
Copyright © 2009 Tech Science Press CMES, vol.40, no.3, pp.201-224, 2009

Effects of Constitutive Parameters and Dynamic Tensile
Loads on Radially Periodic Oscillation of Micro-Void

Centered at Incompressible Hyperelastic Spheres

X.G. Yuan1,2 and H.W. Zhang1

Abstract: The radially symmetric motion of the pre-existing micro-void centered
at an incompressible hyperelastic sphere under the dynamic surface tensile loads
relating to time is investigated in this paper. Some interesting conclusions are ob-
tained by qualitatively analyzing the solutions of the motion equation of micro-
void in detail; meanwhile, numerical simulations are used for understanding the
obtained conclusions. In particular, it is proved that the motion of the micro-void
with time would present a nonlinearly periodic oscillation if the values of the con-
stant tensile load, the material and the structure parameters are given and that the
oscillation amplitudes of the micro-void are discontinuous in some special cases;
under the generalized dynamic surface tensile loads relating to time, the necessary
conditions of the nonlinearly periodic oscillation of the micro-void are proposed by
using the symmetric principle and the connecting rule of the phase diagrams of the
differential equation that governs the motion of the pre-existing micro-void.

Keywords: Incompressible hyperelastic material; motion equation of pre-existing
micro-void; dynamic load; nonlinearly periodic oscillation

1 Introduction

As is well known, products made of hyperelastic materials such as rubber and
rubberlike materials are widely used in Mechanical Engineering, Petrochemical
Engineering, Aeronautics and Astronautics, etc. Correspondingly, many classical
problems such as finite deformation, stability and useful time of the products are
worth investigating and the considerable progresses of the corresponding investi-
gations have been made. Static deformation problems, such as inflation, bending,

1 Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, State Key
Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology,
Dalian 116024, China. Corresponding author: zhanghw@dlut.edu.cn, yxg1971@163.com

2 School of Science, Dalian Nationalities University, Dalian 116600, Liaoning, P.R. China



202 Copyright © 2009 Tech Science Press CMES, vol.40, no.3, pp.201-224, 2009

shearing, everting, straightening and stretching of the elastic stability of a spherical
shell, a cylindrical tube, a thick slab, a solid sphere, etc, have been investigated
by many authors by using the analytic methods, see the review articles contributed
by Beatty (1987), Horgan and Polignone (1995), Attard (2003) and the monograph
contributed by Fu and Ogden (2001); some numerical methods, such as shooting
methods, Galerkin methods and finite element methods, are also used for studying
the finite deformation problems of structures composed of hyperelastic materials,
which maybe found in Hatmann (2001), Maniatty et al (2002), and so on. On the
other hand, many numerical method were employed to solve the relative problems
which may be found in [Atluri, et. al. (2006); Ling and Atluri (2008)]. However,
for the relative dynamic problems, most of the mathematical models are described
as solving the initial-boundary value problems of strong nonlinear evolution equa-
tions with time. And so they are difficult to study due to the inherent nonlinearity.
At present, some classical problems have been investigated under the assumption
of axisymmetric deformation, such as the radial oscillations of a cylindrical tube
and a spherical shell composed of isotropic incompressible hyperelastic materials
were examined by Knowles (1960, 1962); the dynamic cavitation problems were
studied by Chou-Wang and Horgan (1989) for solid spheres composed of isotropic
neo-Hookean materials in the context of nonlinear elastodynamics, where the outer
surface of the sphere is subjected to a suddenly applied uniform radial constant
tensile load; the dynamic inflation mechanisms of the motion of a hyperelastic
spherical membrane were studied by Verron et al (1999); the radial oscillations of
a thin cylindrical and a spherical shell were investigated by Roussos and Mason
(2005) by using the Lie point symmetry structures. More investigations in the con-
text of nonlinear elastodynamics for hyperelastic materials may be found in Dai
et al (2002, 2006), Yuan and Zhang (2006), Sladek et al (2006), Rushchitsky and
Simchuk (2007), Jarak et al (2007), Majorana1 and Salomoni (2008), and so on.

Interestingly, the loading forms acting on the structures are not always the constant
load but the dynamic loads relating to time, such as periodic loads or step loads, etc.
More recently, Yuan and Zhang (2008) presented the nonlinear dynamical analysis
of a hyperelastic solid sphere composed of the transversely isotropic incompress-
ible Valanis-Landel materials under a special class of periodic step loads. The
authors proved that a cavity would form in the interior of the sphere if the surface
tensile load exceeds a certain critical value and that the motion of the formed cavity
with time would present a class of singular periodic oscillations; moreover, the au-
thors also proposed the controllability conditions of finite periodic oscillations of
the formed cavity under the periodic step loads.

