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Nonlinear Micro Circular Plate Analysis Using Hybrid
Differential Transformation / Finite Difference Method

Cha’o-Kuang Chen1,2, Hsin-Yi Lai1, Chin-Chia Liu1

Abstract: Electrostatically-actuated micro circular plates are used in many micro-
electro-mechanical systems (MEMS) devices nowadays such as micro pumps and
optical switches. However, the dynamic behavior of these circular plates is not eas-
ily analyzed using traditional analytic methods due to the complexity of the inter-
actions between the electrostatic coupling effects. Accordingly, this study develops
an efficient computational scheme in which the nonlinear governing equation of
the coupled electrostatic force acting on the micro circular plate is solved using a
hybrid differential transformation / finite difference approximation method. In de-
riving the dynamic equation of motion of the micro plate, explicit account is taken
of both the residual stress within the plate and the uniform hydrostatic pressure
acting on its upper surface. It is shown that the pull-in voltage increases with an
increasing value of the residual stress, but reduces with an increasing hydrostatic
pressure. The predicted values of the pull-in voltage are found to deviate by no
more than 1.75% from those presented in the literature. Overall, the results pre-
sented in this study demonstrate that the differential transformation / finite differ-
ence method provides a computationally efficient and precise means of obtaining
detailed insights into the nonlinear behavior of the micro circular plates used in
many of today’s MEMS-based actuator systems.

Keywords: Pull-in voltage; Micro circular plate; Electrostatic actuator; Hybrid
Method; Differential Transformation

1 Introduction

In recent years, micro-electro-mechanical systems (MEMS) devices have been in-
creasingly deployed for a wide range of applications in the pharmaceutical, medi-
cal, food-processing, fluidic control, transportation, and telecommunications fields.
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Typical applications include micro-scale actuators for use in the aerospace and
medical fields [Son, Lal, Hubbard and Olsen (2001)], electrostatic micro-mirror
actuators for fiber-optic switching systems [M. Hu, H. Du, S. Ling, B. Liu and G.
Lau (2005)], thermo-pneumatic micro-pumps for fluid supply systems in the bi-
ological field [Bustgens, Bacher, Menz and Schomburg (1994)], and so on. The
actuation systems used in today’s MEMS devices can be broadly classified as ei-
ther electrostatic [Ye and Mukherjee (2000)], thermal, piezoelectric [Rezazadeh,
Tahmasebi and Zubstov (2006)] or electromagnetic [Luharuka, LeBlanc, Bintoro,
Berthelot and Hesketh (2008)]. Of these various techniques, electrostatic actuation
schemes are commonly preferred since they are easily fabricated using established
surface micromachining techniques, have a rapid response and a low power con-
sumption. In practice, the actuation effect in such schemes is created by generating
an electrostatic force between the stationary and the moving parts of the actuator
through the application of an external voltage. However, in implementing such a
system, great care must be taken in specifying the the device parameters and operat-
ing conditions in order to prevent the so-called “pull-in phenomenon”, in which the
attractive electrostatic force induced by the external voltage exceeds the restoring
force developed within the deflected membrane and therefore causes it to collapse
and to make momentary contact with the lower electrode [Osterberg and Senturia
(1997)].

The pull-in phenomenon has attracted extensive attention in the literature. For ex-
ample, Bettini [Bettini, Brusa, Munteanu, Specogna and Trevisan (2008)] analyzed
the nonlinear pull-in behavior of electrostatic microactuators using sequential and
non-incremental finite element (FE) methods and a discrete geometric approach,
respectively. Duan [Duan and Wan (2007)] performed one- and two-dimensional
analyses of the pull-in behavior of the thin film within a RF switch. Wang [Wang,
Li and Lam (2007)] presented a meshless point-weighted least-squares (PWLS)
method for the analysis of MEMS devices, and demonstrated its use in analyzing
the pull-in phenomenon in typical electrostatically-actuated devices.

