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Wave Propagation in Porous Piezoelectric Media

A. Chakraborty1

Abstract: A mathematical model is presented in this work that describes the be-
havior of porous piezoelectric materials subjected to mechanical load and electric
field. The model combines Biot’s theory of poroelasticity and the classical theory
of piezoelectric material wherein it is assumed that piezoelectric coupling exists
only with the solid phase of the porous medium. This model is used to analyze
the stress and electric wave generated in bone and porous Lead-Zirconate-Titanate
(PZT) due to high frequency pulse loading. The governing partial differential equa-
tions are solved in the frequency domain by transforming them into a polynomial
eigenvalue structure. This approach permits an exact solution for elastic material
properties. The material domain is assumed to be in the form of a layered medium
where periodic boundary conditions are enforced in the longer direction. The fre-
quency domain based formulation also helps in describing the frequency dependent
material properties. The work presents analytical solutions for various essential
and natural boundary conditions. The propagating nature of the elastic and elec-
tric wave in bone and porous PZT is investigated in detail. It is expected that this
model will be instrumental in providing valuable insight into the mechanism of
bone regeneration.

Keywords: Wave propagation, Bone, Porous ceramic, Biot’s theory, Slow wave,
Frequency domain

1 Introduction

A piezoelectric material is one which develops an electric charge when subjected
to mechanical stress and conversely, generates mechanical stress when subjected
to electric field. Naturally occurring piezoelectric materials were investigated in
the 1880s, but piezoelectric ceramics and ferroelectricity were not discovered until
the 1940s. Ceramics in the present day have moved from their original dense form
to porous structures with applications in aerospace (radome material), automobile
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(syntactic foam) and biomedical (as a bone-substitute) industries. A porous ceramic
is akin to many natural substances like plants, soils, rocks, outcrops, even bone.

Bone is perhaps the most celebrated biological material that shows piezoelectric
effect. Piezoelectricity in bone was discovered by Fukuda and Yasuda [1957] and
their work was subsequently verified by other researchers [Bassett and Becker
(1962), Shamos, Lavine, and Shamos (1963), McElhaney (1967), Anderson and
Eriksson (1970), Marino and Becker (1970), Marino, Soderholm, and Becker (1971)].
This property has been used by researchers as an underlying mechanism to explain
growth and resorption in bone [Gjelsavik (1973a,b)]. However, the possible physi-
ological role of piezoelectricity has not been fully evaluated yet, because of limited
modeling and experimental evidence. Studies of the dielectric and piezoelectric
properties of bone, for example, raise the issue as to whether wet bone is piezoelec-
tric at all physiological frequencies [Reinish (1975)]. It is found that piezoelectric
effects occur in the kilo-hertz range, well above the range of physiologically sig-
nificant frequencies [Reinish (1975)]. Further, both the dielectric and piezoelectric
properties depend strongly upon the excitation frequency [Lakes and Katz (1977),
Bur (1976)] with considerable magnitude of the imaginary part for d14 component
[Bur (1976)]. Other than being piezoelectric it is also well-known that bone dis-
plays complex micro-structure with inhomogeneity, anisotropy and the presence
of multiple phases, which require an averaging technique for efficient analysis of
mechanical response. Biot’s theory of poroelasticity [Biot (1955)] is a strong can-
didate among the different homogenization techniques and is used to explain bone
response to ultrasonic excitation [Williams (1992)]. Thus, a realistic mathematical
model of bone can be obtained by utilizing the poroelastic description coupled with
piezoelectricity.

It is not surprising that porous piezo-ceramics find important applications as a
bone-substitute. The scope of biomaterials for repairing bone defects has been
broadened by the development of lead-free piezoelectric ceramics, such as alkaline
niobate and barium titanate, due to their stable piezoelectricity and biocompatibil-
ity. Stress-generated potentials produced by piezoelectric ceramics may stimulate
bone regeneration in situ [Braden, Bairstow, Beider, and Ritter (1966)], for exam-
ple barium titanate implants may promote osteogenesis [Park, Kelly, Kenner, and
Recum (1981)]. Porous implants are known to be more favorable than solid im-
plants for osseointegration [Zhang, Li, and Zhang (2007)]. Porous bioceramics are
also favorable because nutrient exchange is easier than in dense materials [Galassi
(2006)].

The prediction of the response of either original bone or its implant substitute to
mechanical loading or electric field remains challenging due to their unique ma-
terial properties. Further, bone quality is often estimated by subjecting it to pulse



Wave Propagation in Porous Piezoelectric Media 107

loading of very high frequency content and it becomes necessary to consider the
frequency dependence of the elastic, dielectric and piezoelectric properties. How-
ever, the present literature is silent about a suitable mathematical model for porous
piezoelectric materials and it is the author’s belief that a confluence of Biot’s the-
ory of poroelasticity with the classical theory of piezoelectricity can provide a very
good description of these materials.