The aim of this paper is focused on the study of the nonlinear dynamical behaviors
of the pre-existing micro-void centered at a sphere composed of an incompressible
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hyperelastic material under the dynamic loads relating to time, in which the loading
form is a generalization that is different from the former references. In particular,
we first propose the basic governing equations of the dynamic problem in the con-
text of nonlinear elastodynamics in Subsection 2.1 and obtain the motion equation
that describes the radial motion of the micro-void under the dynamic loads relating
to time in Subsection 2.2. The hardcore of this paper is Section 3. In Subsection
3.1 we consider the general constant loading form. Firstly, we discuss the possible
motion forms of the micro-void in terms of the constitutive and the structure pa-
rameters in detail; secondly, we conclude that the motion of the micro-void would
present a nonlinearly periodic oscillation for arbitrary prescribed constant tensile
loads; finally, to better understand the conclusions, we consider the transversely
isotropic incompressible neo-Hookean material first contributed by Polignone and
Horgan (1993) and carry out the corresponding numerical simulations. In Sub-
sections 3.2 and 3.3 we consider the cases of the generalized periodic step loads
relating to time. Interestingly, we propose all the necessary conditions of the peri-
odic oscillation of the pre-existing micro-void by using the symmetric principle and
the connecting rule of the phase diagrams of the differential equation that governs
the motion of the micro-void, moreover, we also give the numerical simulations.
Significantly, as the radius of the micro-void tends to zero, the conclusions on non-
linear dynamical behaviors of the micro-void obtained in this paper can describe
the problems of cavity formation and motion in solid spheres approximately and
reasonably.

2 Basic governing equations and solutions

2.1 Basic governing equations

For a solid sphere composed of homogeneous incompressible hyperelastic materi-
als, where there is a pre-existing micro-void with the radius R1 at its center. We
are concerned with the radially symmetric motion of the micro-void of the sphere
under dynamic surface tensile loads with different forms. Under the assumption of
spherically symmetric deformation, the undeformed and the deformed configura-
tions of the sphere are respectively given by

D0 = {(R,Θ,Φ)|0 < R1 ≤ R < R2, 0 < Θ≤ 2π, 0≤Φ≤ π} (1)

D = {(r,θ ,φ)|r = r(R, t)≥ 0, R1 ≤ R≤ R2; θ = Θ, φ = Φ} (2)

where R1 and R2 are the radii of the inner and the outer surfaces of the undeformed
structures, respectively, and r = r(R, t) is the radial deformation function with time
and it is to be determined.
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In the absence of body force, the basic equations governing the motion of the micro-
void of the sphere composed of homogeneous incompressible hyperelastic materi-
als are as follows.

(i) Deformation gradient tensor
The deformation gradient tensor F associated with Eq.(2) is given by

F = diag(λr,λθ ,λφ ) = diag(∂ r(R, t)/∂ t,r(R, t)/R,r(R, t)/R) (3)

where

λr = ∂ r(R, t)/∂R, λθ = λφ = r(R, t)/R (4)

are the principal values of the deformation gradient tensor F, namely, the radial and
circumference stretches.

(ii) Incompressible constraint of hyperelastic materials
The incompressible constraint of the materials requires that detF = 1, namely,
λrλθ λφ = 1. With Eq.(4) we have

∂ r(R, t)
∂R

=
R2

r2(R, t)
(5)

(iii) Constitutive equations
For incompressible hyperelastic materials, the principle components of the Cauchy
stress tensor T is given by

σrr(r, t) = λr
∂W
∂λr
− p(r, t), σθθ (r, t) = σφφ (r, t) = λθ

∂W
∂λθ

− p(r, t) (6)

where p(r, t) now represents the hydrostatic pressure with time, W = W (λr,λθ ,λφ )
is the strain energy function associated with the incompressible hyperelastic mate-
rials.

(iv) Differential equation of motion
In the absence of body force, the equations of motion governing the radially sym-
metric motion of the sphere, i.e., divT(x, t) = ρ0a(x, t), reduce to the single equa-
tion

∂σrr(r, t)
∂R

(
∂ r(R, t)

∂R

)−1

+
2

r(R, t)
[σrr(r, t)−σθθ (r, t)] = ρ0

∂ 2r(R, t)
∂ t2 (7)

where ρ0 is the density of the homogeneous incompressible hyperelastic materials
and it is a constant.
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(v) Initial-boundary conditions
Assume that the sphere in an undeformed state and at rest at time t = 0 satisfies

r(R,0) = R, ṙ(R,0) = 0 (8)

Note. In this paper, it is supposed that dots over any letters denote derivatives with
respect to t.

Since the outer surface of the sphere is subjected to the dynamical tensile loads
∆p(t), the surface boundary condition now requires that

σrr(r(R2, t), t) = ∆p(t)
[

R2

r(R2, t)

]2

, t ≥ 0 (9)

where ∆p(t) has the following forms

∆p(t) =


p1, t ∈ [kT,kT + t0)
p2, t ∈ [kT + t0,kT + t0 + t1),
p3, t ∈ [kT + t0 + t1,kT + t0 + t1 + t2]

(10)

where T = t0 + t1 + t2 and k = 0,1,2, · · · , as shown in figure 1. Obviously, ∆p(t) is
a periodic function with period T .

The boundary condition at the inner surface of the traction-free micro-void is given
by

σrr(r(R1, t), t) = 0 (11)

 
Figure 1: Example forms of periodic step loads relating to time.
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2.2 Solutions

On integration of Eq.(5) with respect to R yields

r = r(R, t) =
[
R3 + r3

1(t)−R3
1
]1/3

, t ≥ 0, (12)

where r1(t) is the radial deformation function that describes the motion of the sur-
face of the micro-void centered at the sphere. Interestingly, Eq.(12) implies that
the motion of the radial deformation r(R, t) at any points of the sphere may be
completely described by r1(t). Moreover, from Eq.(12), it is not difficult to show
that

∂ 2r
∂ t2 = 2r1r−5(r3− r3

1)(ṙ1)
2 + r2

1r−2r̈1 (13)

Substituting Eqs.(5) and (13) into Eq.(7), and then integrating it from r1 to r2 with
respect to r, and using the boundary conditions (9) and (11), we have

∆p(t)
[

R2

r(R2, t)

]2

+2
∫ r2

r1

(
λr

∂W
∂λr
−λθ

∂W
∂λθ

)
dr
r

= ρ0

[
1
2

r−4
2

(
r4

1−4r3
2r1 +3r4

2
)
(ṙ1)

2 + r−1
2 r1 (r2− r1) r̈1

]
(14)

where r2 = r(R2, t)=
[
R3

2 + r3
1(t)−R3

1

]1/3 is obtained by Eq.(12). Obviously, Eq.(14)
is a second order nonlinear ordinary differential equation.