In most electrostatically-actuated MEMS devices, the deformable, upper electrode
has the form of a thin circular plate. In this paper, the micro circular plate actuation
system is modeled as an equivalent parallel plate capacitor with clamped edges.
In modeling the dynamic behavior of the actuation system, it is assumed that that
a linear uniform hydrostatic pressure acts on the upper surface of the plate and a
nonlinear electrostatic force induced by an externally-applied voltage acts between
the lower surface of the plate and the fixed substrate (see Fig. 1). In theory, the
dynamics of the micro circular plate can be analyzed using three different actuation
models. For example, the effects of the hydrostatic pressure in creating an initial
displacement of the plate can first be considered, and an electrostatic force then
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applied to drive the plate toward the lower substrate. Alternatively, the hydrostatic
pressure can be regarded as an additional actuation force which acts on the circular
plate once it has already been deflected to a certain initial position under the effects
of an initial electrostatic force. Finally, an assumption can be made that the hydro-
static pressure and the electrostatic force act in concert in driving the circular plate
toward the lower electrode [Nabian, Rezazadeh, Haddad-derafshi and Tahmasebi
(2008)]. Reviewing the literature, it is found that previous investigations gener-
ally neglected the effects of the hydrostatic pressure and the residual stress within
the actuating membrane when analyzing the pull-in phenomenon in MEMS-based
actuator systems. The current study addresses this omission by performing a sys-
tematic investigation into the combined effects on the pull-in characteristics of the
actuator system of both the hydrostatic pressure acting on the upper surface of the
micro circular plate and the residual stress within the plate.

Generally speaking, the dynamic behavior of the nonlinear micro electrostatic ac-
tuators is not easily analyzed using traditional methods due to the complexity of
the interactions between the electrostatic coupling effects. Accordingly, Han [Han,
Rajendran and Atluri (2005)] proposed a Meshless Local Petrov-Galerkin (MLPG)
method for solving nonlinear dynamic problems with large deformation and rota-
tions. Lee [Lee, Lin, Lee, Lu, and Liu (2008)] utilized a method based on shifting
functions to obtain exact solutions for the large static deflections of beams with
nonlinear boundary conditions. Wen [Wen and Hon (2007)] performed meshless
computations to analyze the geometrical nonlinearity of Reissner-Mindlin plates.

Differential transformation theory was originally proposed by Zhou in 1986 as a
means of solving linear and nonlinear initial value problems in the circuit analysis
field [Zhou (1986)]. In more recent years, researchers have applied this theory to
the solution of general initial value problems in the mechanical engineering domain
[Chiou and Tzeng (1996)]. For example, Chen [Chen and Ho (1996,1998)] uti-
lized differential transformation theory to solve general eigenvalue problems and
to analyze the free vibration response of Timoshenko beams. Yu [Yu and Chen
(1998,1999)] combined differential transformation theory with the finite difference
approximation method to solve the Blasius equation and the nonlinear transient
conduction-convection-radiation heat transfer annular fin equation. More recently,
Kuo [Kuo and Chen (2003)] employed a hybrid differential transformation / finite
difference method to analyze the nonlinear Burgers’ equation for the high Reynolds
number regime.

In the current study, the hybrid differential transformation / finite difference method
is employed to analyze the pull-in phenomenon of the electrostatically-actuated mi-
cro circular plate system shown in Fig. 1. In formulating the nonlinear governing
equation of the circular plate, explicit account is taken of both the hydrostatic pres-
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sure and the residual stress. The validity of the proposed approach is verified by
comparing the numerical results obtained for the pull-in voltage with those ob-
tained using two different methodologies presented in the literature. namely the
finite difference method (FDM) presented in [Soleymani, Sadeghian, Tahmasebi
and Rezazadeh (2006)] and the CoSolve simulation and closed-form model pre-
sented in [Osterberg (1995)]).

