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A Novel Element-Free Galerkin Method with Uniform
Background Grid for Extremely Deformed Problems

Wen-Hwa Chen1, Cheng-Te Chi and Ming-Hsiao Lee

Abstract: Based on an incremental formulation of element-free Galerkin method
(EFGM), a highly efficient three-dimensional EFGM analysis procedure is pro-
posed to deal with the structure with extremely large deformation. By this pro-
cedure, a fixed and uniform background grid, part of which coincides with the
background cells employed in the conventional EFGM for numerical integration,
is devised. The background grid is connected by uniformly distributed fictitious
nodes which do not move during loading process even if extremely large defor-
mation occurs. A deformable analysis domain, which is discretized by moving
boundary nodes and interior nodes, is established for describing the deformation
of the structure to be analyzed. When the structure is deformed under loadings,
some fictitious nodes of the background grid outside the analysis domain may be
included into the analysis domain as new interior nodes. Meanwhile, some interior
nodes may be excluded from the analysis domain due to deformation. By a mov-
ing least square (MLS) approximation technique, a mapping procedure can then
be developed for calculating the nodal displacements/ strains/stresses at those new
interior nodes from those of the neighboring influencing boundary/interior nodes
existing in the previous analysis domain. Although the interior nodes existing in
the deformed structure may be different at each load increment, the distribution
of the new interior nodes still remains uniform. Thus, the interpolation functions
within the sub-domain can be determined by enough numbers of neighboring influ-
encing boundary/interior nodes even under extremely large deformation.
To demonstrate the accuracy and efficiency of the new EFGM analysis procedure
developed, two metal forming problems are tackled. Excellent agreement between
the present computed results and those available in the literatures is drawn. The
application of the present technique using uniform background grid for solving ex-
tremely deformed problems can also be extended to other meshless methods.
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ground Grid, Metal Forming.

1 Introduction

Meshless methods have been widely studied in many engineering fields recently.
As compared with finite element analysis, the meshless methods sometimes have
more potential in practical applications, especially for analyzing three-dimensional
complex structures. By the meshless methods, only nodes are adopted without
using elements. In addition, it is easier to create higher-order approximation func-
tions to enhance the accuracy of the solutions, if necessary. A variety of mesh-
less methods have been developed in the literatures, e.g. element-free Galerkin
method (EFGM) (Belytschko et al., 1994), reproducing kernel particle method (Liu
et al., 1995), h-p clouds (Duarte and Oden, 1996a), node-by-node meshless method
(Nagashima, 2000), meshfree poly-cell Galerkin method (Zheng et al., 2008) and
meshless local Petrov-Galerkin (MLPG) method (Atluri and Zhu, 1998; Han and
Atluri, 2004; Atluri, 2004; Sladek et al., 2006; Jarak and Soric, 2008) etc.. Among
these methods, a series of MLPG mixed finite volume (Atluri et al., 2004), col-
location (Atluri et al., 2006; Li and Atluri, 2008) and finite difference (Atluri et
al., 2006) methods show their meshless advantages and efficiency in eliminating
the time-consuming calculation of the second derivatives of the interpolation func-
tions. Unlike the MLPG methods, however, the EFGM needs to construct back-
ground cells for numerical integration. Although the EFGM is not a truly meshless
method, sometimes, it still shows its merits in dealing with various engineering
problems (Chen and Guo, 2001; Chen and Chen, 2005; Chen and Lee, 2005).

While the meshless methods are quite versatile and have been applied to many
engineering fields (Johnson and Owen, 2007; Wu et al., 2007; Liu et al., 2008;
Sladek et al., 2008; Sageresan and Drathi, 2008), some issues are worthy of study
further. For example, although some large deformation problems were examined
by different meshless methods (Chen et al., 1996; Chen et al., 1997; Ren et al.,
2002; Xiong et al., 2005; Han et al, 2005; Han et al., 2006; Liu et al., 2006 ;Gu
et al., 2007; Rossi and Alves, 2007; Wen and Hon, 2007; Wong and Shie, 2008;
Yuan et al., 2008), very little work was devoted to three-dimensional cases with
extremely large deformation.

