substituting Eqs. (2) and (10) into Eq. (1) yields the effective stiffness tensor C∗
for the current five-phase composites containing aligned spheroidal reinforcements
as

C∗ =
[
C(1)

IK δi jδkl +C(2)
IJ (δikδ jl +δilδ jk)

]
(18)

where

C(1)
IK = 2λ0χ

(2)
KK +2µ0χ

(1)
IK +

3

∑
n=1

λ0χ
(1)
nK , C(2)

IJ = 2µ0χ
(2)
IJ (19)

in which λ0 denotes the Lame constant of the matrix, and the components χ
(1)
IK and

χ
(2)
IJ are given by

χ
(1)
IK = Λ

(1)
IK +Λ

(3)
IK +Λ

(5)
IK +Λ

(7)
IK , χ

(2)
IJ =

1
2

+Λ
(2)
IJ +Λ

(4)
IJ +Λ

(6)
IJ +Λ

(8)
IJ (20)

where

Λ
(2r−1)
IK = φr

[
2η

(2r−1)
IK ω

(2r)
KK +2η

(2r)
II ω

(2r−1)
IK +

3

∑
n=1

η
(2r−1)
In ω

(2r−1)
nK

]
(r = 1,2,3,4)

(21)

Λ
(2r)
IJ = 2φrη

(2r)
IJ ω

(2r)
IJ (r = 1,2,3,4) (22)

and

ω
(2r−1)
IK =

Γ
(r)
IK

1−2ξ
(2r)
II

, ω
(2r)
IJ =

1

2−4ξ
(2r)
IJ

(23)

Γ
(r)
I1 =

[
1
2 −ξ

(2r−1)
22 −ξ

(2r)
22

]
ξ

(2r−1)
I1 +ξ

(2r−1)
21 ξ

(2r−1)
I2[

1
2 −ξ

(2r−1)
22 −ξ

(2r)
22

][
1−ξ

(2r−1)
11 −2ξ

(2r)
11

]
−ξ

(2r−1)
12 ξ

(2r−1)
21

(24)

Γ
(r)
I2 = Γ

(r)
I3 =

[
1−ξ

(2r−1)
11 −2ξ

(2r)
11

]
ξ

(2r−1)
I2 +ξ

(2r−1)
12 ξ

(2r−1)
I1

2
[

1
2 −ξ

(2r−1)
22 −ξ

(2r)
22

][
1−ξ

(2r−1)
11 −2ξ

(2r)
11

]
−2ξ

(2r−1)
12 ξ

(2r−1)
21

(25)

Here, the parameters ξ
(1)
IK , ξ

(2)
IJ , . . . , ξ

(7)
IK , ξ

(8)
IJ , and η

(1)
IK , η

(2)
IJ , . . . , η

(7)
IK , η

(8)
IJ are

listed in Appendix B.
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3 Effective elastic moduli of composites containing randomly oriented spheroidal
reinforcements

One may apply the orientational averaging process (suitable for aligned to 3D ran-
dom orientation) to the effective elastic moduli of composites with aligned spheroidal
reinforcements in order to obtain the effective elastic moduli of composites with
randomly oriented spheroidal reinforcements. Any transversely isotropic fourth-
rank tensor M can be expressed as

Mi jkl = M(1)
IK δi jδkl +M(2)

IJ (δikδ jl +δilδ jk) (26)

where M(1)
12 = M(1)

13 , M(1)
21 = M(1)

31 , M(1)
22 = M(1)

23 = M(1)
32 = M(1)

33 , M(2)
12 = M(2)

21 =
M(2)

13 = M(2)
31 , and M(2)

22 = M(2)
23 = M(2)

32 = M(2)
33 .

The general orientation average process proposed by Marzari and Ferrari (1992)
and Odegard, Gates, Wise, Park, and Siochi (2003) can be written as

�M�=
∫

π

−π

∫
π

0
∫ π/2

0 M̄(φ ,γ,ψ)λ (φ ,ψ)sinγdφdγdψ∫
π

−π

∫
π

0
∫ π/2

0 λ (φ ,ψ)sinγdφdγdψ

(27)

where� ·� is used to define the orientational average process and M̄i jkl = cipc jq

ckrclsMpqrs, in which ci j are the direction cosines for the transformation and listed
in Eq. (27) of Odegard, Gates, Wise, Park, and Siochi (2003). Eq. (27) in the
case of 3D random orientation can be simplified as [Marzari and Ferrari (1992);
Odegard, Gates, Wise, Park, and Siochi (2003)]

�M�=
∫

π

−π

∫
π

0
∫ π/2

0 M̄(φ ,γ,ψ)sinγdφdγdψ∫
π

−π

∫
π

0
∫ π/2

0 sinγdφdγdψ

(28)

After lengthy but straightforward algebra,�M� becomes

�M�= ι1δi jδkl + ι2(δikδ jl +δilδ jk) (29)

where

ι1 =
1

15

[
M(1)

11 +4M(1)
12 +4M(1)

21 +6M(1)
22 +2M(2)

11 −4M(2)
12 +2M(2)

22

]
(30)

ι2 =
1

15

[
M(1)

11 −M(1)
12 −M(1)

21 +M(1)
22 +2M(2)

11 +6M(2)
12 +7M(2)

22

]
(31)

Firstly, we adopt here Lee and Simunovic (2000)’s approach to obtain the effective
elastic moduli of composites with 3D randomly oriented reinforcements. Following



280 Copyright © 2009 Tech Science Press CMES, vol.40, no.3, pp.271-305, 2009

Lee and Simunovic (2000), the effective stiffness tensor C∗ for composites contain-
ing randomly oriented spheroidal can be written as [Lee and Simunovic (2000)]

C∗ =

〈〈
C0 ·

{
I+

4

∑
r=1

[
φr(Ar +Sr)−1 · {I−φrSr · (Ar +Sr)−1}−1]}〉〉

= C̃1δi jδkl +C̃2(δikδ jl + δilδ jk) (32)

where

C̃1 =
1

15

[
C(1)

11 +4C(1)
12 +4C(1)

21 +6C(1)
22 +2C(2)

11 −4C(2)
12 +2C(2)

22

]
(33)

C̃2 =
1

15

[
C(1)

11 −C(1)
12 −C(1)

21 +C(1)
22 +2C(2)

11 +6C(2)
12 +7C(2)

22

]
(34)

where the components C(1)
11 , C(1)

12 , C(1)
21 , C(1)

22 , C(2)
11 , C(2)

12 and C(2)
22 are given in Eq.