Interestingly, for the prescribed dynamical loads ∆p(t) and for different incom-
pressible hyperelastic materials we will see that the qualitative properties of the
solutions of Eq.(14) are abundant.

3 Qualitative analysis of motion of micro-void

Rewrite Eq.(12) as R =
[
r3− r3

1(t)+R3
1

]1/3 and introduce the following notion

η = η(r,r1) = (1−
r3

1−R3
1

r3 )−1/3 (15)

and so the radial and circumference stretches, i.e., Eq.(4), become λr = η−2, λθ =
λφ = η , moreover, the strain energy function can be rewritten as Ŵ (η)=W (η−2,η ,η).
In what follows, it is convenient to introduce the following dimensionless quantities

x(t) =
r1(t)
R2

, δ = (1−
R3

1
R2

)1/3. (16)
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From Eq.(16), it is not difficult to show that dr
r = η−1dη

1−η3 . Substituting Eq.(16) into
Eq. (14), we have

ρ0R2
2

(
x− x2

(δ 3 + x3)1/3

)
ẍ+ρ0R2

2

(
x4

2(δ 3 + x3)4/3 −
2x

(δ 3 + x3)1/3 +
3
2

)
ẋ2

−∆p(t)(δ 3 + x3)−2/3 + h(x,δ ) = 0 (17)

where

h(x,δ ) =

( x3

1−δ3 )1/3∫
(δ 3+x3)1/3

Ŵ1(η)
η3−1

dη (18)

Moreover, the initial condition (8) becomes

x(0) = (1−δ
3)1/3, ẋ(0) = 0 (19)

It is not difficult to obtain the first integral of Eq.(17), as follows,

A(x,δ )ẋ2 +Ṽ (x,δ ,∆p(t)) = E (20)

where A(x,δ ) = 1
2 ρ0R2

2x3
(

1− x
(δ 3+x3)1/3

)
,

Ṽ (x,δ ,∆p(t)) =


V (x,δ , p1), t ∈ [kT,kT + t0)
V (x,δ , p2), t ∈ [kT + t0,kT + t0 + t1),
V (x,δ , p3), t ∈ [kT + t0 + t1,(k +1)T ]

(21)

T = t0 + t1 + t2, k = 0,1,2, · · · and

V (x,δ , pi) =
∫ x

(1−δ 3)1/3
ξ

2h(ξ ,δ )dξ , −pi

(
(δ 3 + x3)1/3−1

)
, (i = 1,2,3).

Next we discuss the motion of the micro-void under the dynamic loading form (10)
in the following cases.

3.1 Case I: p1 = p2 = p3 = P

3.1.1 Theoretical Analysis

If it is found that p1 = p2 = p3 = P in Eq.(10), namely, ∆p(t) ≡ P, that is to say,
the sphere is subjected to a constant tensile load on its outer surface. In this case,
Eq.(20) becomes

A(x,δ )ẋ2 +V (x,δ ,P) = E (22)
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where

V (x,δ ,P) =
∫ x

(1−δ 3)1/3
ξ

2h(ξ ,δ )dξ −P
(
(δ 3 + x3)1/3−1

)
(23)

For the initial conditions (19), we have E = 0, namely,

A(x,δ )ẋ2 +V (x,δ ,P) = 0 (24)

It is easy to show that the implicit solution of Eq.(22) is given by

±
∫ x

x0

(
A(z,δ )

E−V (z,δ ,P)

)1/2

dz = t− t0 (25)

For the initial condition (19), Eq.(25) becomes

±
∫ x

(1−δ 3)1/3

(
− A(z,δ )

V (z,δ ,P)

)1/2

dz = t (26)

Obviously, for any x > 0 we have A(x,δ ) > 0, moreover, if there exists x ∈ ((1−
δ 3)1/3,+∞) such that the inequality V (x,δ ,P) < 0 is valid, we can obtain the ex-
istence conditions and the range of the real solution of Eq.(24). It can be seen that
the inequality V (x,δ ,P) < 0 relates to not only the prescribed surface tensile load
P > 0, but also the sphere composed of the incompressible hyperelastic materials.

On the one hand, for the strain energy function associated with the hyperelastic
materials, the strongly elliptic condition, i.e., the strictly convex d2Ŵ (η)/dη2 > 0,
(c.f. Ball (1982) pp.563, Eq.(3.7)) must be satisfied, and so, if P = 0, we have
Vx(x,δ ,0) > 0 as x∈ ((1−δ 3)1/3,+∞) and V ((1−δ 3)1/3,δ ,0) = 0, in other words,
V (x,δ ,0) is a strictly increasing function of x. In this case, V (x,δ ,0) > 0 as x ∈
((1−δ 3)1/3,+∞).
On the other hand, for any finite P > 0 and for any 0 < δ < 1, we have V ((1−
δ 3)1/3,δ ,P) = 0 and lim

x→+∞
V (x,δ ,P) = +∞. Interestingly, we can see that the func-

tion V (x,δ ,P) decreases strictly with the increasing P and whether there exists a
value of x such that V (x,δ ,P) < 0 is equivalent to minx∈(0,+∞)V (x,δ ,P) < 0.