To solve these problems, the adaptive approach, which can modulate the solution
accuracy of the analysis model by error estimation, may be a promising choice.
Several adaptive meshless approaches are proposed in the literatures. Duarte and
Oden (1996b) increased the node density in the regions requiring adaptivity and
enhanced the degrees of polynomials to modify the accuracy of the approxima-
tion function. Similar concepts were adopted by Liu and Jun (1998), Haussler-
Combe and Korn (1998), Nagashima (2000), Rabczuk and Belytschko (2005) and
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Li and Lee (2006). Jun and Im (2000) raised the density of the background cells
to improve the accuracy of numerical integration when the nodes were intensely
crowded. Nevertheless, in addition to increase the computing cost, those adap-
tive meshless approaches are inherently insufficient for solving the problems with
distorted nodal distribution due to extremely large deformation.

Based on an incremental formulation for the conventional EFGM, the objective of
this work is to develop a new EFGM analysis procedure to deal with the three-
dimensional problems with extremely large deformation. By this procedure, a
background grid is constructed and discretized by uniformly distributed fictitious
nodes, part of which coincides with the background cells adopted in the conven-
tional EFGM for numerical integration. The deformable analysis domain which is
described by the moving boundary nodes and the interior nodes for depicting the
deformation of the structure is embedded in the background grid. For each load
increment, those fictitious nodes of the background grid do not move with the anal-
ysis domain. As the structure is deformed, the analysis domain may include some
fictitious nodes of the background grid outside the analysis domain as new inte-
rior nodes or exclude some interior nodes from the analysis domain. Those nodal
displacements/strains/stresses of the new interior nodes within the analysis domain
are determined from those of the neighboring influencing boundary/interior nodes
within the previous analysis domain by a MLS approximation based data mapping
procedure. Consequently, the proposed EFGM analysis procedure can not only
guarantee the scattering of the new interior nodes enclosed by the boundary of the
structure to be uniform, but also provide enough numbers of neighboring influenc-
ing boundary/interior nodes to calculate the interpolation functions required in the
sub-domain.

Two metal forming problems are analyzed to display the efficiency and versatility
of the method developed. The present computed results agree very well with refer-
enced solutions and the comparison with ANSYS® finite element analysis program
is also shown.

2 Incremental Formulation of Element-Free Galerkin Method

As displayed in Fig.1, a three-dimensional structure Ω
(N) enclosed by boundary

Γ
(N) at C(N) state is considered. As the deformation is extremely large, the nonlin-

ear effects due to geometrical and material nonlinearities need to be taken into ac-
count. To describe the geometrical and material nonlinear effects appropriately, an
incremental approach based on an Updated Lagrangian Formulation (Bathe, 1996)
is adopted in this work.

As well-documented in literature (Chen and Yeh, 1988; Chen and Tasi, 1989),
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Figure 1: An incremental three-dimensional EFGM analysis model

assuming the nodal displacements, stresses and strains from C(0) state to C(N) state
are already known, the incremental functional ∆Π from C(N) state to C(N+1) state
can be formulated based on the principle of minimum total potential energy as
follows (neglecting the body force term):

∆Π(∆ui) =∫
Ω(N)

(

1
2

Ei jkl∆ei j∆ekl +
1
2

τ
(N)
i j ∆uk,i∆uk, j)dΩ−∫

Γ
(N)
t

∆t̄i∆ui dΓ

−[∫
Γ
(N)
t

t̄(N)i ∆ui dΓ−∫
Γ(N)

τ
(N)
i j ∆ei jdΩ]

=min .