This is attempted in the present work where Biot’s theory of poroelasticity is en-
riched with a piezoelectric description of the material. Since porosity is one of the
material parameters in Biot’s theory, the current approach also enables us to accu-
rately represent some of the porosity dependent piezoelectric material properties.
The original governing equations of Biot’s theory are augmented with the charge
equation (Gauss’s law) and are solved in the frequency domain (where they are con-
verted into a set of ordinary differential equations that are solvable exactly). These
exact solutions are used as interpolating polynomials, which leads to significant re-
duction in the cost of computation. Another advantage of this approach is that the
frequency dependency of material properties can be described efficiently. Broadly
falling under the method of integral transform, this methodology is called the spec-
tral finite element method (SFEM) [Gopalakrishnan, Chakraborty, and RoyMaha-
patra (2007)], which has been used extensively in modeling two-dimensional in-
homogeneous [Chakraborty and Gopalakrishnan (2004c, 2006a)] and anisotropic
[Chakraborty and Gopalakrishnan (2004a)] layered media, anisotropic layer in the
presence of nonclassical thermoelasticity [Chakraborty and Gopalakrishnan (2004b)],
anisotropic plate [Chakraborty and Gopalakrishnan (2005, 2006b)] and inhomo-
geneous media with coupled piezoelasticity [Chakraborty, Gopalakrishnan, and
Kausel (2005)]. Spectral elements have also been developed to describe the be-
havior of porous media with plane strain [Degrande and Roeck (1992)] and axi-
symmetric [Al-Khoury, Kasbergen, Scarpas, and Blaauwendraad (2002)] descrip-
tion. Recently the author has developed a poroelastic beam formulation with cou-
pled axial-flexural motion for describing wave propagation behavior [Chakraborty
(2009)].

Similar combined analytical-numerical approach is utilized in studying surface
wave propagation in multi-layered piezoelectric plate [Han, Ding, and Liu (2005)].
Another variant of SFEM, called wavelet SFEM [Mitra and Gopalakrishnan (2006b)]
is used successfully in modeling wave propagation behavior of carbon nanotube
[Mitra and Gopalakrishnan (2008)], isotropic plate structure [Mitra and Gopalakr-
ishnan (2006a)] and degraded composite beam [Tabrez, Mitra, and Gopalakrishnan
(2007)]. Wave propagation behavior of homogeneous and isotropic media with and
without piezoelectric effect is also studied by the method of Green’s function [Wu
and Chen (2007), Seyrafian, Gatmiri, and Noorzad (2006), Jabbari and Gatmiri
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(2007), Dziatkiewicz and Fedelinski (2007)].

However, to the best of author’s knowledge, there is no existing frequency do-
main formulation for coupled piezoelectric and poroelastic medium, as is carried
out in this work. The next section describes the frequency domain element for-
mulation, where the strong form of the governing partial differential equations for
piezo-poro-elasticity is solved in the frequency-wavenumber domain and the un-
known coefficients are computed by imposing Dirichlet and Neumann boundary
conditions. Analytical expessions for the exact solutions for various loading and
boundary conditions are also provided in this section. These formulations are sub-
sequently utilized to capture the propagating slow and fast waves, characteristic of
Biot’s poroelastic theory. Further, the effect of piezoelectricity on the elastic waves
and the nature of the electric pulse propagation are investigated for a bone material
with low piezoelectric effect and for a porous piezoelectric material with substan-
tial piezoelectric effect. Conclusions from these exercises and the scope for future
work are provided in the last section.

2 Mathematical Model

It is assumed that displacements are small, the material is isotropic and porous with
solid and fluid phase (as described by Biot) and the domain is two-dimensional (2D)
Euclidean space. The governing equations in the presence of coupled piezoelectric
effects are obtained by augmenting the original equations of Biot with the charge
equation (Gauss’s law) and written in the indicial notation (with summation over
the repeated indices) as

σi j, j = ρ11üi +ρ12Üi +b(u̇i−U̇i) ,
s,i = ρ12üi +ρ22Üi−b(u̇i−U̇i) ,

Di,i = 0 , (1)

where σi j and s are the solid and fluid stress components, respectively, ρ11, ρ12
and ρ22 are Biot’s inertial parameters, b is the viscous damping coefficient and
Di is the component of the electric displacement. The motion of the medium is
described by the solid (ui) and fluid (Ui) displacement fields. Further, a comma
in the subscript denotes differentiation with respect to the spatial variable after the
comma and over-dot denotes differentiation with respect to time, t. The stresses
and electric displacement are related to the solid and fluid strains by the extended
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constitutive law

σi j = 2NSi j +(ASkk +Qθ)δi j− eki jEk ,

s = QSkk +Rθ ,

Dk = eki jSi j + εkiEi , (2)

where A,N,Q and R are Biot’s elastic parameters and eki j and εi j are the piezo-
electric constants and dielectric constants, respectively. The solid strains Si j, fluid
strain θ and the electric field Ei are related to the displacement components and
electric potential φ by

Si j = (ui, j +u j,i)/2 , θ = Ui,i , Ei =−φ,i . (3)

Limiting the domain of interest to the x1− x3 plane and writing x for x1 and z for
x3, the general stress-strain relation becomes

σxx

σzz

σxz

s
Dx

Dz


=



A+2N A 0 Q 0 −e31
A A+2N 0 Q 0 −e33
0 0 N 0 −e15 0
Q Q 0 R 0 0
0 0 e15 0 ε11 0

e31 e33 0 0 0 ε33





Sxx = ux,x

Szz = uz,z

2Sxz = ux,z +uz,x

θ = Ux,x +Uz,z

Ex =−φ,x

Ez =−φ,z


,

(4)

which on substitution in Eq. 1 generates the five governing equations as

Pux,xx +Nux,zz +(A+N)uz,xz + Q(Ux,xx +Uz,xz)+(e31 + e15)φxz

= ρ11üx +ρ12Üx +b(u̇x−U̇x) , (5)