 

Figure 1: Schematic illustration of micro circular plate actuator system.
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2 Differential Transformation Theory

The basic principles of differential transformation theory can be summarized as
follows:

Let y(t) be an analytic function in the time domain T . The differential transforma-
tion of y at time t = t0 is given by

Y (k; t0) = M(k)
(

dk

dtk (q(t)y(t))
)

t=t0

, k ∈ K, (1)

where k belongs to a set of nonnegative integers which collectively comprise the K
domain, Y (k; t0) is the transformed function in the transformation domain, and is
known as the spectrum of y(t) at t = t0 in the K domain. M(k) is a weighting factor,
and q(t) is a kernel corresponding to y(t). M(k) and q(t) are not both equal to zero
and q(t) is an analytic function in the time domain T .

The differential inverse transformation of Y (k; t0) has the form

y(t) =
1

q(t)

∞

∑
k=0

(t− t0)k

k!
Y (k; t0)
M(k)

, t ∈ T , (2)

Let M(k) and q(t) be given by M(k) = Hk

k! and q(t) = 1, respectively, where H is
the time interval. At time t0 = 0, Eq. (2) therefore becomes

Y (k) =
Hk

k!

[
dky(t)

dtk

]
t=0

, k ∈ K, (3)

The differential inverse transformation of Y (k) is given by

y(t) =
∞

∑
k=0

( t
H

)k
Y (k), t ∈ T, (4)

Substituting Eq. (3) into Eq. (4) gives

y(t) =
∞

∑
k=0

tk

k!

[
dky(t)

dtk

]
t=0

, t ∈ T, (5)

Equation (5) has the form of a Taylor series expansion. Therefore, the basic oper-
ating properties of the differential transform are as follows:

(a) Linearity Operation

T [αy(t)+β z(t)] = αY (k)+βZ(k), (6)
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where T denotes the differential transformation operation, and α and β are any real
numbers.

(b) Convolution Operation

T [y(t)z(t)] = Y (k)⊗Z(k) =
k

∑
`=0

Y (`)Z(k− `), (7)

T [ym(t)] = kY (0)Y m(k) =
k

∑
`=1

[(m+1)`]Y (`)Y m(k− `), m ∈ N, (8)

where T denotes the differential transformation operation and ⊗ is a convolution
operation.

(c) Differential Operation

T
[

dny(t)
dtn

]
=

(k +n)!
k!Hn Y (k +n), (9)

where T denotes the differential transformation operation and n is the order of
differentiation [Yu and Chen (1998); Yu and Chen (1999); Kuo and Chen (2003)].

3 Modeling of Micro Circular Plate

In deriving the dynamic governing equation of motion for the micro circular plate
shown in Fig. 1, an assumption is made that the plate is subject to small strains
and displacements and undergoes an axi-symmetric bending effect. The govern-
ing equation is normalized for analytical convenience and is then solved using the
hybrid differential transformation / finite difference approximation method.

3.1 Governing equation of micro circular plate

As shown in Fig. 1, the micro-actuator system considered in this study comprises
a movable circular plate with a thickness h attached at its perimeter to a fixed rigid
substrate. The gap between the two plates is filled with air and has an initial height
of u0. The application of an external voltage across the two electrodes creates an
electrostatic attractive force which causes the micro circular plate to deflect in the
downward direction toward the lower substrate. The displacement u of the circular
plate is assumed to vary as a function of both the radial position r and the time t,
i.e. u = u(r, t). Assuming that the effects of the hydrostatic pressure and residual
stress are ignored, the dynamic governing equation of motion of the micro circular
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plate can be expressed in a polar coordinate form as follows [Nayfeh and Younis
(2004)]:

ρh
∂ 2u
∂ t2 +D

(
∂ 2

∂ r2 +
1
r

∂

∂ r
+

1
r2

∂

∂θ

)(
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂u2

∂θ

)
= f (r), (10)

where ρ is the density of the micro circular plate, u is the deflection of the micro
circular plate at a distance r from the center of the plate, D is the flexural rigidity
of the plate and f (r) is the electrostatic force acting between the two electrodes. D
and f (r) can be expressed respectively as

D =
Eh3

12(1−υ2)
, (11)

f (r) =
ε0V 2

2(u0−u)2 , (12)

where ε0, V and u0 represent the permittivity of free space, the voltage between
the upper and lower electrodes, and the initial gap height between the electrodes,
respectively. Furthermore, E, h and υ are the Young’s modulus, thickness and
Poisson ratio of the micro circular plate, respectively.