(1)

Since the incremental displacement ∆ui from C(N) state to C(N+1) state is assumed
small, the linearized incremental Green-Lagrangian strain and its corresponding
incremental 2nd Piola-Kirchhoff stress can be viewed as ∆ei j and Ei jkl∆ekl . Ei jkl

represents the current constitutive property tensor. τ
(N)
i j is the Cauchy (true) stress

at C(N) state. t̄(N)i and ∆t̄i are the prescribed surface traction acting on the traction
boundary Γ

(N)
t at C(N) state and its corresponding increment from C(N) state to

C(N+1) state, respectively. When the material involves elasto-plastic behaviors, the
von Mises yield criterion is utilized to determine whether the material point of
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the structure is yielded or not. Once the material point is yielded, the elasto-plastic
constitutive property tensor Ei jkl derived from the associated flow rule and isotropic
stain hardening rule (Chen and Han, 1995) is used. The last two terms expressed in
the bracket [ ] in Eqn. (1) serve as an equilibrium check and will vanish when C(N)

state is in equilibrium.

By formulating the EFGM analysis procedure in matrix representation, as seen in
Fig. 1, the incremental displacement vector {∆u} of any point x within the analysis
domain from C(N) state to C(N+1) state can be described by the incremental nodal
displacement vector {∆q} of neighboring nodes within the sub-domain Ωx which
will influence point x (Zhu and Atluri, 1998), say,

{∆u} = [Ψ]{∆q} in Ωx (2)

[Ψ] is the interpolation function matrix for the incremental displacement vector
{∆u} within the sub-domain Ωx. It is noted that the sub-domain Ωx is a collection
of several spherical supports of the neighboring nodes (Zhu and Atluri, 1998) which
influence point x. Because there is no element connectivity in the EFGM, the in-
cremental displacement vector {∆u} of any point x is established through a moving
least square (MLS) approximation (Belytschko et al., 1994) within the sub-domain
Ωx. By this MLS approximation, the established incremental displacement vector
{∆u} is composed of a complete monomial basis of appropriate order and an unde-
termined coefficient vector. The undetermined coefficient vector can be obtained by
minimizing the sum of a weighted, discrete L2 norm of the difference between the
established incremental displacement vector {∆u} and the incremental nodal dis-
placement vector {∆q} at each neighboring node within the sub-domain Ωx which
influences point x. The established incremental displacement vector {∆u} can thus
be computed and expressed in terms of the corresponding incremental nodal dis-
placement vector {∆q} of all neighboring nodes within the sub-domain Ωx which
influence point x, and the explicit form of the interpolation function matrix [Ψ] in
Eqn. (2) can be derived thereafter.

The linearized incremental Green-Lagrangian strain can then be derived from the
incremental nodal displacement vector {∆q} as

{∆e} = [BL]{∆q} . (3)

Following similar procedures as mentioned above, the derivation for the incre-
mental displacement vector {∆u} and the linearized incremental Green-Lagrangian
strain of any point x within the sub-domain Ωx can be extended to the entire anal-
ysis domain from C(N) state to C(N+1) state. Substituting Eqns. (2) and (3) into
Eqn. (1) and applying the stationary condition of ∆Π with respect to the incremen-
tal nodal displacement vector of all the nodes within the analysis domain {∆q∗}T ,
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say,

∂ ∆Π

∂ {∆q∗}T = {0} , (4)

the incremental governing equations of the analysis domain from C(N) state to
C(N+1) state can be written as

([KM]+ [KG]){∆q∗} = {∆Q}+{∆Q∗
} . (5)

In the above, [KM] and [KG] refer to the incremental stiffness matrix of the analysis
domain at C(N) state, which account for the material nonlinearity and geometric
nonlinearity due to extremely large deformation, respectively. [KM] and [KG] are
defined as:

[KM] = ∫
Ω(N)

[BL]
T
[E][BL]dΩ, (6)

and

[KG] = ∫
Ω(N)

[BNL]
T
[τ
(N)

][BNL]dΩ. (7)

[BNL] denotes the transformation matrix derived from the incremental nonlinear
strain-displacement relations and [τ

(N)
] is the Cauchy stress matrix at C(N) state.