For the prescribed P > 0 and 0 < δ < 1, the critical point of V (x,δ ,P) is given by
the root of the equation Vx(x,δ ,P) = 0, namely,

G(x,δ ,P) = (δ 3 + x3)2/3h(x,δ )−P = 0 (27)

Next we numerically study the effects of the structure parameters 0 < δ < 1 and
the constitutive parameters on the number of solutions of Eq.(27) for the prescribed
value of P.



Effects of Constitutive Parameters and Dynamic Tensile Loads 209

Enlightening by the works contributed by Yuan and Zhang (2005) on the static
formation of cavity and growth of a pre-existing void in incompressible hyperelastic
materials, we study the relation between P∼ x by starting from δ = 1, namely, the
solid sphere case, and so Eq.(27) becomes

P = (1+ x3)2/3h(x,1) = (1+ x3)2/3
∞∫

(1+x3)1/3

Ŵ1(η)
η3−1

dη (28)

Obviously, the right hand of Eq.(28) is an improper integral. To insure that the value
of P is finite at x = 0+, we know that the following conditions on the dimensionless
strain energy function Ŵ (η) must be valid, namely,

(i) The limit lim
η→1

d2Ŵ (η)
dη2 is a finite positive value.

(ii) The highest power of Ŵ (η) with respect to η does not greater than 3.

The Taylor expansion of Eq.(28) at x = 0+ is given by

P = Pcr + kx3 +o
(
x3) as x→ 0+ (29)

where

Pcr =
∞∫

1

Ŵ1(η)
η3−1

dη

and

k =
2
3

[
Pcr−

1
6

d2Ŵ (η)
dη2

∣∣∣∣
η=1

]

Eq.(29) is first obtained by Polignone and Horgan (1993) for studying static forma-
tion and growth of cavity in solid spheres composed of incompressible anisotropic
nonlinearly elastic materials and Pcr is called the critical load that describes the
critical state of cavitation in solid spheres. Moreover, it is easy to show that

lim
x→+∞

(1+ x3)2/3
∫

∞

(1+x3)1/3

Ŵ1(η)
η3−1

dη = +∞

by using the strongly elliptic condition of the strain energy function associated with
the incompressible hyperelastic materials. In the works of Polignone and Horgan
(1993), Yuan and Zhang (2005, 2006), the authors have shown that (i) if it is found
that k > 0, the value of P increases from Pcr with respect to the increasing x from
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0. See the solid line in the example curves shown in figure 3 for the transversely
isotropic neo-Hookean materials. (ii) However, if k < 0, the value of P decreases
locally from Pcr with respect to the increasing x from 0, and there must exist a
secondary turning bifurcation point, written as (xn,Pn), on the curve of P∼ x. See
also the solid line in the example curves shown in figure 6.

However, as the values of δ are sufficiently close to 1, the solution curves of
Eq.(27), i.e., G(x,δ ,P) = 0, are also close to those of Eq.(28). And so we will
discuss the number of solutions of Eq.(27) as well as the solutions of Eq.(24) for
the prescribed value of P in terms of k > 0 or < 0.

(i) If k > 0, for any prescribed P > 0 and for any δ ∈ (0,1), Eq.(27) has only
one real root, see the example curves in figure 3 for different values of δ except
the solid line. That is to say, V (x,δ ,P) has a unique minimal point, written as x̄,
and satisfies V (x̄,δ ,P) < 0, see the example curves in figure 4 for different values
of P. Using the above analyses on the properties of V (x,δ ,P), we can see that

min
x∈(0,+∞)

V (x,δ ,P) < 0 is valid for any prescribed P > 0 and there exists a unique

value of x, written as xm, such that V (xm,δ ,P) = 0. From the characteristic of
Eq.(24) we know that the phase trajectories are closed and are symmetric with
respect to the v-axis in the x−v plane, where v = ρ

1/2
0 R2ẋ. From the known theory

of oscillations and the symmetric principle of ordinary differential equations we
know that the solution x(t) of Eq.(24) is periodic with a finite period, where the
period can be obtained by Eq.(26) by setting x = xm. Further, we can conclude that
Eq.(24) has nonlinear periodic solutions satisfying the initial conditions (19), see
the example phase diagrams in figure 5 for different values of P.

(ii) If k < 0, however, it can be numerically shown that there exists a value of δ ,
written as δ0, such that the number of roots of Eq.(27) relating to the increasing
values of P is variable. The classified discussions are as follows.

(a) If 0 < δ ≤ δ0, Eq.(27) has only one real root for any finite values of P, in this
case, V (x,δ ,P) has a unique minimal point. Similar to (i), Eq.(24) has nonlinear
periodic solutions satisfying the initial conditions (19) for any finite values of P.