However, due to the small physical size of the MEMS actuator system shown in
Fig.1, it is essential to take the effects of hydrostatic pressure and residual stress into
account when modeling the pull-in phenomenon. It is supposed that the symmetry
deflection of the micro circular plate is irrelevant to polar coordinate θ . Thus, the
dynamic governing equation given in Eq. 10 should be rewritten as follows:

ρA
∂ 2u
∂ t2 +D

(
∂ 2

∂ r2 +
1
r

∂

∂ r

)(
∂ 2u
∂ r2 +

1
r

∂u
∂ r

)
−Tr

(
∂ 2u
∂ r2 +

1
r

∂u
∂ r

)
=

ε0V 2

2(u0−u)2 + S0, (13)

where Tr is the residual force [Osterberg and Senturia (1997)] and S0 is the hy-
drostatic pressure which acts on the upper surface of the plate and contributes to
the effects of the electrostatic force in causing the plate to deflect toward the lower
substrate.

The boundary conditions for Eq. (13) are as follows:

u(r, t) =
∂u(r, t)

∂ r
= 0, at r = 0

u(r, t) =
∂u(r, t)

∂ r
= 0, at r =±R (14)
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where R denotes the radius of the circular plate.

Meanwhile, the initial conditions are given by:

u(r,0) =
∂u(r,0)

∂ t
= 0. (15)

3.2 Normalized governing equation

For analytical convenience, the displacement term u in the governing equation is
normalized with respect to the initial gap height between the plates, Similarly, the
radial position term r is normalized with respect to the plate radius, and the time
term t is normalized with respect to the constant T1, i.e.

u∗ =
u
u0

, r∗ =
r
R

, t∗ =
t

T1
, (16)

where T1 =
√

ρhR4

D .

In addition, the voltage, residual stress and hydrostatic pressure terms are normal-
ized as follows:

V ∗ =

√
ε0R4V 2

2Du3
0

, T ∗r =
TrR2

D
S∗0 =

S0R4

Du0
, (17)

Substituting Eqs. (16) and (17) into Eqs. (13)–(15), the normalized governing
equation can be expressed as follows:

∂ 2u∗

∂ t∗2 +
∂ 4u∗

∂ r∗4
+

2
r∗

∂ 3u∗

∂ r∗3
− 1

r∗2
∂ 2u∗

∂ r∗2 +
1

r∗3
∂u∗

∂ r∗
−T ∗r

∂ 2u∗

∂ r∗2
−T ∗r

1
r∗

∂u∗

∂ r∗

=
V ∗2

(1−u∗)2 + S∗0; (18)

The corresponding boundary conditions are given as

u∗(r∗, t∗) =
∂u∗(r∗, t∗)

∂ r∗
0, at r∗ = 0

u∗(r∗, t∗) =
∂u∗(r∗, t∗)

∂ r∗
= 0, at r∗ = 1 (19)

The initial condition is given by

u∗(r∗,0) =
∂u∗(r∗,0)

∂ t∗
= 0, (20)
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The nonlinear electrostatic force term V ∗2

(1−u∗)2 in Eq. (18) can be approximated via
the following Taylor expansion series:

V ∗2

(1−u∗)2 = V ∗2
(

1+2u∗+3u∗2 +4u∗3 +5u∗4 · · · · · ·
)

, (21)

Neglecting the higher-order terms, and substituting Eq. (21) into Eq. (18), the non-
linear governing equation of the micro circular plate subject to the combined effects
of electrostatic force, hydrostatic pressure and residual stress can be expressed as