Besides, {∆Q} and {∆Q∗
} in Eqn. (5) represent the incremental external load

vector from C(N) state to C(N+1) state and the equilibrium check vector at C(N)

state, respectively, and can be shown as:

{∆Q} = ∫
Γ
(N)
t

[Ψ]
T
{∆t̄}dΓ, (8)

and

{∆Q∗
} = ∫

Γ
(N)
t

[Ψ]
T
{t̄(N)}dΓ−∫

Γ(N)
[BL]

T
{τ
(N)

}dΩ, (9)

in which {τ
(N)

} denotes the Cauchy stress vector at C(N) state.

To carry out the numerical integration of respective matrix in Eqn. (5) by the con-
ventional EFGM, as shown in Fig. 1, the uniform background cells employed by
Belytschko et al. (1994) for numerical integration through summing up the integral
values from all the Gaussian quadrature points existing in the cells enclosed by the
boundary of the analysis domain are also adopted.
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3 Element-Free Galerkin Method with Uniform Background Grid

Extremely large deformation of structure may result in severely distorted element
meshes in the finite element analysis. For meshless methods, the serious problem
of distorted nodal distribution due to extremely large deformation still exists. To
overcome this, a novel EFGM analysis procedure with uniform background grid is
therefore developed herein.

The uniform background grid which coincides with the background cells used for
numerical integration in the conventional EFGM analysis for the deformable anal-
ysis domain is connected by uniformly distributed fictitious nodes which remain
unchanged during the loading process. By the novel EFGM analysis procedure de-
veloped, the three-dimensional initial deformable analysis domain Ω

(0) enclosed
by its boundary Γ

(0) can be discretized by the initial interior nodes and moving
boundary nodes, respectively. The initial interior nodes are part of the fixed fic-
titious nodes scattering on the uniform background grid enclosed by the initial
boundary Γ

(0) at C(0) state. As an incremental loading from C(0) state to C(1)

state is applied, for example, the moving boundary nodes descretizing the bound-
ary Γ

(0) of the initial analysis domain Ω
(0) may move in the background grid due to

deformation and describe the deformed boundary Γ
(1) of the analysis domain Ω

(1)

accurately. When the moving boundary nodes change their locations, the region of
the analysis domain Ω

(1) will be updated thereafter, but the updated interior nodes
within the analysis domain Ω

(1) are still composed of relevant fixed fictitious nodes
existing in the uniform background grid. Similar loading and deformation can be
performed from C(1), C(2), ...C(N−1) states till C(N) state.

As depicted in Fig. 2, while the incremental loading from C(N) state to C(N+1)

state is applied, the boundary Γ
(N) enclosing the deformable analysis domain Ω

(N)

can be replaced by the updated boundary Γ
(N+1) accompanying with the updated

analysis domain Ω
(N+1). Some fictitious nodes (›) in the background grid outside

the analysis domain Ω
(N) may be included into the updated analysis domain Ω

(N+1)

by the updated boundary Γ
(N+1) as the new interior nodes (•). Meanwhile, some

old interior nodes (•) within the analysis domain Ω
(N) may be excluded from

the updated analysis domain Ω
(N+1) and become as fictitious nodes (›) again. It

is noted that no matter the new interior nodes included or the old interior nodes
remained within the updated analysis domain Ω

(N+1), all coincide with the fixed
fictitious nodes which distribute uniformly in the background grid.

Although the interior nodes within the deformable analysis domain to be analyzed
at any state always distribute uniformly in the background grid, the interior nodes
involved are different in each load increment. Hence, to determine the nodal vari-
ables at the new interior nodes accurately, a rigorous data mapping procedure is
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Figure 2: The novel EFGM analysis with uniform background grid
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necessary. As shown in Fig. 3, assume p is a new interior node included into
the analysis domain Ω

(N+1) from C(N) to C(N+1) state. Its sub-domain contains
n spherical supports of neighboring influencing boundary nodes (△)/interior nodes
(▲) in the previous analysis domain Ω