(b) While if δ0 < δ < 1, there exist two values of P, respectively written as Pn and
Ps (Pn < Ps), such that the equation G(x,P,δ ) = 0 has only one real root if P < Pn

or if P > Ps, has two unequal real roots if P = Pn or if P = Ps, and has three unequal
real roots if Pn < P < Ps. See the example curves in figure 6 for different values of
δ except the solid line. Relating to the information of the equation G(x,P,δ ) = 0,
from the expression of Eq.(23) we know that V (x,δ ,P) decreases strictly with the
increasing values of P if P < Pn and it has a unique minimal point, written as
x̄1, moreover, the values of x̄1 increase with the increasing values of P; however,
V (x,δ ,P) has exactly two local extreme points if P = Pn, written as x̄1 and x̄n
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(x̄1 < x̄n), where x̄1 is the minimal point as above and x̄n is an inflexion point. As P
increases and passes through Pn and does not exceed Ps, the minimum of V (x,δ ,P)
taking at x̄1 decreases continuously with the increasing value of P, however, the
inflexion point x̄n splits into two local extreme points, respectively written as x̄2 and
x̄3 (x̄2 < x̄3), in this case, V (x,δ ,P) has exactly three local extreme points, written
as x̄1, x̄2 and x̄3 (x̄1 < x̄2 < x̄3), moreover, V (x,δ ,P) takes the local minimum at x̄1
and x̄3, and takes the local maximum at x̄2. Interestingly, the values of x̄1 and x̄3
increase and the values of x̄2 decrease with the increasing values of P as Pn < P <
Ps, and the extreme values of V (x,δ ,P) decrease correspondingly. V (x,δ ,P) has
exactly two local extreme points if P = Pn, written as x̄s and x̄3, where x̄s is another
inflexion point and it is the endpoint sinked by the increasing x̄1 and the decreasing
x̄2; V (x,δ ,P) has exactly one minimum at x̄3 if P > Ps. See the example curves in
figure 7 for different values of P. From the above analyses on the extreme points
of V (x,δ ,P) we know that if k < 0, the minimum of V (x,δ ,P) is less than zero
for any given tensile load P > 0, i.e., min

x∈(0,+∞)
V (x,δ ,P) < 0, that is to say, Eq.(24)

has nonlinear periodic solutions satisfying the initial conditions (19) for any given
tensile loads P > 0. See the example phase trajectories in figure 8 for different
values of P.

Relating to the practical problems studied in this paper, we know that for any sud-
denly applied constant surface tensile loads P and for any given values of 0 < δ < 1,
the motion of the initial micro-void in the interior of the sphere performs a nonlin-
ear periodic oscillation. However, the oscillation forms are quite different for the
given material parameters, structure parameters and the values of load.

Interestingly, if k < 0, from the qualitative properties of V (x,δ ,P) we know that the
phase trajectories of Eq.(24) have homoclinic orbits with the type “∞” for the given
values of P satisfying Pn < P < Ps and for any prescribed initial conditions, that is to
say, there exactly exists a value of P, written as Pβ , such that the phase trajectories
of Eq.(24) starting from the initial conditions x(0) = (1−δ 3)1/3 and ẋ(0) = 0 has
the type “∞”. Significantly, the amplitude of oscillation of the initial micro-void
increases continuously with increasing surface radial tensile load satisfying P < Pβ

or P > Pβ . However, the amplitude of oscillation is discontinuous as P passes
through Pβ . See also the example phase trajectories in figure 8 for different values
of P.

3.1.2 Numerical Examples

To better understand the conclusions obtained in this paper, we consider the trans-
versely isotropic incompressible neo-Hookean material, in which the constitutive
relation of the material has been discussed in detail by Polignone and Horgan
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(1993). The authors also examined the static formation and growth of cavity in
spheres composed of this kind of materials. The corresponding strain energy func-
tion of the transversely incompressible neo-Hookean material is given by

W (λ1,λ2,λ3) =
µ

2
[
(λ 2

r +λ
2
θ +λ

2
φ −3)+a(λ 2

r −1)2] (30)

where µ > 0 is the shear modulus for infinitesimal deformations, λi, (i = r,θ ,φ) is
given by Eq.(4), and a≥ 0 is a parameter serves as radial anisotropy of the material.
If it is found that a = 0, then Eq.(30) reduces to the strain energy function associated
with the classical homogeneous isotropic neo-Hookean material.

Using the notations (15), we rewrite Eq.(30) as

Ŵ (η) = W (η−2,η ,η) =
µ

2
[
(η−4 +2η

2−3)+a(η−4−1)2] (31)

And so Eqs.(28) and (29) are rewritten as

P = 2µ(1+ x3)2/3
∞∫

(1+x3)1/3

η−5
[
1−η6 +2a(η−4−1)

]
1−η3 dη (32)

P = 2.5+0.7184a+(0.3333−1.2989a)x3 +o
(
x3) as x→ 0+ (33)

Obviously, k > 0 (or < 0) in Eq.(29) is equivalent to a < 0.2566 (or > 0.2566) in
Eq.(33) for the transversely isotropic incompressible neo-Hookean material.

The effect of the anisotropic parameter a on the growth of the micro-void of the
sphere is shown in figure 2 for the given value of δ .

For the different values of the anisotropic parameter a, we present the following
interesting examples.

(i) For the given value of the parameter a satisfying a < 0.2566 and for the different
values of 0 < δ ≤ 1, the solution curves of Eq.(27) are shown in figure 3; for the
given parameters a = 0.1, δ = 0.9999 and for the different values of P, curves of
x∼V and x∼ v are respectively shown in figures 4 and 5.