(19).

In accordance with Sun and Ju (2004)’s approach for the 3D random orientation,
the effective elastic stiffness tensor C∗ for composites with randomly oriented
spheroidal reinforcements can be alternatively given by [Sun and Ju (2004)]

C∗ = C0 ·

{
I+

4

∑
r=1

φr
[
� (Ar +Sr)−1�

]
·
[
I−φr� Sr · (Ar +Sr)−1�

]−1
}

(35)

After lengthy algebra, the effective elastic stiffness tensor of the composites can be
rephrased as

C∗ = λ
∗
δi jδkl + µ

∗(δikδ jl +δilδ jk) (36)

where

λ
∗ = [3λ0 +2µ0][ψ1 +ψ3 +ψ5 +ψ7]+λ0[1+2ψ2 +2ψ4 +2ψ6 +2ψ8] (37)

µ
∗ = µ0[1+2ψ2 +2ψ4 +2ψ6 +2ψ8] (38)

with

ψ2r−1 =
φrΘ2r−1 +2φ 2

r [ϒ2r−1Θ2r−ϒ2rΘ2r−1]
[1−2φrϒ2r][1−3φrϒ2r−1−2φrϒ2r]

, ψ2r =
φrΘ2r

1−2φrϒ2r
, (r = 1,2,3,4)

(39)

in which the parameters ϒ1, . . . , ϒ8 and Θ1, . . . , Θ8 are listed in Appendix C.
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Lastly, one may also adopt Qiu and Weng (1990)’s approach for the 3D random
orientation based on the Mori-Tanaka method. The effective elastic stiffness tensor
C∗ for composites with randomly oriented spheroidal reinforcements can thus be
written as [Qiu and Weng (1990)]

C∗ =

[
(1−φ)C0 +

4

∑
r=1

φr� Cr ·Br�

][
(1−φ)I+

4

∑
r=1

φr� Br�

]−1

(40)

where

Br =
[
I+Sr(C0)−1(Cr−C0)

]−1
(41)

After lengthy algebra, the effective elastic stiffness tensor read

C∗ = λ
∗
δi jδkl + µ

∗(δikδ jl +δilδ jk) (42)

where

λ
∗ =

[
−
[
Σ4

n=1φnϖ2n−1
][

(1−φ)(3λ0 +2µ0)+2Σ3
n=1φnρ2n

]
+
[
1−φ +2Σ4

n=1φnϖ2n
][

(1−φ)µ0 +Σ3
n=1φnρ2n−1

] ][
1−φ +2Σ4

n=1φnϖ2n
][

1−φ +Σ4
n=1φn(3ϖ2n−1 +2ϖ2n)

] (43)

µ
∗ =

(1−φ)µ0 +Σ3
n=1φnρ2n

1−φ +2Σ4
n=1φnϖ2n

(44)

with

ρ1 =
1−ν0

15


{5λ1+2µ1}

{
1−Ψ̂

(1)
11 −2Ψ̂

(1)
12

}
−4µ1Ψ̂

(1)
12

1−ν0+µ̂1S(2)
11 −

4µ1
1−ν0+µ̂1S(2)

12

+
{10λ1+2µ1}

{
1−Ψ̂

(1)
21 −2Ψ̂

(1)
22

}
−6µ1Ψ̂

(1)
21 −8µ1Ψ̂

(1)
22

1−ν0+µ̂1S(2)
22

 (45)

ρ2 =
µ1(1−ν0)
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where the parameters Ψ̂
(1)
IJ , . . . , Ψ̂

(4)
IJ are listed in Appendix D.

4 Multi-level damage modeling and internal stress of reinforcements

A three-level damage model proposed in our preceding work [Lee and Pyo (2008a)]
in the order of sequence of progressive imperfect interface is employed here to
model the sequential, progressive imperfect interface in composites. The three-
level damage model is briefly recapitulated in this section for completeness of the
proposed model. Assuming that the Weibull (1951) statistics governs, as exter-
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nal loads or deformations continue to increase, some initially perfectly bonded re-
inforcements are transformed statistically to reinforcements with mild imperfect
interface (phase 2), some reinforcements with mild imperfect interface are then
transformed to reinforcements with severe imperfect interface (phase 3), and all
reinforcements are finally transformed to completely debonded reinforcements that
are regarded as spheroidal voids (phase 4). Thus, the current volume fraction of
r-phase reinforcements, φr, at a given level of (σ̄11)1 can be derived through the
following three-step Weibull approach [Lee and Pyo (2008a)]

φ̄2 = φ

{
1− exp

[
−
(

(σ̄11)1

S0

)M
]}

, φ̄3 = φ̄2

{
1− exp

[
−
(

(σ̄11)1

S0

)M
]}

(59)

φ4 = φ̄3

{
1− exp

[
−
(

(σ̄11)1

S0

)M
]}

, φ3 = φ̄3−φ4, φ2 = φ̄2− φ̄3, φ1 = φ − φ̄2

(60)

where φ denotes the original reinforcements volume fraction, (σ̄11)1 is the internal
stress of reinforcements (phase 1) in the 1-direction, and S0 and M are the Weibull
parameters.

The internal stress of reinforcements required for the initiation of the imperfect
interface for the multi-phase composite state can be explicitly derived as following
[cf. Ju and Lee (2000); Lee and Pyo (2009)]

σ̄σσ1 ≡ U : ε̄εε (61)

with

Ui jkl = U (1)
IK δi jδkl +U (2)

IJ (δikδ jl +δilδ jk) (62)

where the second-rank tensors U (1)
IK and U (2)

IJ can be expressed as
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(63)

in which
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]
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with
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and
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IK +ξ
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]
, Π
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IJ +ξ
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]
(67)

where the parameters ξ
(1)
IK , . . . , ξ

(8)
IJ in Eqs. (64) and (67) are listed in Appendix B.