∂ 2u∗

∂ t∗2 +
∂ 4u∗

∂ r∗4
+

2
r∗

∂ 3u∗

∂ r∗3
− 1

r∗2
∂ 2u∗

∂ r∗2 +
1

r∗3
∂u∗

∂ r∗
−T ∗r

∂ 2u∗

∂ r∗2
−T ∗r

1
r∗

∂u∗

∂ r∗

= V ∗2
(

1+2u∗+3u∗2 +4u∗3 +5u∗4
)

+S∗0, (22)

3.3 Application of hybrid method to solution of governing equation

In this section, the normalized governing equation given in Eq. (22), and the corre-
sponding boundary conditions and initial condition given in Eqs. (19) and (20), re-
spectively, are solved using the hybrid differential transformation / finite difference
method. The solution procedure commences by applying the differential transfor-
mation process with respect to the time domain t to each term in the governing
equation, i.e.

T
[

∂ 2u∗

∂ t∗2

]
=

(k +1)(k +2)
H2 U(r∗,k +2),

T
[

∂ 4u∗

∂ r∗4

]
=

d4U(r∗,k)
dr∗4

,

T
[

2
r∗

∂ 3u∗

∂ r∗3

]
=

2
r∗

d3U(r∗,k)
dr∗3 ,

T
[

1
r∗2

∂ 2u∗

∂ r∗2

]
=

1
r∗2

d2U(r∗,k)
dr∗2

,

T
[

1
r∗3

∂u∗

∂ r∗

]
=

1
r∗3

dU(r∗,k)
dr∗

,

T
[

T ∗r
∂ 2u∗

∂ r∗2

]
= T ∗r

d2U(r∗,k)
dr∗2

,

T
[

T ∗r
1
r∗

∂u∗

∂ r∗

]
= T ∗r

1
r∗

dU(r∗,k)
dr∗

,
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T
[
2V ∗2u∗2

]
= 2V ∗2U(r∗,k),

T
[
3V ∗2u∗2

]
= 3V ∗2 (U(r∗,k)⊗U(r∗,k)) = 3V ∗2

(
k

∑
`=0

U(r∗, `)U(r∗,k− `)

)
,

T
[
4V ∗2u∗3

]
= 4V ∗2

(
k

∑
`=1

[(3+1)`− k]U(r∗, `)U3(r∗,k− `)

)
,

T
[
5V ∗2u∗4

]
= 5V ∗2

(
k

∑
`=1

[(4+1)`− k]U(r∗, `)U4(r∗,k− `)

)
,

T
[
V ∗2
]

= V ∗2δ (k),

T [S∗0] = S∗0δ (k). (23)

Note that δ (k) is specified as

δ (k) =

{
1, for k = 0
0 otherwise

Thus, Eq. (22) can be rewritten as follows:

(k +1)(k +2)
H2 U(r∗,k +2)+

d4U(r∗,k)
dr∗4

+
2
r∗

d3U(r∗,k)
dr∗3

− 1
r∗2

d2U(r∗,k)
dr∗2

+
1

r∗3
dU(r∗,k)

dr∗
−T ∗r

d2U(r∗,k)
dr∗2 −T ∗r

1
r∗

dU(r∗,k)
dr∗

= V ∗2
δ (k)+2V ∗2U(r∗,k)

+3V ∗2
(

k

∑
`=0

U(r∗, `)U(r∗,k− `)

)
+4V ∗2

(
k

∑
`=1

[(3+1)`− k]U(r∗, `)U3(r∗,k− `)

)

+5V ∗2
(

k

∑
`=1

[(4+1)`− k]U(r∗, `)U4(r∗,k− `)

)
+S∗0δ (k), (24)

Similarly, the boundary conditions can be rewritten as

T [u∗(r∗, t∗)] = U(r∗,k) = 0, at r∗ = 0

T
[

∂u∗(r∗, t∗)
∂ r∗

]
=

dU(r∗,k)
dr∗

= 0, at r∗ = 0

T [u∗(r∗, t∗)] = U(r∗,k) = 0, at r∗ = 1

T
[

∂u∗(r∗, t∗)
∂ r∗

]
=

dU(r∗,k)
dr∗

= 0, at r∗ = 1 (25)
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Finally, the initial conditions can be rewritten as

T [u∗(r∗,0)] = U(r∗,0) = 0 , k = 0

T
[

∂u∗(r∗,0)
∂ t∗

]
=

k +1
H

U(r∗,k +1) = 0 , k = 0 (26)

where U(r∗,k) is the spectrum of u∗(r∗, t∗), k and ` are transformation parameters,
and H is the time interval.