(ii) For the given parameters a satisfying a > 0.2566 and for the different values
of 0 < δ ≤ 1, the solution curves of Eq.(27) are shown in figure 6; for the given
parameters a = 1.5, δ = 0.9999 and for the different values of P, curves of x ∼ V
and x∼ v are respectively shown in figures 7 and 8.

3.2 Case II:

In this subsection, we only present the necessary conditions that the solutions of
Eq.(24) satisfying the initial conditions (19) are periodic solutions under the case
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 Figure 2: The effect of the anisotropic parameter a on the growth of the micro-void
of the sphere as δ = 0.9999.
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 Figure 3: Effect of the structure parameter δ on the growth of the dimensionless
radius x of the micro-void with the increasing P/µ for a = 0.1.

of , namely, the necessary conditions that the micro-void performs a nonlinear pe-
riodic oscillation under the dynamic loads relating to time. More importantly, we
sufficiently use the symmetry of the phase diagrams of Eq.(24) to analyze the ex-
istence conditions of the periodic motion of the micro-void. On the other hand, to
better understand the conclusions, we also consider the transversely isotropic in-
compressible neo-Hookean material and present the corresponding numerical fig-
ures in all cases.
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Figure 5: Phase trajectories of Eq.(24) satisfying the initial conditions (19) for
a = 0.1, δ = 0.9999 and for the different values of P/µ , where v = ρ
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(1) t0 = t2
The example forms of periodic step loading are shown in figure 9, in which the
combination of the real lines means that p1 = p3 < p2, the combination of the real
lines and the dash lines means that p1 = p3 > p2.

In what follows, we respectively denote T̂1 and T̂2 by the minimal positive periods
of the oscillation of the micro-void under the different constant loads, namely, p1 =
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Figure 6: Effect of the structure parameter δ on the growth of the dimensionless
radius x of micro-void with the increasing P/µ for a = 1.5.
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p3 = P and p2.

(i) t0 = bT̂1

Necessary conditions of periodic solutions:
t0 = t2 = bT̂1 and t1 = nT̂2 (where b and n are positive integers.)

For the prescribed value of p1, if it is found that t0 = bT̂1, this means that the micro-
void in the interior of the sphere oscillates periodically b times starting from x(0) =
(1− δ 3)1/3, ẋ(0) = 0 and ending at x(t0) = (1− δ 3)1/3 and ẋ(t0) = 0. The tensile
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Figure 8: Phase trajectories of Eq.(24) satisfying the initial conditions (19) for
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Figure 9: Example forms of periodic step loading relating to time, where p1 = p3
and t0 = t2.

load changes to p2 in the following time. As t ∈ [t0, t0 + t1), if t1 = nT̂2, namely,
the micro-void oscillates periodically n times starting from x(t0) = (1−δ 3)1/3 and
ẋ(t0) = 0, moreover, x(t0 + t1) = (1− δ 3)1/3 and ẋ(t0 + t1) = 0. In succession, as
t ∈ [t0 + t1,T ], the tensile load is p3 (p3 = p1) and the micro-void also oscillates
periodically b times. Further, in the following period T , the process will be the
same as the previous process, in other words, the solutions of Eq.(24) satisfying the
initial conditions (19) in this case are periodic solutions of T . Otherwise, for any
values of t1 6= nT̂2, Eq.(24) has no period solutions of T . This case can be referred
to the example curves shown in figures 5 and 8.

(ii) However, as t0 6= bT̂1, the motion of the micro-void will be very interesting.
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(a) t0 = bT̂1 + T̂1/2

Let T̂3 = 2
∫ xm

x̃0

(
A(z,δ )

E0−V (z,δ ,p2)

)1/2
dz, where E0 is obtained by substituting x(t0) = xm,

ẋ(t0) = 0 and the value of p2 into Eq.(22) and x̃0 is another root obtained by solving
the equation V (x,δ , p2) = E0, this means that T̂3 is the minimal positive period of
the motion of the micro-void starting from x(t0) = xm, ẋ(t0) = 0 and ending at
x(t0 + T̂3) = xm, ẋ(t0 + T̂3) = 0.

Necessary conditions of periodic solutions:
t0 = t2 = bT̂1 + T̂1/2 and t1 = jT̂3 (where j is a positive integer.)

As t0 = bT̂1 + T̂1/2, i.e., the micro-void motions from x(0) = (1−δ 3)1/3, ẋ(0) = 0
and oscillates periodically b times and ends at x(t0) = xm, ẋ(t0) = 0 at time t0,
where xm is obtained by solving the equation V (x,δ , p1) = 0. The tensile load then
changes to p2 in the following time. If it is found that t1 = jT̂3, namely, the micro-
void oscillates periodically j times starting from x(t0) = xm, ẋ(t0) = 0 and ending
at x(t0 + t1) = xm, ẋ(t0 + t1) = 0. As t ∈ [t0 + t1,T ], the tensile load is p1 again
and the radius of the micro-void reduces to the initial value (1− δ 3)1/3 at time
t = 2t0 + t1 and ẋ(2t0 + t1) = 0. This shows that the solutions of Eq.(24) satisfying
the initial conditions (19) are also periodic solutions with the period T . Otherwise,
as t1 6= jT̂3, along with the increasing time, the solutions of Eq.(24) will no longer
be periodic solutions of T .