Nuz,xx +Puz,zz +(A+N)ux,xz + Q(Ux,xz +Uz,zz)+ e15φxx + e33φzz

= ρ11üz +ρ12Üz +b(u̇z−U̇z) , (6)

Q(ux,xx +uz,xz)+R(Ux,xx +Uz,xz) = ρ12üx +ρ22Üx−b(u̇x−U̇x) , (7)

Q(ux,xz +uz,zz)+R(Ux,xz +Uz,zz) = ρ12üz +ρ22Üz−b(u̇z−U̇z) , (8)

(e31 + e15)ux,xz + e15uz,xx + e33uz,zz− ε11φ,xx− ε33φ,zz = 0 , (9)

where P = A + 2N. To solve these equations, the solutions of the unknown dis-
placements and potentials are assumed as a superposition of harmonics in time and
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space (x direction) as
ux(x,z, t)
uz(x,z, t)
Ux(x,z, t)
Uz(x,z, t)
φ(x,z, t)

=
M

∑
m=1

N

∑
n=1


ux0(z)sin(ηmx)
uz0(z)cos(ηmx)
Ux0(z)sin(ηmx)
Uz0(z)cos(ηmx)
φx0(z)cos(ηmx)

e−Iωnt , I2 =−1 , (10)

where ωn is the discrete circular frequency and ηm is the wavenumber in x direction.
Substituting the above assumed solution into Eqs. 5–9, a set of ordinary differential
equations (ODEs) is obtained in the variable z. As these equations have constant
coefficients, their solution is of the form of Aexp(−Ikz), where k is the wavenum-
ber in the z direction. Substituting this form in the ODEs, the algebraic form of the
governing equations are obtained as

Ψ(k)ũ =
(
A0(ηm,ωn)+ kA1(ηm,ωn)+ k2A2(ηm,ωn)

)
ũ = 0 , (11)

which is a quadratic eigenvalue problem (QEP) for the unknown eigenvector ũ and
eigenvalue k. The submatrices are (with Mi j = ρi j− (−1)i+ jIb/ω)

A0 =


−Pη2 +ω2M11 0 −Qη2 +M12ω2 0 0

0 −Nη2 +ω2M11 0 ω2M12 −e15η2

−Qη2 +ω2M12 0 −Rη2 +ω2M22 0 0
0 ω2M12 0 ω2M22 0
0 −e15η2 0 0 ε11η2

 ,

(12)

A1 =


0 I(A+N)η 0 IQη I(e15 + e31)η

−I(A+N)η 0 −IQη 0 0
0 IQη 0 IRη 0

−IQη 0 −IRη 0 0
−I(e15 + e31)η 0 0 0 0

 , (13)

A2 =


−N 0 0 0 0

0 −P 0 −Q −e33
0 0 0 0 0
0 −Q 0 −R 0
0 −e33 0 0 ε33

 , (14)
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where it is evident that for η = 0, A1 ≡ 0 and A0 is singular, whereas A2 is singular
for all η . Thus, the QEP has infinite eigenvalues (wavenumbers) and looking at
the rank of A2 it can be said that there will be eight finite eigenvalues for η 6= 0.
These values are obtained from the condition that for nontrivial solutions of ũ, the
determinant of the Lambda matrix Ψ(k) must be zero. The resulting spectrum
relation for k is

C1k8 +C2k6 +C3k4 +C4k2 +C5 = 0 , Ci = Ci(ωn,ηm 6= 0) . (15)

For η = 0, C1 is zero and the number of nonzero k is reduced to six. The number
of independent unknowns is also reduced to three as

φ0(z) = (e33/ε33)uz0(z) , Ux0(z) = (−M12/M22)ux0(z) . (16)

For the general case of η 6= 0, the solutions of the ODEs are written as
ux0(z)
uz0(z)
Ux0(z)
Uz0(z)
φ0(z)

=
8

∑
i=1

Ai


R1i

R2i

R3i

R4i

R5i

exp(−Ikiz) , (17)

where Ai are the unknown coefficients to be determined from the boundary condi-
tions. The elements of the matrix R can be obtained from the eigenvectors of Ψ.
An alternate approach of obtaining R stems from the fact that for wavenumber ki,
the i-th column R (written as R(:, i)) satisfies the relation Ψ(ki)R(:, i) = 0. Thus, the
columns of R lie in the null space of Ψ. Using the singular value decomposition of
Ψ(ki) (note that Ψ(ki) is singular for each ki and thus admits atleast one non-trivial
null space element) R(:, i) is obtained.

The boundary conditions are in terms of the components of tractions Tx and Tz in
the solid phase, pressure s in the fluid phase and resultant electric displacement D.
These quantities are related to the solid stress and electric displacement components
by

Tx = σxxnx +σxznz , Tz = σxznx +σzznz , D = Dxnx +Dznz , (18)

where the first two relations are coming from Cauchy’s principle and nx and nz are
the components of the surface normal in the x and z direction, respectively. In the
present case, the boundaries of the domain are assumed parallel to the x axis, i.e.,
nx = 0 and nz =∓1. Altogether, there are four natural boundary conditions at each
edge. However, there are five displacement boundary conditions, i.e., two solid
displacements, two fluid displacements and the electric potential, resulting in an
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under-determinate system. Since a fluid element cannot support an applied shear
stress, we neglect the x component of the fluid displacement (Ux), and retain the
rest as unknowns (three displacement components and the potential).