5 Predictions for aligned whisker- or short fiber-reinforced composites

A series of numerical simulations are conducted to examine the influence of the
Weibull parameters S0 and M and the aspect ratio γ on the progression of imperfect
interface and elastic behavior of aligned whisker- or short fiber-reinforced compos-
ites. We adopt the same material properties of SiC whisker-reinforced Al2O3 matrix
composites as reported by Sudarsana Rao, Ghorpade, and Mukherjee (2006): E0 =
400 GPa, ν0 = 0.22, E1 = 600 GPa, ν1 = 0.22, φ = 0.33, γ = 200.0. Four sets of
the Weibull parameters that are closely related to the strength at the fiber-matrix
interface in the composites are used: S0 = 200 MPa, M = 2.0; S0 = 400 MPa, M =
2.0; S0 = 600 MPa, M = 2.0; S0 = 800 MPa, M = 2.0 in an attempt to investigate
the effect of these parameters on the progression of imperfect interfaces. The com-
pliance parameters explained in our preceding works [Lee and Pyo (2008a, 2009)]
are assume to be α1 = 2.0×10−7, β1 = 3.0×10−7, α2 = 2.0, β2 = 3.0.

Figure 3 shows the predicted elastic stress-strain responses of the composites at
the five-phase composite state under the uniaxial tension with various S0 values.
Clearly, higher interfacial strength parameter S0 is shown to lead to higher stress-
strain responses. It is also found from this parametric analysis that the influence of
the Weibull parameter S0 on the stress-strain response is quite substantial. Figure 4
shows the predicted progression of volume fractions of reinforcements correspond-
ing to Figure 3.

In order to evaluate the proposed elastic multi-level damage model sensitivity to
the aspect ratio γ , a parametric analysis of γ is carried out. First, we consider the
prolate spheroids case (a1 > a2 = a3) with five sets of the aspect ratio as: γ = 2.0,
γ = 3.0, γ = 5.0, γ = 10.0 and γ = 100.0. The values of Weibull and compliance
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Figure 3: The predicted stress-strain responses of whisker-reinforced composites
under uniaxial tension with various S0 values
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Figure 4. The predicted evolution of volume fractions of perfectly bonded whiskers, 

whiskers with mild imperfect interface, whiskers with severe imperfect interface, and 

completely debonded whiskers corresponding to the prediction in Figure 3: (a) S0 = 200 

MPa; (b) S0 = 400 MPa; (c) S0 = 600 MPa; (d) S0 = 800 MPa 
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Figure 4: The predicted evolution of volume fractions of perfectly bonded
whiskers, whiskers with mild imperfect interface, whiskers with severe imperfect
interface, and completely debonded whiskers corresponding to the prediction in
Figure 3: (a) S0 = 200 MPa; (b) S0 = 400 MPa; (c) S0 = 600 MPa; (d) S0 = 800 MPa
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parameters are fixed to be S0 = 300 MPa, M = 2.0; α1 = 2.0 x 10−7, β1 = 3.0 x 10−7,
α2 = 2.0, β2 = 3.0. The predicted stress-strain responses of composites with various
values of the aspect ratio γ (γ > 1.0) under the uniaxial tension are shown in Figure
5. It is seen from the figure that the effect of the aspect ratio γ on the stress-strain
behavior of the composites become more influential, resulting in stiffer stress-strain
curves, as γ continues to increase.

We also consider oblate spheroids case (a1 < a2 = a3) with five sets of the aspect
ratio as: γ = 0.2, γ = 0.4, γ = 0.6, γ = 0.8 and γ = 0.9. The same values of the
Weibull and compliance parameters as used in the case of prolate spheroids case
are used. Figure 6 depicts the predicted stress-strain responses of composites with
various values of the aspect ratio γ (γ < 1.0) under the uniaxial tension. It is noted
from the figure that higher stress-strain responses are obtained and the stress-strain
curves converge to that of the spherical reinforcements (γ = 1.0) as γ continues to
increase.

6 Predictions for randomly oriented whisker- or short fiber-reinforced com-
posites

Predictions on randomly oriented whisker- or short fiber-reinforced composites are
made to show the applicability of the proposed micromechanical approach for 3D
randomly oriented reinforcements and to examine the influence of the aspect ratio γ

on the composite behavior. Figures 7 - 9 show the predicted stress-strain responses
of composites with 3D randomly oriented whiskers with various aspect ratio under
uniaxial tension using the aforementioned three different orientational averaging
approaches in Section 3. Figure 10 shows the comparison of predictions on aligned
and randomly oriented whisker-reinforced composites. It is noted from the figures
that the influence of the aspect ratio γ on the stress-strain response of composites is
more pronounced with the aligned orientation. It is also observed from the figures
that reinforcements with a smaller aspect ratio result in a higher stress-strain re-
sponses in the case of 3D random orientation case, which is opposite to the aligned
orientation case.

7 Experimental comparison

Comparisons between the present predictions and experimental data on short glass
fiber-reinforced polypropylene matrix composites [Fu, Lauke, Mäder, Yue, and Hu
(2000)] and TiB whiskers reinforced Ti-6Al-4V matrix composites [Gorsse and
Micracle (2003)] are made to highlight the predictive capability of the proposed
model (in the cases of aligned and 3D random orientations).