For the transversely isotropic incompressible neo-Hookean materials, the phase
diagrams of periodic oscillation of the micro-void are shown in figures 10 (a = 0.1)
and 11 (a = 1.5) as p2 takes different values, respectively, where t0 = bT̂1 + T̂1/2
and v = ρ

1/2
0 R2ẋ

(b) bT̂1 < t0 < bT̂1 + T̂1/2

Let T̂4 = 2
∫ x̃m

x̃0

(
A(z,δ )

E1−V (z,δ ,p2)

)1/2
dz , where E1 is obtained by substituting x(t0) = x0,

ẋ(t0) = ẋ0 and the value of p2 into Eq.(22), x̃0 and x̃m are obtained by solving
the equation V (x,δ , p2) = E1, this means that T̂4 is the minimal positive period
of the motion of the micro-void starting from x(t0) = x0, ẋ(t0) = ẋ0 and ending at
x(t0 + T̂4) = x0, ẋ(t0 + T̂4) = ẋ0.

As bT̂1 < t0 < bT̂1 + T̂1/2, this means that the motion of the micro-void starts from
x(0) = (1−δ 3)1/3, ẋ(0) = 0 and then the tensile load changes to p2 as t ∈ [t0, t0 +
t1), and the initial conditions that Eq.(24) satisfies are x(t0) = x0,ẋ(t0) = ẋ0 at the
moment.

Necessary conditions of periodic solutions :
bT̂1 < t0 < bT̂1 + T̂1/2 and t1 = lT̂4 + t̃ (where l is a positive integer.)

If bT̂1 < t0 < bT̂1 + T̂1/2, this implies that ẋ0 > 0 (see the little pentagram in figures
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 Figure 10: Phase trajectories of Eq.(24) satisfying the initial conditions (19) for
a = 0.1, δ = 0.9999 and for the different values of p2/µ .
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 Figure 11: Phase trajectories of Eq.(24) satisfying the initial conditions (19) for
a = 1.5, δ = 0.9999 and for the different values of p2/µ .

12 and 13), the radius of the micro-void will not increase until ẋ = 0, i.e., the cavity
radius attains the local maximum, written as x̃m, and the inequality x̃m < xm (or
x̃m > xm) must hold if p1 > p2 (or p1 < p2). If t1 = lT̂4 + t̃ exactly, where t̃ is

obtained by 2
∫ x̃m

x0

(
A(z,δ )

E−V (z,δ ,p2)

)1/2
dz = t̃, this means that the motion of the micro-

void starts from x(t0) = x0, ẋ(t0) = ẋ0 and oscillates periodically l times and the
values of x(t) and ẋ(t) are respectively given by x0 and −ẋ0 at time t = t0 + t1,
namely, x(t0 + t1) = x0, ẋ(t0 + t1) =−ẋ0 (see the little square in figures 12 and 13).
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The tensile load changes to p1 again as t ∈ [t0 + t1,T ]. Finally, the radius reduces
to the initial value (1− δ 3)1/3 at time T = 2t0 + t1 and ẋ(T ) = 0. Henceforth, the
motion of the micro-void will repeat as above in the following period T = 2t0 + t1.
In other words, the solution of Eq.(24) satisfying the initial conditions (19) is still
a periodic solution with the period T , See the example curves of phase diagrams of
Eq.(24) shown in figure 12 for a = 0.1, δ = 0.9999 and in figure 13 for a = 1.5,
δ = 0.9999. Otherwise, if t1 6= lT̂4 + t̃, along with the increasing time, the solution
of Eq.(24) will no longer be a periodic solution of period T .

(c) bT̂1 + T̂1/2 < t0 < (b+1)T̂1

Necessary conditions of periodic solutions:
bT̂1 + T̂1/2 < t0 = t2 < (b+1)T̂1 and t1 = lT̂4 + T̂4− t̃ (where T̂4 and t̃ are the same
as those in case (b).)

If it is found that t0 > bT̂1 + T̂1/2, similar to the analysis in case (b), the solution
of Eq.(24) satisfying the initial conditions (19) is also a periodic solution with the
period T as t1 = lT̂4 + T̂4 − t̃ is hold exactly. See the example curves of phase
diagrams of Eq.(24) shown in figure 12 for a = 0.1, δ = 0.9999. That is to say,
as t ∈ [0, t0), the micro-void oscillates b times with the initial conditions x(0) =
(1− δ 3)1/3 and ẋ(0) = 0 and ends at x(t0) = x0 and ẋ(t0) = ẋ0, where ẋ0 < 0 at
the moment (see the little square in figure 12); as t ∈ [t0, t0 + t1), the micro-void
oscillates l times and ends at x(t0 + t1) = x0 and ẋ(t0 + t1) = −ẋ0 (see the little
pentagram in figure 12); as t ∈ [t0 + t1,T ), the micro-void oscillates b times and
ends at x(T ) = (1−δ 3)1/3 and ẋ(T ) = 0. In the following period T , the micro-void
will repeat the periodic oscillation. For the case of a = 1.5 the analyses are similar.

(2) t0 6= t2
In this case, the tensile loading forms are slightly different from figure 9. The
existence conditions of periodic solutions of Eq.(24) satisfying the initial conditions
(19) are firstly given by t0 6= bT̂1 and t0 6= bT̂1 + T̂1/2. Moreover, t1 = lT̂4 and
t2 = kT̂1 + T̂1− t0 must also be satisfied, where b, l and k are positive integers.
Otherwise, Eq.(24) has no periodic solutions satisfying the initial conditions (19).
See the example curves of phase diagrams of Eq.(24) shown in figure 12 for a = 0.1,
δ = 0.9999 and in figure 13 for a = 1.5, δ = 0.9999.