One advantage of the frequency domain formulation is that the solution is con-
structed as a (complete) linear combination of the wavenumber components. Thus,
we have the choice of considering only the forward moving components, which
represent an infinite layer, or, we can consider all the wavenumber components,
which will describe the behavior of a semi-infinite layer. First, we present a de-
scription of the half-space and next for a semi-infinite layer.

2.1 Formulation for a half-space

In this case, only the forward moving wavenumbers are considered and the solu-
tions of the unknowns are written as

ux0(z)
uz0(z)
Uz0(z)
φ0(z)

=
4

∑
i=1

Ai


R1i

R2i

R4i

R5i

exp(−Ikiz) . (19)

Evaluating Eq. 19 at z = 0 and identifying the unknowns as the edge variables
v1 = {ux1,uz1,Uz1,φ1}, a relation is established between v1 and the coefficients Ai

as

v1 = T1a+ , a+ = {A1,A2,A3,A4} , (20)

where T1 consists of suitable rows of R and can be thought as the matrix of co-
ordinate transformation between the canonical coordinate system in the frequency-
wavenumber domain and the physical coordinate system.

From Eq. 18, the natural boundary condition at z = 0 (nz =−1) can be written as

f1 = {−σxz,−σzz,−s,−Dz}T
z=0 , (21)

where T in the superscript denotes transpose of a vector/matrix. Using Eq. 4 and
19, f1 can be expressed in terms of the unknown coefficients Ai as

f1 = T2a+ , (22)

which together with Eq. 20 relates to the unknown edge displacements and potential
as

f1 = T2T−1
1 v1 = Kv1 , (23)
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where K serves as a stiffness matrix (4× 4) of the half-space at frequency ω and
horizontal wavenumber η . As the formulation is based on the exact solution in the
transformed domain the matrix K can be thought as an exact representation of a
half-space.

2.2 Formulation for a semi-infinite layer

For a semi-infinite layer, there are two edges where boundary conditions are to be
prescribed. The solutions are considered to be a complete linear combination of
both the forward and backward moving components as given in Eq. 17. Following
the same procedure as outlined before, Eq. 17 is evaluated at z = 0 and z = L (L is
the thickness of the layer) to obtain a relation between the edge displacements and
potentials and the unknown coefficients as

v = {v1,v2}T = T1a , a = {a+,a−}T = {A1, . . . ,A8} , (24)

where v2 is the vector of unknowns at z = L. Similarly, the natural boundary con-
ditions at z = L,(nz = +1) can be written as

f2 = {σxz,σzz,s,Dz}T
z=L , (25)

which together with Eqs. 21 and 17 relates the natural boundary conditions to the
unknown coefficients as

f = {f1, f2}T = T2a . (26)

Substituting Eq. 24 in Eq. 26 the stiffness matrix (8× 8) of a layer is obtained
which is of the same form as given in Eq. 23. It is worth noting that this form is
quite generalized and is not particular to any set of boundary conditions. Thus, dif-
ferent solutions for different boundary conditions can be obtained from this single
equation.

Equation 23 represents a layer at frequency ωn and wavenumber ηm. To obtain the
complete solutions, this equation needs to be solved M×N times. The discrete
values of the horizontal wavenumber, ηm is related to x1-window length XL and M
by

ηm = 2π(m−1)/XL = 2π(m−1)/M∆x1 . (27)

The window length is dictated by the geometry of the structure to be analyzed and
M is dictated by the spatial variation of the applied stress in x1 direction.

It is to be noted that the present form of the representation of a layer can easily be
modified to the form of propagator matrix. To achieve this, the essential and natural
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boundary conditions of one edge are related to their counterparts of the other edge
as{

f1
v1

}
=
[

P11 P12
P21 P22

]{
f2
v2

}
, (28)

where Pi j are the submatrices of the propagator matrix P. These matrices can be
written in terms of the submatrices of K as

P11 = K11K−1
21 , P12 = K11K−1

21 K22 +K12 , P21 = K−1
21 , P22 =−K−1

21 K22 , (29)

where K is partitioned in the same way as done for P.

3 Reduction to 1D Case

Although the solution of Eq. 15 provides a complete picture of the propagating
modes in a porous piezoelectric media, much insight can be gained by studying the
propagation of these waves in a one-dimensional system, which will also be helpful
in deriving closed form solutions of the phase speed. Considering the propagation
of bulk wave in the z direction, the unknown variables are the solid (uz) and fluid
(Uz) displacement components and potential φ , which are related to the relevant
stresses and electric displacement by

σzz = Puz,z +QUz,z + e33φ,z

s = Quz,z +RUz,z

Dz = e33uz,z− ε33φ,z . (30)

The governing equations are simplified to

Puz,zz +QUz,zz + e33φ,zz = ρ11üz +ρ12Üz +b(u̇z−U̇z) ,
Quz,zz +RUz,zz = ρ12üz +ρ22Üz−b(u̇z−U̇z) ,

e33uz,zz− ε33φ,zz = 0 . (31)

Utilizing the third equation, the first one is modified to

(P+ e2
33/ε33)uz,zz +QUz,zz = ρ11üz +ρ12Üz +b(u̇z−U̇z) , (32)

which together with the second of Eq. 31 describe the motion of the solid and fluid
in z direction. Assuming the general form of the solution as

uz(z, t) = u0eI(ωt−kz) , Uz(z, t) = U0eI(ωt−kz) , (33)