First, we adopt the same material properties of the short glass fiber-reinforced
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Figure 5: The predicted stress-strain responses of whisker-reinforced composites
under uniaxial tension with various γ values (γ > 1)
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Figure 6: The predicted stress-strain responses of whisker-reinforced composites
under uniaxial tension with various γ values (γ < 1)



288 Copyright © 2009 Tech Science Press CMES, vol.40, no.3, pp.271-305, 2009

 

0

200

400

600

800

0 0.001 0.002 0.003

Strain

St
re

ss
 (M

Pa
)

γ=2

γ=3

γ=5

γ=10

γ=100

 

Figure 7: The predicted stress-strain responses of composites with randomly ori-
ented whiskers under uniaxial tension with various γ values (γ > 1) using Lee and
Simunovic (2000)’s approach
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Figure 8: The predicted stress-strain responses of composites with randomly ori-
ented whiskers under uniaxial tension with various γ values (γ > 1) using Sun and
Ju (2004)’s approach
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Figure 9: The predicted stress-strain responses of composites with random oriented
whiskers under uniaxial tension with various γ values (γ > 1) using Qiu and Weng
(1990)’s approach
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Figure 10. The comparison of predictions on aligned and randomly oriented whisker-

reinforced composites: (a) γ = 2; (b) γ = 3; (c) γ = 5; (d) γ = 100 
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Figure 10: The comparison of predictions on aligned and randomly oriented
whisker-reinforced composites: (a) γ = 2; (b) γ = 3; (c) γ = 5; (d) γ = 100
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polypropylene matrix composites as those in Fu, Lauke, Mäder, Yue, and Hu (2000)
and Fu, Xu, and Mai (2002) as: E0 = 1.30 GPa, E1 = 78.51 GPa, ν1 = 0.25, φ =
0.25. The Poisson’s ratio of the polypropylene matrix is assumed in accordance
with Li, Jia, Mamtimin, Jiang, and An (2006) as ν0 = 0.36. Since the model pa-
rameters of the proposed model were not reported by Fu, Lauke, Mäder, Yue, and
Hu (2000), the model parameters are estimated by fitting the experimentally ob-
tained stress-strain curve [Fu, Lauke, Mäder, Yue, and Hu (2000)] to the present
prediction. The fitted model parameters are: α1 = 2.0 x 10−7, β1 = 3.0×10−7, α2 =
2.0, β2 = 3.0; S0 = 120 MPa, M = 0.45. The predicted uniaxial stress-strain curve
of the composites based on the above material properties and parameters is shown
in Figure 11. The experimentally obtained stress-strain curve is also plotted in the
figure for comparison. Overall, the present prediction and the experimental data
match well. The predicted evolution of volume fractions of fibers corresponding to
Figure 11 is shown in Figure 12.

To further demonstrate the applicability of the proposed micromechanical frame-
work, the present prediction is also compared with experimental data reported by
Gorsse and Micracle (2003) for the uniaxial stress-strain behavior of aligned and
3D randomly oriented TiB whiskers reinforced Ti-6Al-4V matrix composites. We
adopt the material properties of the composites according to Gorsse and Micracle
(2003) as: E0 = 109 GPa, E1 = 482 GPa, φ = 0.2. Since they did not provide the
Poisson’s ratio of each constituent of the composites, typical values of the Poisson’s
ratio of each constituent are used as ν0 = 0.27 and ν1 = 0.14 [see, Fan, Miodownik,
Chandrasekaran, and Ward-Close (1994)]. The compliance and Weibull parameters
are estimated by fitting the experimentally obtained stress-strain curves [Gorsse and
Micracle (2003)] for aligned and 3D random orientation cases to the present pre-
dictions. The estimated compliance parameters for both aligned and 3D random
orientation cases are α1 = 2.0 x 10−7, β1 = 3.0 x 10−7, α2 = 2.0 and β2 = 3.0. The
fitted Weibull parameters for the aligned case are S0 = 3.2 GPa, M = 3.2, while
those for Lee and Simunovic (2000)’s, Sun and Ju (2004)’s, and Qiu and Weng
(1990)’s approaches are S0 = 1.9 GPa, M = 3.2; S0 = 1.9 GPa, M = 3.2; S0 = 2.1
GPa, M = 2.2, respectively. Figure 13 shows comparisons between the present pre-
dictions and experimental data for overall uniaxial tensile responses of aligned and
3D randomly oriented TiB whiskers reinforced Ti-6Al-4V matrix composites. A
good correlation between the present prediction and experiment data is observed
with the aligned case, whereas a slight deviation is observed from the predicted
stress-strain curve for the 3D random case using Qiu and Weng (1990)’s approach.
The predicted progression of volume fractions of whiskers of the composites cor-
responding to Figure 13 is shown in Figure 14.
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Figure 11: The comparison between the present prediction and experimental data
(Fu et al., 2000) for overall uniaxial tensile responses of short glass fiber-reinforced
polypropylene matrix composites
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Figure 12: The predicted evolution of volume fractions of perfectly bonded fibers,
fibers with mild imperfect interface, fibers with severe imperfect interface, and
completely debonded fibers corresponding to the present prediction in Figure 11
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Figure 13: The comparison between the present predictions and experimental data
(Gorsse and Miracle, 2003) for overall uniaxial tensile responses of aligned and 3D
randomly oriented TiB whiskers reinforced Ti-6Al-4V matrix composites

8 Concluding remarks

In the present study, a micromechanical approach has been presented to predict the
overall elastic and multi-level damage responses of composites with aligned and
randomly oriented spheroidal reinforcements. Based on Eshelby’s micromechan-
ics and taking the evolutionary imperfect interface into consideration, the effective
elastic moduli of the composites are obtained explicitly. The modified Eshelby’s
tensor for spheroidal inclusions with slightly weakened interface is extended to
model reinforcements having mild or severe imperfect interfaces [Qu (1993a, b)].
Aligned and random orientations of spheroidal reinforcements are considered. A
multi-level damage model [Lee and Pyo (2008a)] in accordance with the Weibull’s
probabilistic function is then incorporated into the elastic multi-level damage model
to describe the sequential, progressive imperfect interface in the composites. Nu-
merical examples corresponding to uniaxial tensile loadings are solved to illustrate
the potential of the proposed micromechanical framework. Finally, comparisons
between the present prediction and experimental data [Fu, Lauke, Mäder, Yue, and
Hu (2000); Gorsse and Micracle (2003)] in the literature are conducted to highlight
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Figure 14. The predicted evolution of volume fractions of various states of whiskers 

corresponding to the present prediction in Figure 13: (a) aligned; (b) 3D random based 

on Lee and Simunovic (2001)'s approach; (c) 3D random based on Sun and Ju (2004)'s 

approach; (d) 3D random based on Qiu and Weng (1990)'s approach 
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Figure 14: The predicted evolution of volume fractions of various states of whiskers
corresponding to the present prediction in Figure 13: (a) aligned; (b) 3D random
based on Lee and Simunovic (2001)’s approach; (c) 3D random based on Sun and
Ju (2004)’s approach; (d) 3D random based on Qiu and Weng (1990)’s approach

the capability of the proposed micromechanical frameworks. The observations and
findings of this numerical study can be summarized as:

(1) The modified Eshelby’s tensor for spheroidal inclusion reinforced composites
with imperfect interface is explicitly derived.