(i) bT̂1 < t0 < bT̂1 + T̂1/2,

Necessary conditions of periodic solutions:
bT̂1 < t0 < bT̂1 + T̂1/2, t1 = lT̂4 and t2 = kT̂1 + T̂1− t0
As shown in figures 12 and 13, the motion of the micro-void starts from the initial
state x(0) = (1−δ 3)1/3 and ẋ(0) = 0 under the tensile load p1, then it oscillates b
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times and reaches to the position “pentagram” at time t0, namely, x(t0) = x0,ẋ(t0) =
ẋ0. As t ∈ [t0, t0 +t1), the tensile load is p2. Since t1 = lT̂4, this means that the micro-
void oscillates l times and ends at x(t0 + t1) = x0,ẋ(t0 + t1) = ẋ0. As t ∈ [t0 + t1,T ),
the tensile load is p1 again. Since t2 = kT̂1 + T̂1− t0, this shows that the micro-void
oscillates k times and ends at x(T ) = (1− δ 3)1/3 and ẋ(T ) = 0. In the following
period T , the motion will repeat again.

(ii) bT̂1 + T̂1/2 < t0 < (b+1)T̂1
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Necessary conditions of periodic solutions:
bT̂1 + T̂1/2 < t0 < (b+1)T̂1, t1 = lT̂4 and t2 = kT̂1 + T̂1− t0
As also shown in figures 12 and 13, the micro-void oscillates b times starting from
the initial state (19) and ends at the position “square” at time t0. As t ∈ [t0, t0 + t1),
the micro-void oscillates l times and ends at the position “square” at time t0 + t1
again. As t ∈ [t0 + t1,T ), the micro-void oscillates k times and ends at x(T ) =
(1−δ 3)1/3 and ẋ(T ) = 0. In the following period T , the motion will repeat again.

3.3 Case III: p1 6= p3 and p2 6= p3

(1): t0 = bT̂1, t1 = lT̂2 and t2 = kT̂5 (where b, l and k are positive integers)

Let T̂5 be the minimal positive period of the oscillation of the micro-void under the
constant load p3.

In this case, Eq.(24) of course has a periodic solution satisfying the initial condi-
tions (19) with the period T , see the example curves of phase diagrams of Eq.(24)
shown in figure 5 for a = 0.1, δ = 0.9999 and in figure 8 for a = 1.5, δ = 0.9999.
Otherwise, if one of the three conditions is not valid, the solution of Eq.(24) will
not be periodic.

(2) bT̂1 < t0 < (b+1)T̂1 and t1 6= lT̂4

Enlightening by the analyses in Subsection 3.2, we know that there exists a unique
value of t2 corresponding to the value of p3 (p′3 ≤ p3 ≤ p′′3) such that Eq.(24) has a
periodic solution satisfying the initial conditions (19) with the period T for the any
given t0 6= bT̂1 and t1 6= lT̂4, where p′3 and p′′3 can be obtained by . The example
curves of phase diagrams of Eq.(24) in this case are shown in figure 14 for a = 0.1,
δ = 0.9999.

As shown in figure 14, the micro-void oscillates b times starting from the initial
state x(0) = (1−δ 3)1/3, ẋ(0) = 0 under the tensile load p1 and ends at the position
“pentagram” at time t0. As t ∈ [t0, t0 + t1), the micro-void oscillates l times under
the tensile load p2 and ends at the position “square” at time t0 +t1 again. As t ∈ [t0 +
t1,T ), the micro-void oscillates k times under the tensile load p3 (p′3 ≤ p3 ≤ p′′3)
and ends at x(T ) = (1−δ 3)1/3 and ẋ(T ) = 0. In the following period T , the motion
will repeat again.

Remark. On the one hand, for spheres composed of other known incompressible
hyperelastic materials, such as the modified Varga material, the Ogden material, the
Valanis-landel material, the Gent-Thomas material, etc., the motion forms of the
pre-existing micro-void centered at the sphere under the dynamic surface tensile
loads relating to time are similar to those in this paper. On the other hand, if the
loading forms are periodic loads, the motion forms of the pre-existing micro-void
maybe chaotic.
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a = 0.1, δ = 0.9999 and for t0 6= bT̂1 and t1 6= lT̂4.

4 Conclusions

In this work we study the motion of the micro-void centered at an incompressible
hyperelastic sphere under dynamic loads in the context of nonlinear elastodynam-
ics and examine the effects of some parameters on the periodic oscillation forms of
the micro-void by analyzing the qualitative properties of the solutions of the mo-
tion equation of micro-void in detail. The conclusions obtained in Section 3 show
that the periodic oscillation forms of the micro-void not only have relation with
the constitutive and the structure parameters but the dynamic loads. In particular,
it is proved that the motion of the initial micro-void performs a nonlinear periodic
oscillation for any prescribed constant surface tensile loads and for any prescribed
material parameters, and that the periodic motions of the initial micro-void are quite
different in some special cases, which may be found in Subsection 3.1. Interest-
ingly, using the symmetric principle and the connecting rule of the phase diagrams
of the motion equation of micro-void, we propose the necessary conditions of all
the possible cases of nonlinearly periodic oscillation of the micro-void, which may
be found in Subsections 3.2 and 3.3.
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