Wave Propagation in Porous Piezoelectric Media 115

and substituting in the governing equations, the algebraic eigenvalue problem be-
comes[

ω2M11− k2P̄, ω2M12− k2Q
ω2M12− k2Q, ω2M22− k2R

]{
u◦
U◦

}
=
{

0
0

}
, (34)

where P̄ = P+ e2
33/ε33 and Mi j is as defined before. Following the same argument

of nontrivial solution for u◦ and U◦, the characteristic equation for k is obtained,
which is a quartic equation in standard form compared to the polynomial of degree
eight in Eq. 15. Rewriting the characteristic equation as

a◦k4 +b◦k2
ω

2 + c◦ω4 = 0 , (35)

the roots become

k2 = ω
2

(
−b◦±

√
b2
◦−4a◦c◦

2a◦

)
. (36)

As the phase speed is defined as V = ω/Re(k), the expressions for the fast and slow
phase speeds are readily obtained as

V1,2 = Re

( 2a◦
−b◦±

√
b2
◦−4a◦c◦

)1/2
 , (37)

where Re( ) denotes the real part of a complex number. Similarly, the imaginary
part of the roots of Eq. 36 provides the attenuation, which can be written explicitly
for the fast and slow waves as

A1,2 = Im

(−b◦±
√

b2
◦−4a◦c◦

2a◦

)1/2
ω , (38)

where Im( ) indicates the imaginary part of a complex number. It is to be noted that
the wavenumbers become complex quantities due to the introduction of dynamic
tortuosity Johnson, Koplik, and Dashen (1987).

3.1 Solution for a semi-infinite layer

The complete solution of the displacement field at frequency ω is

uz(z,ω) =
4

∑
i=1

R1iAi(ω)e−Ikiz , Uz(z,ω) =
4

∑
i=1

R2iAi(ω)e−Ikiz , (39)
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where the columns of R satisfy Eq. 34. Integrating the last relation in Eq. 31,

φ(z,ω) = αuz(z,ω)+A5(ω)z+A6(ω) , α = e33/ε33 , (40)

where A5 and A6 are the constants of integration. The constitutive relations are
modified to

σzz = P̄uz,z +QUz,z + e33A5 ,

s = Quz,z +RUz,z ,

Dz = −ε33A5 ,∀z ∈ [0,L] . (41)

Thus, the electric displacement becomes independent of solid/fluid displacement
components (hence independent of z), i.e., constant in the entire layer. Since, the
coefficient A6 is not involved in the definitions of the stress/electric displacement,
this coefficient can not be determined. The electric boundary condition can be
either, (a) charge free (open circuit) i.e., Dz = 0 at z = 0,L or (b) nonzero applied
charge density, Dz = D̄ at z = 0,L. Further, the specified value of Dz at the boundary
becomes its value for the entire layer. In the first case, Dz = 0 implies A5 = 0 and
−φz = Ez = −αuz. For case (b), A5 can be expressed in terms of D̄ as A5(ω) =
−D̄(ω)/ε33 and the normal stress is modified as

σzz = P̄uz,z +QUz,z−αD̄ (42)

Using the displacement solutions given in Eq. 39 in the reduced constitutive re-
lations, the stresses are related to the unknown constants {A1, . . . ,A4}. The force
vector comprises of the normal stress (σzz) and fluid pressure (s) as

f = {−σzz(0),−s(0),σzz(L),s(L)}= T2a+αD̄1+
− , 1+

− = {1,0,−1,0}T , (43)

where the elements of the matrix T2 are

T2(1, i) = Iki(P̄R1i +QR2i) , T2(2, i) = Iki(QR1i +RR2i) ,
T2(3, i) = −T2(1, i)exp(−IkiL) ,T2(4, i) =−T2(2, i)exp(−IkiL) , (44)

where i ranges from 1 to 4. The coefficients A1, . . . ,A4 are related to the nodal
displacements at z = 0 (u1,U1) and z = L (u2,U2) by

u = {u1,U1,u2,U2}T = T1{A1,A2,A3,A4}T = T1a , (45)

where T1 is

T1 =


R11 R12 R13 R14
R21 R22 R23 R24
R11e1 R12e2 R13e3 R14e4
R21e1 R22e2 R23e3 R24e4

 ,ei = exp(−IkiL) . (46)
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Combining Eqs. 43 and 45 the equilibrium equation at frequency ω is

f = T2T−1
1 u+αD̄1+

− = Ku+αD̄1+
− , (47)

where K is the stiffness matrix of a layer.

3.2 Solution for a half-space

Considering only the forward propagating waves the solutions are

uz(z) = R11A1 exp(−Ik1z)+R12A2 exp(−Ik2z) ,
Uz(z) = R21A1 exp(−Ik1z)+R22A2 exp(−Ik2z) ,
φz(z) = −Iα (k1R11A1 exp(−Ik1z)+ k2R12A2 exp(−Ik2z))+A5 . (48)

Evaluating these expressions at z = 0 the edge displacements and potential can be
written in terms of the unknown coefficients as

u1 =


uz(0) = u1
Uz(0) = U1

φz(0) =−E1

=

 R11 R12 0
R21 R22 0

−Iαk1R11 −Iαk2R12 1


A1
A2
A5

= T1a . (49)

Similarly, the stresses and electric displacement at z = 0 can be written in terms of
a as

f1 =


−σzz(0)
−s(0)
−Dz(0)

=

 Ik1(P̄R11 +QR21) Ik2(P̄R12 +QR22) −e33
Ik1(QR11 +RR21) Ik2(QR12 +RR22) 0

0 0 ε33

a = T2a .