(2) Higher interfacial strength parameter S0 is shown to slacken the damage evolu-
tion of reinforcements and leads to a higher stress-strain response.

(3) It is noted from the parametric studies on the aspect ratio γ for prolate spheroids
(a1 > a2 = a3) and oblate spheroids (a1 < a2 = a3) cases that the influence of the
aspect ratio γ on the stress-strain response of the composites is more influential
in the case of oblate spheroids case than that of prolate spheroids case.
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(4) Reinforcements with a smaller aspect ratio result in a higher stress-strain re-
sponse in the case of 3D random orientation, which is opposite to the aligned
orientation case.

(5) By using the fitted model parameters, the predicted stress-strain curves of com-
posites with spheroidal reinforcements featuring the multi-level damage pro-
gression of imperfect interface is shown to be in good qualitative agreement
with experimental data [Fu, Lauke, Mäder, Yue, and Hu (2000); Gorsse and
Micracle (2003)] for both aligned and random orientation cases.

The proposed model will be extended to solve boundary value problems of chopped
fiber-reinforced composite structures via implementation into a finite-element pro-
gram. It is worth mentioning that the model parameters (e.g., compliance parame-
ters) used in this work need to be calibrated through a series of experimentation on
target composites for more realistic damage prediction of the composites.
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Appendix A Parameters ς1(γ), . . . , ς20(γ), ζ1(γ), . . . , ζ5(γ) and g(γ) in Eqs. (11)
– (17)

ς1(γ) =2γ
2 +g(γ)+2γ

2g(γ)−4ν0[1+g(γ)][γ2−1] (68)

ς2(γ) =g(γ)[1−2ν0 +2γ
2(ν0−1)]−ν0 + γ

2[ν0−1] (69)

ς3(γ) =2µ0 +3g(γ)[µ0 +λ0(γ2−1)]+6ν0[γ2−1][µ0(1+g(γ))−λ0g(γ)] (70)

ς4(γ) =2+3g(γ)+6ν0[γ2−1][1+g(γ)] (71)

ς5(γ) =8+7g(γ)−6γ
2−4γ

2g(γ)+8ν0[γ2−1][1+g(γ)] (72)

ς6(γ) =4λ0[2+g(γ)][γ2−1][2ν0−1]

+ µ0[2γ
2 +g(γ){−1+8ν0 +4γ

2(1−2ν0)}] (73)

ς7(γ) =−2γ
2 +g(γ)[1−8ν0 +4γ

2(2ν0−1)] (74)

ς8(γ) =2γ
2 +g(γ)[1−2ν0 +2γ

2(1+ν0)] (75)

ς9(γ) =2γ
2−g(γ)[1−2ν0 +2γ

2(ν0−2)] (76)

ς10(γ) =2µ0γ
2 +g(γ)[µ0{1+2γ

2 +2ν0(γ2−1)}+2λ0(γ2−1)(2ν0−1)] (77)

ς11(γ) =2γ
2[λ0(γ2−1)(2ν0−1)−6µ0γ

2] (78)

ς12(γ) =−µ0[g(γ)+2γ
2(1+g(γ))]+4µ0ν0[1+g(γ)][γ2−1]

+λ0[2+g(γ)][γ2−1][2ν0−1] (79)

ς13(γ) =4[ν0−1]+2γ
2[1−2ν0]−3g(γ) (80)

ς14(γ) =λ0[γ2−1][2ν0−1][−1−4ν0 +4γ
2(1+ν0)]+2µ0[−1+ν0 +2ν

2
0

+2γ
4(1+ν0)2 + γ

2(8−5ν0−4ν
2
0 )] (81)

ς15(γ) =µ0 +2[(1− γ
2)λ0 + γ

2
µ0 +ν0(γ2−1)(2λ0 + µ0)] (82)

ς16(γ) =[(1− γ
2)λ0 + µ0−4γ

2
µ0 +2ν0(γ2−1)(λ0 + µ0)][1−2ν0 +2γ

2(1+ν0)]
(83)

ς17(γ) =µ0 +λ0[γ2−1][2ν0−1][2−2ν0 + γ
2(2ν0−1)]

+ µ0[γ2(1+ν0)−ν0][3−2ν0 + γ
2(2ν0−1)] (84)

ς18(γ) =−8−5g(γ)+2γ
2−4γ

2(γ)+8ν0[g(γ)−1][γ2−1] (85)

ς19(γ) =2µ0[−1+ν0(γ2−1)][1−2ν0 + γ
2(2ν0−7)]

+λ0[γ2−1][2ν0−1][2−2ν0 + γ
2(2ν0−3)] (86)

ς20(γ) =2γ
2 +g(γ)[2−ν0 + γ

2(1+ν0)] (87)
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with

ζ1(γ) =
∫

π

0
γ

3 sin5
ϕ(γ2 sin2

ϕ + cos2
ϕ)−3/2dϕ (88)

ζ2(γ) =
∫

π

0
γ
−1 cos4

ϕ sinϕ(γ2 sin2
ϕ + cos2

ϕ)−3/2dϕ (89)

ζ3(γ) =
∫

π

0
γ sin3

ϕ cos2
ϕ(γ2 sin2

ϕ + cos2
ϕ)−3/2dϕ (90)

ζ4(γ) =
∫

π

0
γ sin3

ϕ(γ2 sin2
ϕ + cos2

ϕ)−1/2dϕ (91)