In the second stage of the solution procedure, the finite difference approximation
method is applied with respect to r∗ to the transformed versions of the equation
of motion, boundary conditions and initial conditions given in Eqs. (24), (25) and
(26), respectively.

Applying the fourth-order accurate central difference scheme, Eq. (24) can be ex-
pressed as follows:

(k +1)(k +2)
H2 Ui(k +2)+

Ui+2(k)−4Ui+1(k)+6Ui(k)−4Ui−1(k)+Ui−2(k)
∆r∗4

+
1

r∗3
i

Ui+1(k)−Ui−1(k)
2∆r∗

− 1
r∗2

i

Ui+1(k)−2Ui(k)+Ui−1(k)
∆r∗2 +

2
r∗i

Ui+2(k)−2Ui+1(k)+2Ui−1(k)−Ui−2(k)
2∆r∗3

−T ∗r
Ui+1(k)−2Ui(k)+Ui−1(k)

∆r∗2 −T ∗r
1
r∗i

Ui+1(k)−Ui−1(k)
2∆r∗

=V ∗2δ (k)+2V ∗2Ui(k)

+3V ∗2
(

k

∑
`=0

Ui(`)Ui(k− `)

)
+4V ∗2

(
k

∑
`=1

[(3+1)`− k]Ui(`)U3
i (k− `)

)

+5V ∗2
(

k

∑
`=1

[(4+1)`− k]Ui(`)U4
i (k− `)

)
+S∗0δ (k), (27)

where ∆r∗ is the radius interval and i is a position index in the r direction. In Eq.
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(27), Ui(k +2) is the only unknown, and can therefore be derived as follows:

Ui(k +2) =
H2

(k +1)(k +2)
×[

V ∗2
δ (k)+2V ∗2Ui(k)+3V ∗2

(
k

∑
`=0

Ui(`)Ui(k− `)

)

+4V ∗2

(
k

∑
`=1

[(3+1)`− k]Ui(`)U3
i (k− `)

)

+5V ∗2

(
k

∑
`=1

[(4+1)`− k]Ui(`)U4
i (k− `)

)

+S∗0δ (k)− 1
r∗3i

Ui+1(k)−Ui−1(k)
2∆r∗

−Ui+2(k)−4Ui+1(k)+6Ui(k)−4Ui−1(k)+Ui−2(k)
∆r∗4

+
1

r∗2
i

Ui+1(k)−2Ui(k)+Ui−1(k)
∆r∗2

− 2
r∗i

Ui+2(k)−2Ui+1(k)+2Ui−1(k)−Ui−2(k)
2∆r∗3

+T ∗r
Ui+1(k)−2Ui(k)+Ui−1(k)

∆r∗2

+ T ∗r
1
r∗i

Ui+1(k)−Ui−1(k)
2∆r∗

]
, (28)

Applying the first-order accurate central difference scheme to Eq. (25), the bound-
ary conditions can be expressed as

Ui(k) = 0,

Ui+1(k)−Ui−1(k)
2∆r∗

= 0,

U j(k) = 0,

U j+1(k)−U j−1(k)
2∆r∗

= 0, (29)

where j indicates the final index position in the rdirection.