(N), of which their nodal displacements,
strains and stresses are already solved at C(N) state. The undetermined nodal vari-
ables of the new interior node p can thus be interpolated by those n neighboring
influencing nodes within the sub-domain through the MLS approximation, as de-
scribed in the above section. Similarly, the undetermined nodal variables at other
new interior nodes within the analysis domain Ω

(N+1) from C(N) to C(N+1) state
can be computed in the same way. As a result, the incremental analysis from C(N)

state to C(N+1) state is achieved. It is worthwhile to mention that the size of the
load increment applied and the density of the background grid taken for the anal-
ysis will affect the accuracy of data mapping. If the load increment is taken large,
the updated boundary of the analysis domain for next load step may behave severe
movement and result in insufficient numbers of neighboring influencing bound-
ary/interior nodes existing in the previous analysis domain for the data mapping at
some new interior nodes.

To implement the proposed EFGM analysis procedure, a uniform background grid,
part of which coincides with the background cells, need be first constructed. As the
analysis domain Ω

(N) and its boundary Γ
(N) are known, for example, the fictitious

nodes of the uniform background grid involved as the interior nodes for describ-
ing the analysis domain Ω

(N) and the moving boundary nodes discretized for the
boundary Γ

(N) can be determined. The incremental stiffness matrix and incre-
mental external load vector from C(N) to C(N+1) state, as stated by Eqns. (6)–(8),
are then calculated. The incremental nodal displacements and also the incremental
nodal strains and stresses from C(N) state to C(N+1) state can thus be solved through
Eqn. (5). Hence, the nodal variables at the interior nodes for the analysis domain
Ω
(N) and those on the moving boundary nodes for the boundary Γ

(N) from C(N) to
C(N+1) state are obtained. After the nodal variables at the moving boundary nodes
for the boundary Γ

(N) from C(N) to C(N+1) state are solved, the deformed boundary
Γ
(N+1) of the updated analysis domain Ω

(N+1) can be defined in the background
grid. For the next load step from C(N+1) state to C(N+2) state, the updated analysis
domain Ω

(N+1) and the new interior nodes are thus determined by the boundary
Γ
(N+1). The data mapping procedure for the new interior nodes based on the MLS

approximation is again performed accordingly. Since the incremental stiffness ma-
trix and the equilibrium check vector expressed in Eqn. (9) are recomputed and
applied for each load increment, the present solutions converge satisfactorily. The
tolerance of equilibrium residual for convergence criterion is selected as 1% in this
work.
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As mentioned above, since the interior nodes are composed of the fictitious nodes
which distribute uniformly in the background grid, the distribution quality of the
interior nodes within the analysis domain at any state is guaranteed even when the
structure deforms severely. In addition, sufficient numbers of neighboring influ-
encing boundary/interior nodes are generally devoted to calculate the interpolation
function matrix within the sub-domain provided appropriate size of load increment
applied. Moreover, since part of the uniform background grid coincides with the
background cells constructed in the analysis domain, the proposed EFGM analysis
procedure not only has the inherent advantages of the conventional EFGM but also
enriches its ability in dealing with the problems with extremely large deformation.
Although the concept of uniform background is implemented in the EFGM anal-
ysis procedure, it can also be extended without much difficulty to other meshless
methods, such as MLPG method.

4 Results and Discussions

To demonstrate the capability of the novel EFGM analysis procedure developed
herein, two severely deformed metal forming problems are analyzed. The upsetting
of a cylinder between two large rigid punches is first concerned. The upsetting of
the same cylinder is then performed by the rigid punches having the same cross-
section as that of the cylinder. The radius and length of the undeformed cylinder
are 10mm and 30mm, respectively. The material of the cylinder adopted is T300
series stainless steel and its properties are known as follows: Young’s modulus
E=200Gpa, Poisson’s ratio ν=0.3, ultimate strength 2.14Gpa and 88% elongation at
break. The bilinear isotropic hardening with yield strength σy=0.7Gpa and elasto-
plastic tangent modulus 0.3Gpa is found.