ζ5(γ) =
∫

π

0
γ
−1 cos2

ϕ sinϕ(γ2 sin2
ϕ + cos2

ϕ)−1/2dϕ (92)

g(γ) =

{
γ

(1−γ2)3/2

[
γ(1− γ2)1/2− cos−1 γ

]
, γ < 1

γ

(γ2−1)3/2

[
cosh−1

γ− γ(γ2−1)1/2
]
, γ > 1

(93)

Appendix B Parameters η
(1)
IK , η

(2)
IJ , . . . , η

(7)
IK , η

(8)
IJ in Eqs. (21) and (22), ξ

(1)
IK ,

ξ
(2)
IJ , . . . , ξ

(7)
IK , ξ

(8)
IJ in Eqs. (23) – (25), (64) and (67)

ξ
(1)
IK =

φ1

4(1−ν0)

[
2S(1)

IK η
(2)
KK +2S(2)

II η
(1)
IK +

3

∑
n=1

S(1)
In η

(1)
nK

]
, (94)

ξ
(2)
IJ =

φ1S(2)
IJ η

(2)
IJ

2(1−ν0)
(95)

ξ
(3)
IK =

φ2

4(1−ν0)

[
2SM(1)

IK η
(4)
KK +2SM(2)

II η
(3)
IK +

3

∑
n=1

SM(1)
In η

(3)
nK

]
, (96)

ξ
(4)
IJ =

φ2SM(2)
IJ η

(4)
IJ

2(1−ν0)
(97)

ξ
(5)
IK =

φ3

4(1−ν0)

[
2SM(3)

IK η
(6)
KK +2SM(4)

II η
(5)
IK +

3

∑
n=1

SM(3)
In η

(5)
nK

]
, (98)

ξ
(6)
IJ =

φ3SM(4)
IJ η

(6)
IJ

2(1−ν0)
(99)

ξ
(7)
IK =

φ4

4(1−ν0)

[
2S(1)

IK η
(8)
KK +2S(2)

II η
(7)
IK +

3

∑
n=1

S(1)
In η

(7)
nK

]
, (100)

ξ
(8)
IJ =

φ4S(2)
IJ η

(8)
IJ

2(1−ν0)
(101)
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with

η
(1)
IK =−2(1−ν0)Ψ

(1)
IK

µ
′
1 +S(2)

II

, η
(2)
IJ =

1−ν0

µ
′
1 +S(2)

IJ

(102)

η
(3)
IK =−2(1−ν0)Ψ

(2)
IK

µ
′
2 +SM(2)

II

, η
(4)
IJ =

1−ν0

µ
′
2 +SM(2)

IJ

(103)

η
(5)
IK =−2(1−ν0)Ψ

(3)
IK

µ
′
3 +SM(4)

II

, η
(6)
IJ =

1−ν0

µ
′
3 +SM(4)

IJ

(104)

η
(7)
IK =− 2(1−ν0)Ψ

(4)
IK

−2(1−ν0)+S(2)
II

, η
(8)
IJ =

1−ν0

−2(1−ν0)+S(2)
IJ

(105)

in which

Ψ
(1)
I1 =

[
λ
′
1 + µ

′
1 +S(1)

22 +S(2)
22

][
λ
′
1 +S(1)

I1

]
−
[
λ
′
1 +S(1)

21

][
λ
′
1 +S(1)

I2

]
[
λ
′
1 + µ

′
1 +S(1)

22 +S(2)
22

][
λ
′
1 +2µ

′
1 +S(1)

11 +2S(2)
11

]
−
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λ
′
1 +S(1)

12

][
λ
′
1 +S(1)

21

]
(106)

Ψ
(1)
I2 = Ψ

(1)
I3 =

[
λ
′
1 +2µ

′
1 +S(1)

11 +2S(2)
11

][
λ
′
1 +S(1)

I2

]
−
[
λ
′
1 +S(1)

12

][
λ
′
1 +S(1)

I1

]
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λ
′
1 + µ

′
1 +S(1)

22 +S(2)
22

][
λ
′
1 +2µ

′
1 +S(1)

11 +2S(2)
11

]
−2
[
λ
′
1 +S(1)

12

][
λ
′
1 +S(1)

21

] 
(107)

Ψ
(2)
I1 =
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λ
′
2 + µ

′
2 +SM(1)

22 +SM(2)
22
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′
2 +SM(1)

I1

]
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′
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][
λ
′
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I2
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λ
′
2 + µ
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2 +SM(1)
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λ
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′
2 +SM(1)
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λ
′
2 +SM(1)

12

][
λ
′
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21
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(108)

Ψ
(2)
I2 = Ψ

(2)
I3 =


[
λ
′
2 +2µ

′
2 +SM(1)

11 +2SM(2)
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][
λ
′
2 +SM(1)

I2

]
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′
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λ
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I1

] 2
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′
2 + µ

′
2 +SM(1)
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λ
′
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′
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]
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λ
′
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2 +SM(1)

21

] 
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Ψ
(3)
I1 =

[
λ
′
3 + µ

′
3 +SM(3)

22 +SM(4)
22

][
λ
′
3 +SM(3)

I1

]
−
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λ
′
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21
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λ
′
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I2
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′
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′
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′
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]
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′
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] 
(110)
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(3)
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]
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12
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λ
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λ
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λ
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(111)

Ψ
(4)
I1 =

[
S(1)

22 +S(2)
22 −2+2ν0

]
S(1)

I1 −S(1)
21 S(1)

I2[
S(1)

22 +S(2)
22 −2+2ν0

][
S(1)

11 +2S(2)
11 −4+4ν0

]
−S(1)

12 S(1)
21

(112)

Ψ
(4)
I2 = Ψ

(4)
I3 =

[
S(1)

11 +2S(2)
11 −4+4ν0

]
S(1)

I2 −S(1)
12 S(1)

I1

2
[
S(1)

22 +S(2)
22 −2+2ν0

][
S(1)

11 +2S(2)
11 −4+4ν0

]
−2S(1)

12 S(1)
21

(113)

and

λ
′
r =

4(1−ν0)(µrλ0−µ0λr)
(µr−µ0) [3(λr−λ0)+2(µr−µ0)]