Similarly, the initial condition can be derived as

Ui(0) = 0,

1
H

Ui(1) = 0 →Ui(1) = 0, (30)
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4 Numerical Results and Discussion

To confirm the validity of the hybrid solution procedure described in Section 3, the
numerical results obtained for the pull-in voltage of the micro circular plate shown
in Fig. 1 in the absence of hydrostatic and residual stress effects are compared with
those calculated using two methods presented in the literature, namely the CoSolve
simulation model and the 2-D closed-form solution procedure (both presented in
[Osterberg (1995)]). In performing the analysis, the material and geometry param-
eters of the micro circular plate are assigned the values shown in Table 1. The
comparative results for the pull-in voltage are presented in Table 2. As shown, the
pull-in voltage computed using the proposed hybrid method deviates by just 0.2%
and 1.75% from the CoSolve and closed-form solutions, respectively.

Table 1: Material and geometry parameters of micro circular plate.

Parameters Value
Young’s modulus (E) (GPa) 169
Poisson’s Ratio (ν) 0.3
Density (ρ) (Kg/m3) 2.33×103

Permittivity of free space (ε0) (F/m) 8.8541878×10−12

Thickness of the micro circular plate (h) (µm) 20
Initial gap (µ0) (µm) 1
Radius of the plate (R) (µm) 250

Table 2: Comparison of pull-in voltage results obtained using hybrid method and
two methods presented in the literature, respectively. (Note that the effects of resid-
ual stress and hydrostatic pressure are neglected in every case.)

Hybrid
Method
(H.M)

CoSolve
Simulation
[Osterberg
(1995)]

2D closed
Form [Oster-
berg (1995)]

Deviation
1∗ (%)

Deviation
2∗∗ (%)

Pull-in
Voltage
(V)

319.5 319 314 0.2 1.75

∗Deviation 1 =
∣∣∣ (Cosolve Simulation - H.M)

Cosolve Simulation ×100%
∣∣∣

∗∗Deviation 2 =
∣∣∣ (2D close Form - H.M)

2D closed Form ×100%
∣∣∣
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Table 3: Variation of calculated pull-in voltage with residual stress as computed by
current method and finite difference method (FDM), respectively. (Note that effects
of hydrostatic pressure are neglected.)

Residual Pull-in Voltage (V) (%)∗

Stress
(Mpa)

Hybrid Method
(H.M)

F.D.M
[Soleymani et
al. (2006)]

-20 317.9 313.37 1.45
0 319.5 315.51 1.26
40 322.8 319.73 0.96

∗∆ =
∣∣∣ (F.D.M - H.M)

F.D.M ×100%
∣∣∣

Table 3 compares the pull-in voltage values obtained from the hybrid method and
the finite difference method (FDM) presented in [Osterberg (1995)] when the ef-
fects of the residual stress are taken into account. (Note that the effects of the
hydrostatic pressure acting on the upper surface of the plate are ignored.) For both
models, it is observed that the pull-in voltage increases with an increasing value of
the residual stress. This is to be expected since the positive residual stress acts in
the opposite direction to the attractive electrostatic force. Consequently, a greater
electrostatic force (i.e. a higher external voltage) must be applied before the upper
plate collapses and makes contact with the lower substrate. Table 3 shows that the
solutions obtained using the hybrid method deviate by no more than 1.45% from
those calculated using the FDM method. Thus, the validity of the proposed method
for analyzing the behavior of the micro circular actuator plate is confirmed.

Figure 2 illustrates the variation of the dimensionless plate deflection with the hy-
drostatic pressure as a function of the applied voltage. (Note that the effects of
residual stress are ignored.) The results show that for each value of the applied
voltage, the circular plate becomes unstable at a certain critical value of the hydro-
static pressure and then collapses, causing the center of the plate to make transient
contact with the lower substrate. As expected, the magnitude of the pull-in hydro-
static pressure reduces as the value of the externally applied voltage increases.

Figure 3 illustrates the variation of the micro plate deflection in the radial direction
as a function of the applied voltage. (Note that the effects of the residual stress and
hydrostatic pressure are both ignored.) The results show that at voltages lower than
the pull-in voltage, the micro plate deflects symmetrically about its center point.
As expected, the deflection of the micro plate increases with an increasing voltage.
Furthermore, it is observed that the pull-in voltage has a theoretical value of 319.5
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Figure 2: Variation of dimensionless deflection with hydrostatic pressure as func-
tion of applied voltage. (Note that effects of residual stress are neglected.)