4.1 Upsetting by Large Punches

The first example to be solved is shown in Fig. 4. The cross-section of the rigid
punches employed is much larger than that of the initial cylinder. Two frictional
conditions at the interfaces are considered, respectively: one is frictionless and the
other is sticking. Due to the axi-symmetry of geometry and boundary conditions,
it is sufficient to deal with a small sector of the cylinder. However, to demonstrate
the three-dimensional computation capability of this work, the conventional EFGM
analysis model for one-eighth of the cylinder using 258 nodes is displayed in Fig.5.
By contrast, the three-dimensional EFGM analysis model with the background grid
at C(N) state in frictionless condition is illustrated in Fig.6, including 104 interior
nodes and 158 moving boundary nodes. It is noted that the same number of moving
boundary nodes are employed during the whole loading process, yet the number
of interior nodes adopted within the cylinder may be different accompanying the
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deformation of the cylinder. By applying appropriate fixed boundary conditions at
the nodes in the directions perpendicular to the symmetric surfaces, a displacement
control with reduction increment 4% for each load step is applied on those nodes
locating at the top surface of the cylinder in both the conventional EFGM and the
present novel EFGM analysis. The total reaction force P at the top surface of the
cylinder can thus be calculated. Notice that the total reduction of the cylinder δ is
defined as the ratio of the decrease of the length of the cylinder to the initial length
of the cylinder.

 
 
 
 
 
 
 

 
 

Fig.4 The upsetting of a cylinder (exampleⅠ) 

frictionless or
sticking 

P

P

 

Figure 4: The upsetting of a cylinder (example I)

For the frictionless case, the nodes at the top surface of the cylinder move with the
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Fig.5 The three-dimensional conventional EFGM analysis model for the cylinder 
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Figure 5: The three-dimensional conventional EFGM analysis model for the cylin-
der

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig.6 The three-dimensional EFGM analysis model with background grid for the 
cylinder (frictionless) 
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Figure 6: The three-dimensional EFGM analysis model with background grid for
the cylinder (frictionless)
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Fig.7 The reaction force vs. the total reduction (frictionless) 
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Figure 7: The reaction force vs. the total reduction (frictionless)
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Figure 8: The deformed shape of the cylinder (δ=80%, frictionless)
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rigid punch along the longitudinal direction of the cylinder, but freely slide in radial
direction. The relationship between the calculated total reaction force P and the to-
tal reduction of the cylinder δ is shown in Fig.7. Both the results computed by the
conventional EFGM and the present novel EFGM analysis procedures are in good
agreement with the finite element solutions by Yeh (1991) using a rigorous contact
mechanics analysis as the total reduction less than 40%. As the reduction contin-
uously increases, the present novel EFGM analysis procedure still performs very
well even over 80% reduction of the cylinder; however, the conventional EFGM di-
verges at 64% of reduction under the same tolerance of equilibrium residual taken.
The deformed shape of the cylinder at 80% of reduction examined by the proposed
EFGM analysis procedure is drawn in Fig.8. The maximum von Mises stress is
computed as 1.18Gpa, which is under the ultimate strength 2.14Gpa. It is noted that
the number of the moving boundary nodes still remains 158, but none of interior
nodes within the deformed cylinder can be found. Therefore, to evaluate the defor-
mation beyond 80% reduction of the cylinder by the present novel EFGM analysis
model, sufficient number of interior nodes is imperative and the background grid
adopted needs be further refined.
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Fig.9 The reaction force vs. the total reduction (sticking) 
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Figure 9: The reaction force vs. the total reduction (sticking)



A Novel Element-Free Galerkin Method 189

 
 
 

(a) undeformed (b) δ=40%

(c) δ=60% (d) δ=72%

undeformed

deformed

Figure 10: The deformation progress of the cylinder (sticking)