, µ
′
r =

2µ0(1−ν0)
µr−µ0

(114)

Appendix C Parameters ϒ1, . . . , ϒ8 and Θ1, . . . , Θ8 in Eq. (39)

ϒ1 =

[
S(1)

11 +4S(1)
21 +2S(2)

11

][
1−Ψ

(1)
11 −4Ψ

(1)
12

]
+10S(1)

21 Ψ
(1)
12

30
[
µ
′
1 +S(2)

11

] −
2S(2)

12

15
[
µ
′
1 +S(2)

12

]
+

[
3S(1)

22 +2S(1)
12 +3S(2)

22

][
3−4Ψ

(1)
21 −6Ψ

(1)
22

]
−6S(2)

22 +5S(1)
12 Ψ

(1)
21

45
[
µ
′
1 +S(2)

22

] (115)

ϒ2 =

[
S(1)

11 −S(1)
21 +2S(2)

11

][
1−Ψ

(1)
11 +Ψ

(1)
12

]
30
[
µ
′
1 +S(2)

11

] +
S(2)

12

5
[
µ
′
1 +S(2)

12

]
+

[
S(1)

22 −S(1)
12 +S(2)

22

][
1+2Ψ

(1)
21 −2Ψ

(1)
22

]
+6S(2)

22

30
[
µ
′
1 +S(2)

22

] (116)
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ϒ3 =

[
SM(1)

11 +4SM(1)
21 +2SM(2)

11

][
1−Ψ

(2)
11 −4Ψ

(2)
12

]
+10SM(1)

21 Ψ
(2)
12

30
[
µ
′
2 +SM(2)

11

]
−

2SM(2)
12

15
[
µ
′
2 +SM(2)

12

]
+

[
3SM(1)

22 +2SM(1)
12 +3SM(2)

22

][
3−4Ψ

(2)
21 −6Ψ

(2)
22

]
−6SM(2)

22 +5SM(1)
12 Ψ

(2)
21

45
[
µ
′
2 +SM(2)

22

] (117)

ϒ4 =

[
SM(1)

11 −SM(1)
21 +2SM(2)

11

][
1−Ψ

(2)
11 +Ψ

(2)
12

]
30
[
µ
′
2 +SM(2)

11

] +
SM(2)

12

5
[
µ
′
2 +SM(2)

12

]
+

[
SM(1)

22 −SM(1)
12 +SM(2)

22

][
1+2Ψ

(2)
21 −2Ψ

(2)
22

]
+6SM(2)

22

30
[
µ
′
2 +SM(2)

22

] (118)

ϒ5 =

[
SM(3)

11 +4SM(3)
21 +2SM(4)

11

][
1−Ψ

(3)
11 −4Ψ

(3)
12

]
+10SM(3)

21 Ψ
(3)
12

30
[
µ
′
3 +SM(4)

11

]
−

2SM(4)
12

15
[
µ
′
3 +SM(4)

12

]
+

[
3SM(3)

22 +2SM(3)
12 +3SM(4)

22

][
3−4Ψ

(3)
21 −6Ψ

(3)
22

]
−6SM(4)

22 +5SM(3)
12 Ψ

(3)
21

45
[
µ
′
3 +SM(4)

22

] (119)

ϒ6 =

[
SM(3)

11 −SM(3)
21 +2SM(4)

11

][
1−Ψ

(3)
11 +Ψ

(3)
12

]
30
[
µ
′
3 +SM(4)

11

] +
SM(4)

12

5
[
µ
′
3 +SM(4)

12

]
+

[
SM(3)

22 −SM(3)
12 +SM(4)

22

][
1+2Ψ

(3)
21 −2Ψ

(3)
22

]
+6SM(4)

22

30
[
µ
′
3 +SM(4)

22

] (120)
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ϒ7 =

[
S(1)

11 +4S(1)
21 +2S(2)

11

][
1−Ψ

(4)
11 −4Ψ

(4)
12

]
+10S(1)

21 Ψ
(4)
12

30
[
−2+2ν0 +S(2)

11

] −
2S(2)

12

15
[
−2+2ν0 +S(2)

12

]
+

[
3S(1)

22 +2S(1)
12 +3S(2)

22

][
3−4Ψ

(4)
21 −6Ψ

(4)
22

]
−6S(2)

22 +5S(1)
12 Ψ

(4)
21

45
[
−2+2ν0 +S(2)

22

] (121)

ϒ8 =

[
S(1)

11 −S(1)
21 +2S(2)

11

][
1−Ψ

(4)
11 +Ψ

(4)
12

]
30
[
−2+2ν0 +S(2)

11

] +
S(2)

12

5
[
−2+2ν0 +S(2)

12

]
+

[
S(1)

22 −S(1)
12 +S(2)

22

][
1+2Ψ

(4)
21 −2Ψ

(4)
22

]
+6S(2)

22

30
[
−2+2ν0 +S(2)

22

] (122)

Θ1 =
2(1−ν0)

15

[
1−Ψ

(1)
11 −4Ψ

(1)
12

µ
′
1 +S(2)

11

− 2

µ
′
1 +S(2)

12

+
1−4Ψ

(1)
21 −6Ψ

(1)
22

µ
′
1 +S(2)

22

]
(123)

Θ2 =
1−ν0

15

[
2−2Ψ

(1)
11 +2Ψ

(1)
12

µ
′
1 +S(2)

11

+
6

µ
′
1 +S(2)

12

+
7+2Ψ

(1)
21 −2Ψ

(1)
22

µ
′
1 +S(2)

22

]
(124)

Θ3 =
2(1−ν0)

15

[
1−Ψ

(2)
11 −4Ψ

(2)
12

µ
′
2 +SM(2)

11

− 2

µ
′
2 +SM(2)

12

+
1−4Ψ

(2)
21 −6Ψ

(2)
22

µ
′
2 +SM(2)

22

]
(125)

Θ4 =
1−ν0

15

[
2−2Ψ

(2)
11 +2Ψ

(2)
12

µ
′
2 +SM(2)

11

+
6

µ
′
2 +SM(2)