 

Figure 3: Variation of dimensionless deflection with dimensionless radius of circu-
lar plate as function of applied voltage. (Note that effects of both residual stress
and hydrostatic pressure are neglected.)
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Figure 4: Variation of dimensionless deflection with dimensionless radius of circu-
lar plate as function of dimensionless time.

 

Figure 5: Variation of dimensionless deflection with dimensionless radius of circu-
lar plate as function of hydrostatic pressure. (Note: residual stress = 40 MPa and
applied voltage = 200 V.)
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Figure 6: Variation of dimensionless deflection with dimensionless radius of circu-
lar plate as function of applied voltage. (Note: residual stress = 40 MPa and applied
hydrostatic pressure = 200 KPa.)

V for the micro plate parameters considered in Table 1.

Figures 4, 5 and 6 illustrate the variation of the micro-plate deflection in the radial
direction under various residual stress and hydrostatic pressure conditions. Figure
4 shows the evolution of the micro-plate deflection over time for the case of an
applied voltage of 200 V, a residual stress of 40 MPa and a hydrostatic pressure of
300 kPa. The results confirm that the maximum point of deflection occurs at the
center of the micro circular plate. Furthermore, since the magnitude of the applied
voltage is lower than the pull-in voltage, the micro plate attains an equilibrium
displacement condition in the steady state. Figure 5 illustrates the effect on the
micro plate displacement of an increasing hydrostatic pressure given a constant
applied voltage of 200 V. The results show that the deflection of the micro plate
increases with an increasing hydrostatic pressure over the range S0 = 0∼600 kPa.
However, when the hydrostatic pressure is increased to 800 kPa, the combined
effects of the electrostatic force and hydrostatic pressure acting in the downward
direction overcome the resistive effect of the restoring force, and thus the plate
collapses.

Finally, Fig. 6 shows the effect of the applied voltage on the micro plate deflection
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for a constant residual stress of 40 MPa and a constant hydrostatic pressure of 200
kPa. As expected, the deflection of the center point of the plate increases with
an increasing applied voltage. However, the pull-in phenomenon does not occur
since the combined effect of the constant hydrostatic pressure and the electrostatic
force generated by voltages in the range 0∼250 V is insufficient to overcome the
restoring force developed within the circular plate.

5 Conclusions

This study has utilized a hybrid differential transformation / finite difference ap-
proximation method to analyze the pull-in phenomenon of a MEMS-based elec-
trostatic actuator system comprising a thin micro circular plate and a lower fixed
electrode. In contrast to previous studies, the governing equation developed in this
study takes into account the effects of both the hydrostatic force acting on the up-
per surface of the circular plate and the residual stress within the plate itself. The
validity of the proposed hybrid method has been confirmed by comparing the solu-
tions obtained for the pull-in voltage with those obtained using two methodologies
presented in the literature (i.e. the finite difference method (FDM) presented in
[Soleymani, Sadeghian, Tahmasebi and Rezazadeh (2006)] and the CoSolve simu-
lations and closed-form model presented in [Osterberg (1995)]).

The results have shown that the hybrid method successfully captures the respective
effects of the applied voltage, residual stress and hydrostatic pressure in determin-
ing the onset of the pull-in phenomenon within the actuator system. As expected,
the pull-in voltage increases with an increasing residual stress, but reduces with
an increasing hydrostatic pressure. The maximum deviation between the pull-in
voltage calculated using the hybrid method and the solutions obtained using the
methodologies presented in the literature is just 1.75%, and thus the validity of the
proposed approach is confirmed.

In a future study, the hybrid method presented in this study will be extended to
analyze the more complex case in which the air between the micro circular plate
and the lower substrate exerts a damping effect which opposes the motion of the
micro plate as it deflects in the downward direction.
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