For sticking case, the nodes at the top surface of the cylinder also have the same dis-
placements as the rigid punch in longitudinal direction of the cylinder but are com-
pletely fixed in radial direction. The relation of the computed total reaction force
P versus reduction of the cylinder δ is illustrated in Fig.9. The results calculated
by the novel EFGM analysis procedures are also in accordance with those by Yeh
(1991) while the total reduction of the cylinder δ is smaller than 40%. However,
the solutions by the conventional EFGM are stiffer than those by the present novel
EFGM analysis procedure and the difference of the solutions analyzed by these two
EFGM analysis models is about 5% at 40% of reduction. As the reduction of the
cylinder increases further, the solutions by the conventional EFGM procedure will
fail as the reduction reaches 64%, but the proposed EFGM analysis procedure still
works well. The difference of the solutions calculated by these two EFGM analysis
models is about 11% at 64% of reduction. The deformed progress of the cylinder
affected by the sticking condition at the interface is worthy of observation. The
side views of the deformation progress for a quarter of the cylinder under different
reductions by the present novel EFGM analysis procedure are shown in Fig. 10,
respectively. As displayed in Fig. 10, the top surface of the cylinder sticks with the
rigid punch during the whole loading process. However, as the cylinder expands
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in radial direction with the increase of the reduction continuously, the outer sur-
face of the cylinder will gradually approach and attach to the bottom surface of the
rigid punch, which can be demonstrated by the moving boundary nodes ▲ and ∎ as
shown in Fig. 10. In addition, as shown in Fig. 9, the relation between the reaction
force P and the total reduction δ is expected to be stiffer after contact happens. The
maximum von Mises stress occurred at the center of the deformed cylinder is about
1.46Gpa at 72% of reduction. The number of the moving boundary nodes and the
interior nodes within the deformed cylinder are 158 and 90, respectively. It is noted
that, although there are a few of interior nodes left within the deformed cylinder for
computation, the sticking condition at the interface between the cylinder and rigid
punch will cause distorted distribution for the moving boundary nodes. Since the
interior nodes chosen from the uniform background grid still distribute uniformly,
the computation error will be dominated by the moving boundary nodes. Hence, if
the density of the background grid chosen is raised to supply more uniform inte-
rior nodes for minimizing the effect resulted from the moving boundary nodes, the
calculated results can be further improved even if the reduction is beyond 72%.

4.2 Upsetting by Small Punches

In the second example, the same upsetting problem is studied except the cross-
section of the rigid punches is taken as that of the undeformed cylinder with radius
10mm. The undeformed cylinder and rigid punches are displayed in Fig.11 and
both frictionless and frictional (µ=0.3) conditions at the interfaces between the
cylinder and rigid punches are investigated. Both the conventional EFGM and the
proposed novel EFGM analysis procedures are again performed with the same re-
duction increment 4%. To demonstrate the validity of the analyses, the results com-
puted by ANSYS® finite element program, using 135 twenty-node isoparametric
elements and 785 nodes, are also presented.

For frictionless case, the nodes of the cylinder at the interface between the cylinder
and the rigid punches move along with the rigid punch in longitudinal direction
while no constraints are provided in radial direction. Because the cross-sections
of the rigid punches and the undeformed cylinder are the same, any reduction of
the cylinder will result in not only the radial expansion of the cylinder, but also
the separation of some nodes at the interface initially located near the edge of the
cylinder. The metal flow-like warp by ANSYS® finite element analysis is drawn in
Fig.12. Fig. 13 illustrates the relation between the total reaction force P calculated
and the total reduction of the cylinder δ by various analysis models. As compared
with the conventional EFGM analysis, the results evaluated by the proposed EFGM
analysis procedure with background grid and ANSYS® finite element analysis ap-
pear to be more agreeable. However, the data calculated by the ANSYS® finite
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Fig.11 The upsetting of a cylinder (exampleⅡ) 
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Figure 12: The deformed shape of the cylinder with µ=0 by ANSYS® (δ=80%)
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Fig.13 The reaction force vs. the total reduction (μ=0) 
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Figure 13: The reaction force vs. the total reduction (µ=0)
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Fig.14 The deformed shapes of the cylinder by two EFGM models (μ=0) 
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Figure 14: The deformed shapes of the cylinder by two EFGM models (µ=0)
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Fig.15 The reaction force vs. the total reduction (μ=0.3) 
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Figure 15: The reaction force vs. the total reduction (µ=0.3)