12

+
7+2Ψ

(2)
21 −2Ψ

(2)
22

µ
′
2 +SM(2)

22

]
(126)

Θ5 =
2(1−ν0)

15

[
1−Ψ

(3)
11 −4Ψ

(3)
12

µ
′
3 +SM(4)

11

− 2

µ
′
3 +SM(4)

12

+
1−4Ψ

(3)
21 −6Ψ

(3)
22

µ
′
3 +SM(4)

22

]
(127)

Θ6 =
1−ν0

15

[
2−2Ψ

(3)
11 +2Ψ

(3)
12

µ
′
3 +SM(4)

11

+
6

µ
′
3 +SM(4)

12

+
7+2Ψ

(3)
21 −2Ψ

(3)
22

µ
′
3 +SM(4)

22

]
(128)

Θ7 =
2(1−ν0)

15

[
1−Ψ

(4)
11 −4Ψ

(4)
12

−2+2ν0 +S(2)
11

− 2

−2+2ν0 +S(2)
12

+
1−4Ψ

(4)
21 −6Ψ

(4)
22

−2+2ν0 +S(2)
22

]
(129)

Θ8 =
1−ν0

15

[
2−2Ψ

(4)
11 +2Ψ

(4)
12

−2+2ν0 +S(2)
11

+
6

−2+2ν0 +S(2)
12

+
7+2Ψ

(4)
21 −2Ψ

(4)
22

−2+2ν0 +S(2)
22

]
(130)
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Appendix D Parameters Ψ̂
(1)
IJ , . . . , Ψ̂

(4)
IJ in Eqs. (45) – (58)

Ψ̂
(1)
I1 =

[
2−2ν0 + ξ̂

(1)
22 +2µ̂1S(2)

22

]
ξ̂

(1)
I1 − ξ̂

(1)
21 ξ̂

(1)
I2[

2−2ν0 + ξ̂
(1)
22 +2µ̂1S(2)

22

][
4−4ν0 + ξ̂

(1)
11 +4µ̂1S(2)

11

]
− ξ̂

(1)
12 ξ̂

(1)
21

(131)

Ψ̂
(1)
I2 =Ψ̂

(1)
I3 =

[
4−4ν0 + ξ̂

(1)
11 +4µ̂1S(2)

11

]
ξ̂

(1)
I2 − ξ̂

(1)
12 ξ̂

(1)
I1

2
[
2−2ν0 + ξ̂

(1)
22 +2µ̂1S(2)

22

][
4−4ν0 + ξ̂

(1)
11 +4µ̂1S(2)

11

]
−2ξ̂

(1)
12 ξ̂

(1)
21

(132)

Ψ̂
(2)
I1 =

[
2−2ν0 + ξ̂

(2)
22 +2µ̂2SM(2)

22

]
ξ̂

(2)
I1 − ξ̂

(2)
21 ξ̂

(2)
I2[

2−2ν0 + ξ̂
(2)
22 +2µ̂2SM(2)

22

][
4−4ν0 + ξ̂

(2)
11 +4µ̂2SM(2)

11

]
− ξ̂

(2)
12 ξ̂

(2)
21

(133)

Ψ̂
(2)
I2 =Ψ̂

(2)
I3 =

[
4−4ν0 + ξ̂

(2)
11 +4µ̂2SM(2)

11

]
ξ̂

(2)
I2 − ξ̂

(2)
12 ξ̂

(2)
I1{

2
[
2−2ν0 + ξ̂

(2)
22 +2µ̂2SM(2)

22

][
4−4ν0 + ξ̂

(2)
11 +4µ̂2SM(2)

11

]
−2ξ̂

(2)
12 ξ̂

(2)
21

}
(134)

Ψ̂
(3)
I1 =

[
2−2ν0 + ξ̂

(3)
22 +2µ̂3SM(4)

22

]
ξ̂

(3)
I1 − ξ̂

(3)
21 ξ̂

(3)
I2[

2−2ν0 + ξ̂
(3)
22 +2µ̂3SM(4)

22

][
4−4ν0 + ξ̂

(3)
11 +4µ̂3SM(4)

11

]
− ξ̂

(3)
12 ξ̂

(3)
21

(135)

Ψ̂
(3)
I2 =Ψ̂

(3)
I3 =

[
4−4ν0 + ξ̂

(3)
11 +4µ̂3SM(4)

11

]
ξ̂

(3)
I2 − ξ̂

(3)
12 ξ̂

(3)
I1{

2
[
2−2ν0 + ξ̂

(3)
22 +2µ̂3SM(4)

22

][
4−4ν0 + ξ̂

(3)
11 +4µ̂3SM(4)

11

]
−2ξ̂

(3)
12 ξ̂

(3)
21

}
(136)

Ψ̂
(4)
I1 =

[
2−2ν0−S(1)

22 −S(2)
22

]
S(1)

I1 +S(1)
21 S(1)

I2[
2−2ν0−S(1)

22 −S(2)
22

][
4−4ν0−S(1)

11 −2S(2)
11

]
−S(1)

12 S(1)
21

(137)

Ψ̂
(4)
I2 =Ψ̂

(4)
I3 =

[
4−4ν0−S(1)

11 −2S(2)
11

]
S(1)

I2 +S(1)
12 S(1)

I1

2
[
2−2ν0−S(1)

22 −S(2)
22

][
4−4ν0−S(1)

11 −2S(2)
11

]
−2S(1)

12 S(1)
21

(138)

where

ξ̂
(1)
IK = 2µ̂1S(1)

IK +2λ̂1S(2)
II + λ̂1

3

∑
n=1

S(1)
In (139)
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ξ̂
(2)
IK = 2µ̂2SM(1)

IK +2λ̂2SM(2)
II + λ̂2

3

∑
n=1

SM(1)
In (140)

ξ̂
(3)
IK = 2µ̂3SM(3)

IK +2λ̂3SM(4)
II + λ̂3

3

∑
n=1

SM(3)
In (141)

with

λ̂r =
λrµ0−λ0µr

µ0(3λ0 +2µ0)
, µ̂r =

µr−µ0

2µ0
(142)