(50)

The stiffness matrix for the half-space then can be written in terms of matrices T2
and T1 as K = T2T1

−1. In this case, we have the flexibility to study both open-
circuit (Dz = 0) and short-circuit (φ = 0) boundary conditions.

4 Numerical Examples

The developed frequency domain solutions are first verified by comparing their re-
sponses with the commercial FE code LS-DYNA based predictions in time domain.
For this exercise, the material properties of bone are considered, where very low
coupling exists between the electric and elastic parameters. Next, the same bone
sample is subjected to electric pulse and both mechanical and electric field vari-
ables are measured. To show the effect of higher electro-elastic coupling a porous
PZT sample is considered next and subjected to both mechanical loading and elec-
tric field. The variables of interest (i.e., stress, strain, electric potential, etc.) are
measured and compared with the responses of the bone material.
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Parameter Value Parameter Value
Es 20.0 GPa νs 0.32
ρs 1960 kg/m3 νb 0.32
ρ f 930 kg/m3 n 1.32
K f 2.2 GPa τ 0.25
Λ 5.0×10−6 m µ 1.0×10−3 Ns/m2

e31 1.51 ×10−3 C/m2 e33 1.87 ×10−3 C/m2

e15 3.58 ×10−3 C/m2

ε11 88.54 ×10−12 F/m ε33 106.25 ×10−12 F/m
Table 1: Material properties of cortical bone considered in this study, piezoelectric
properties are taken from Fotiadis, Foutsitzi, and Massalas (1999)

4.1 Response of bone to mechanical loading and electric field

First, we simulate the propagation of fast and slow waves through bone modeled as
a layered medium. The force history considered is a single sinusoid multiplied by
Hamming window (shown in Fig. 1)

f (t) = F◦ sin(2π f◦t)[0.54−0.46cos(2π f◦t)] ,0≤ t ≤ 1/ f◦ , (51)

where F◦ is a constant (taken unity in this case) and f◦ is the center frequency
which is taken as 0.75 MHz. The function is represented by a time sampling rate of
1.0×10−9 s with the number of frequency points, N = 216. Thus, the correspond-
ing frequency sampling rate is 15.26 kHz and the Nyquist frequency is 500 MHz.
However, as the load is band limited between 0 and 5 MHz (as shown in the inset
of Fig. 1), for frequencies higher than 5 MHz the solution can be assumed to be
zero. This realization considerably reduces the cost of computation.

The load is applied at one edge of a cortical bone of 9 mm thickness whose other
edge is constrained. For 2D approximation, the load is assumed to vary accord-
ing to a Gaussian function, S(x) = exp[log(10−6x2/a2)] with a = 0.1 m, which is
symmetric about X = 0 (as shown in the inset of Fig. 2). Again, in this case, the
present spatial variation is band limited, i.e., the Fourier cosine coefficients (am)
are negligible beyond a certain number. As Fig. 2 suggests all am for m≥ 100 can
be neglected and for all subsequent simulations, M (as defined in Eq. 27) is fixed at
100. The material properties of the bone are described in Table 1. The FE model
analysed in LS-DYNA has homogeneous material properties (there is no existing
porous material in LS-DYNA model) with Young’s modulus of 20 GPa, ν = 0.32
and density of solid ρs = 1960 kg/m3. For these material parameters, the wave
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Figure 1: Applied high frequency loading as defined by Eq. 51 (the inset shows
frequency domain representation)
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Figure 3: Surface z-velocity history in solid as predicted by the present method and
LS-DYNA solutions, 0% porosity

speed for P-wave given by

Cp =

√
Es(1−νs)

ρs(1+νs)(1−2νs)
(52)

is 3821.23 m/s. Taking the maximum frequency content of the excitation as 2
MHz (see inset of Fig. 1), the minimum wavelength involved is of the order of
(3821.23× 103)/(2π × 2× 106) = 0.3 mm. For accurate prediction by FE, the
element size should be of the order of the wavelength (or lesser). However, keeping
in mind the cost of computation involved, we restrict the element size to 0.5 mm.
Thus, for our model of dimension 1000 ×9 mm in X and Z direction, respectively,
the FE model has 36000 shell elements in plane-strain condition.