element model display unreasonable fluctuations after about 40% reduction. These
could be due to the unreasonable penetration of rigid punch into the top surface
of the cylinder during the contact simulation, as illustrated in Fig. 12. It is worth-
while to mention that the conventional EFGM without using the background grid
diverges as the reduction reaching 64% and obtains about 13% stiffer solutions. By
contrast, the proposed EFGM analysis with the background grid can achieve till
80% of reduction. The deformed shapes of the cylinder at different reductions by
those two EFGM analysis models are drawn in Fig.14, respectively. As observed
in Fig.14, the metal flow-like warp due to longitudinal compression takes place in
each model. The maximum von Mises stresses of the cylinder are found to be 1.06
Gpa and 1.24Gpa, respectively.

When the friction at the interface (µ=0.3) is concerned, the movement of the nodes
at the interface becomes more complicated. The nodes at the interface move in
company with the rigid punches in longitudinal direction, but they can also slide in
radial direction while the nodal tangential contact forces exceed their corresponding
maximum static friction forces. The relationship between the total reaction force
P and the total reduction of the cylinder δ by various analysis models is depicted
in Fig.15. Again, as observed in Fig.15, the solution analyzed by ANSYS® finite
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Fig.16 The deformed shapes of the cylinder by two EFGM models (μ=0.3) 
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Figure 16: The deformed shapes of the cylinder by two EFGM models (µ=0.3)

element model also oscillates after around 35% of reduction. Moreover, the results
calculated by the present novel EFGM analysis procedure are commonly in line
with those by ANSYS® finite element analysis but more stable. The metal flow-
like warp also occurs in this case. The conventional EFGM without employing the
background grid fails while the reduction after about 64%. In addition, the solution
calculated by the conventional EFGM is about 12% stiffer than that by the present
novel EFGM analysis procedure. The deformed shape and nodal distribution of the
cylinder are displayed in Fig.16 (a) and the maximum von Mises stress is 1.19Gpa.
The nodal distribution of the deformed cylinder, containing 158 moving boundary
nodes and 102 interior nodes, at 76% of reduction examined by the proposed EFGM
analysis procedure is presented in Fig.16 (b) and the maximum von Mises stress is
up to 1.34GPa.

It is noted that, although the metal flow-like warp occurs in both frictionless and
frictional cases, their deformed shapes are somewhat different from each other. As
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observed in Fig.16, as expected, since the radial expansion of the cylinder at the
interface is resisted by the opponent friction force due to friction, the metal flow-
like warp near the edge of the cylinder has a sharper slant.

5 Concluding Remarks

A novel three-dimensional EFGM analysis procedure has been successfully de-
veloped to solve the truly large deformation problems, such as severely deformed
metal forming problems. The proposed EFGM analysis procedure employs a fixed
and uniform background grid connecting a set of fictitious nodes. Part of the uni-
form background grid is overlapped with the background cells employed in the
conventional EFGM for numerical integration within the analysis domain. The
interior nodal distribution thus remains uniform regardless of any severe deforma-
tion. Moreover, once suitable size of load increment is selected, sufficient numbers
of neighboring influencing boundary/interior nodes can be provided for calculating
the interpolation functions within the sub-domain even under extremely large de-
formation. As compared with the conventional EFGM and ANSYS® finite element
analyses, in addition to the intrinsic advantages of the conventional EFGM, the
present proposed EFGM analysis procedure demonstrates its excellent capability
in dealing with two metal forming problems solved in this work.

The method developed with a fixed and uniform background grid can also be ap-
plied to other meshless methods. However, to further explore high stress concen-
tration problems efficiently, an adaptive scheme based on error estimation incorpo-
rated with this novel EFGM analysis procedure is imperative and will be presented
in a subsequent report.
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