The load is applied in the Z (thickness) direction and the velocity of solid material
in the same direction is measured at the point of application of the load. First, we
consider a porosity of 0.001 to minimize the effect of fluid present in the porous
bone. The velocity histories for this case are plotted in Fig. 3. In this figure, the
waveform at 1 µs is the incident wave and the following waveforms at around 6,
11 and 15 µs are reflections from the fixed end. The present solution and FE re-
sponse agree closely with each other. However, the phase speed predicted by Eq. 37
for a porosity of 0.001 is 3820.03 m/s. The small difference in the magnitude of
the phase speed computed from Eq. 52 and Eq. 37 causes the FE reflections to ar-
rive earlier than the porous wave solution. This difference is more pronounced for
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Figure 4: Surface z-velocity history in solid as predicted by the present method and
LS-DYNA solutions for 50% porosity, the ellipse encloses the slow wave mode

the second and third reflection. It is evident that, to make the wave speed of the
homogeneous medium comparable to that of porous medium, the Young’s modu-
lus should be decreased. An estimation of the reduced Young’s modulus can be
obtained by equating the wave speed for porous media to the wave speed of the
P-wave and solving for Es as

Es = V 2
f

ρs(1+νs)(1−2νs)
(1−νs)

, (53)

where Vf is the speed of the fast wave. Thus, for a porosity of 50 %, where
Vf = 3380 m/s, the equivalent Young’s modulus will be 15.67 GPa. Using this
value of Young’s modulus for the FE model, the Z-velocity is obtained for the pre-
vious load and plotted in Fig. 4 along with the porous media solution. It is evident
that the frequency domain based porous media solution agrees quite well with the
LS-DYNA prediction till 14 µs (i.e., before the arrival of the second reflection).
However, the LS-DYNA solution cannot capture the propagating slow wave modes
arriving at around 15 µs as it does not model any coupling between the solid and
fluid phase.

To predict the motion of the fluid phase, we can use Eq. 53 to have an estimation of
the “Young’s modulus" of fluid as well. Thus, for 50 % porosity, E f is computed at
2.34 GPa for a slow wave speed of 1310 m/s and density of 1960 kg/m3. For this
reduced modulus, the wavelength of the shortest wave is about 0.1 mm. To capture
the propagating waves accurately, a mesh of 900,000 elements with element length
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Figure 5: Surface z-velocity history in fluid phase as predicted by the present
method and LS-DYNA solutions for 50% porosity

of 0.1 mm is generated. The response of this homogenized fluid FE model along
with the porous media response is shown in Fig. 5. The figures suggests that a
very good agreement of the arrival of the reflected pulse is obtained, although the
magnitude of the waves differs by 25 %. Thus, Eq. 53 cannot be used blindly to
obtain an equivalent modulus for fluid and an accurate estimation of the equivalent
density of fluid should be made first. It is important to note that if the fluid density
of 1000 kg/m3 is used in Eq. 53, then the estimated E f is 1.2 GPa, which further
increases the amplitude of the FE response.

Next the derived fields like strain, stress, electric field and electric displacement
are measured at z = 4.5 mm (mid-depth) from the surface and compared in Fig. 6.
First of all, the strain, stress and electric field histories show multiple reflections
occurring at the free and fixed ends of the bone sample. However, the electric dis-
placement generated for the applied mechanical loading is negligible. This is due
to relatively smaller values of bone piezoelectric constants compared to the elastic
parameters. The first two stress peaks are comparable to the applied stress at the
surface. However, the peak values diminish with time. The same observation is
true for the strain and electric field envelope. It is interesting to note that the com-
pressive stress and strain are in the same phase (i.e., the peak values are coincident),
whereas, the electric field is 180◦ out of phase to strain (hence, stress).

The advantage of the present formulation is that the response of a porous material to
electric pulse can also be investigated. This is taken up next, where the same bone
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Figure 6: Variation of the strain, stress, electric field and electric displacement
measured at the mid-layer of a bone sample for applied mechanical loading on the
surface
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Figure 7: Variation of the solid and fluid velocity and electric potential measured
at the surface of a bone sample for applied electrical field on the surface
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Parameter Value Parameter Value
e31 6.16 C/m2 e33 8.34 - j0.251 C/m2

e15 0.00 C/m2 ε11, ε33 4.27 ×10−9 F/m
Table 2: Material properties of PZT considered in this study

model is considered. On the surface of the bone, in the same location an electric
pulse is applied in Z direction. The temporal and spatial distributions are the same
as that of the previously applied mechanical stress. The resulting solid and fluid
motion and the electric potential at the surface of the bone sample are shown in
Fig. 7. It is worth mentioning that the coupling between solid and fluid induces the
fluid-borne wave, even though there is no explicit coupling between the fluid phase
and piezo-electricity.

The stress, strain, electric field and electric displacement history for the applied
electric displacement at the surface are compared in Fig. 8. The temporal variation
of the electric field (Ez) and displacement (Dz) histories at mid-depth are same as
that of the original pulse applied at the surface. This indicates the non-propagating
nature of the electric field, which can be perceived as a static field (although of
different magnitude at different time instances) superposed over the propagating
elastic field. The relative magnitude of Dz and Ez is about 10−10, which is close to
the value of ε33. This indicates that the Dz envelope does not have sufficient contri-
bution from the mechanical strains. This is partly due to the low magnitude of the
induced mechanical strain and low values of the piezoelectric coupling coefficients.
The static nature of the electric field is also manifested in the strain history, where
the first wave packet appears after 2 µs. This time gap of 1 µs (considering the
fact that responses of all other entities appear at 1 µs) can be baffling at first. How-
ever, this can be explained by the fact that the displacement field for initial wave-
form of the electric field is same everywhere resulting in a zero compressive strain
(∂uz/∂ z = 0). Thus, in the beginning, Ez = Dz/ε33, Szz = 0 and σzz =−e33Dz/ε33.
This also explains the sign and temporal location of the first stress peak (at 1 µs).
However, this stress generates solid (and fluid) displacement, which is not constant
everywhere and in turn, nonzero compressive strain is produced that arrives after 2
µs. The wave nature of the elastic solid and fluid field generates reflections from
the fixed and free end which are further seen in the time history.

4.2 Response of porous PZT to mechanical loading and electric field

In the previous example of bone as a porous media, the coupling between elastic
and electric field was very poor due to low values of the piezoelectric constant, ei j.
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Figure 8: Variation of the strain, stress, electric field and electric displacement mea-
sured at the mid-layer of a bone sample for applied electrical field on the surface

However, for porous piezoelectric ceramic materials, ei j (and εi j) values are quite
high (almost 1000 times the bone material constants). Thus, for PZT, greater in-
teraction between the elastic and electric field can be expected. To investigate this
feature, a PZT sample of 9 mm thickness is considered and subjected to the same
mechanical stress and electric pulse as in the previous example. The material prop-
erties of PZT are given in Table 2 where the porosity of the sample is considered as
50 %. To separate out the effect of large electro-mechanical coupling, it is assumed
that the solid part of the PZT has the same property as that of bone and the pores of
PZT are filled by the same fluid of the previous example.

For applied mechanical stress on the surface, the solid and fluid phase velocity and
the electric potential generated at the surface of the sample are shown in Fig. 9.
It can be easily seen that the propagation speed of the solid phase in PZT is very
high compared to that of bone, as multiple reflections can readily be seen. The
attenuation rate of the waveforms is also higher compared to that of bone, which
can be attributed to the complex valued e33. Since there is no coupling between the
fluid phase and piezo-electricity the slow wave profile is the same as that obtained
for bone and no attenuation is visible. On the other hand the electric potential
history shows considerable attenuation and wave speeds comparable to the solid-
borne wave.
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Figure 9: Variation of the solid and fluid velocity and electric potential measured
at the surface of a porous PZT sample for applied mechanical stress on the surface
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Figure 10: Variation of the strain, stress, electric field and electric displacement
measured at the mid-layer of a porous PZT sample for applied mechanical stress
on the surface
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Figure 11: Variation of the solid and fluid velocity and electric potential measured
at the surface of a porous PZT sample for applied electric field on the surface

Figure 10 illustrates the strain, stress, electric field and electric displacement mea-
sured at the mid-point of the sample. The strain measured in this case is one order
lower than that of bone, which is due to piezoelectric stiffening. On the other hand,
the magnitude of the electric field is one order higher than the previous case of
bone. As observed in the case of bone, the electric displacement generated at the
mid-point is negligible. It is interesting to note that the stress/strain waves are much
more dispersive compared to the fast and slow waves.

Finally, the same electric field of the previous example is applied on the surface of
the porous PZT layer and the surface response is measured and plotted in Fig. 11.
The fast wave profile is similar to the previous case of mechanical actuation. How-
ever, the slow wave profile is markedly different, in fact, quite similar to the fast
wave response. Further, the magnitude of the slow wave mode (appearing at 15 µs)
is quite small compared to the mechanically induced wave. These characteristics
can be explained by the fact that in the case of electrical actuation, the solid phase
is primarily excited, whereas, the fluid phase is excited solely due to the coupling
between solid and fluid. Thus, the fluid phase motion is a scaled version of the solid
phase motion superposed with the slow wave mode. The input energy is primarily
consumed by the solid phase and hence, the reduced peak of the slow wave mode.
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Figure 12: Variation of the strain, stress, electric field and electric displacement
measured at the mid-layer of a porous PZT sample for applied electric field on the
surface

The strain, stress, electric field and displacement histories at the mid-point of the
sample are shown in Fig. 12. It can be observed that the strain wave has finite time
gap to reach the mid-point, whereas, the stress and electric field have reached all the
points in the domain instantaneously. The reason for this phenomenon is explained
in the previous example. Compared to the response of bone (Fig. 8), the electric
field history shows many oscillations arising due to the stronger coupling of PZT
with the elastic field. The electric displacement field, however, retains its initial
shape and static field like characteristic.

5 Summary

A mathematical model of porous piezoelectric media is developed in this work for
predicting the response due to dynamic mechanical and electric field. The govern-
ing equations of motion are solved in the frequency domain to construct analytical
solutions for layered media and half-space. It is assumed that the piezoelectric
coupling exists only with the solid phase and the fluid phase is considered inert.
The solutions obtained in this work indicate that an application of electric field to
a piezoelectric porous material generates both solid and fluid phase deformation.
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Further, the electric field generated due to unit mechanical stress in bone is of the
order of 0.5 µV/mm. On the other hand for a porous PZT the electric field gener-
ated is close to 10 µV/mm. In case of bone, the generated electric field does not
show propagating wave behavior and can be thought of as a static field. However,
in case of PZT, due to strong coupling, the electric field shows multiple reflections
displaying propagating wave behavior. The present model also shows that an ap-
plied electric field primarily excites the solid phase of a porous media and the fluid
phase is excited due to elastic coupling with the solid phase. Thus, for a mechanical
load, the velocity of the fluid phase is more than that of solid phase, whereas, for an
electric pulse, the solid phase velocity is more than that of fluid phase. The porous
piezoelectric model and the solution strategy presented in this work capture the
dynamic behavior of two-dimensional structures at a nominal cost of computation.
Future investigation should be directed towards having experimental measurements
to validate the present model. The model will also be instrumental in understanding
bone regeneration where strong interplay of elastic and electric field exists.
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