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Large-Scale Full Wave Analysis of Electromagnetic Field
by Hierarchical Domain Decomposition Method

A. Takei1, S. Yoshimura1 and H. Kanayama2

Abstract: This paper describes a large-scale finite element analysis (FEA) for a
high-frequency electromagnetic field of Maxwell equations including the displace-
ment current. A stationary Helmholtz equation for the high-frequency electromag-
netic field analysis is solved by considering an electric field and an electric scalar
potential as unknown functions. To speed up the analysis, the hierarchical domain
decomposition method (HDDM) is employed as a parallel solver. In this study, the
Parent-Only type (Parallel processor mode: P-mode) of the HDDM is employed. In
the P-mode, Parent processors perform the entire FEA. In this mode, all CPUs can
be used without idling in an environment of 10-20 CPUs. A whole body cavity res-
onator (TEAM Workshop problem 29) and a real-world commuter train model with
12.8 million degrees-of-freedom are solved to verify accuracy and performance of
the developed method.

Keywords: High-frequency electromagnetic field, Helmholtz equations, Finite
element method, Hierarchical domain decomposition method

1 Introduction

In electronic device design, electromagnetic environment analyses considering Electro-
Magnetic Interference (EMI) become increasingly important. In particular, re-
search and development of high-frequency electromagnetic field analysis techniques
is especially demanded. One technique used is the Finite Difference Time Domain
(FDTD) method, in which simulations can be intuitively performed by discretiz-
ing the physical expression of electromagnetic wave propagation within Yee’s grid
[Luebbers, R.J. and Langdon, H.S. (1996)] [Anzaldi, G. and Silva, F. et al. (2007)].
However, when a detailed calculation model is created based on an actual living
environment, its calculation scale becomes prohibitively large. On the other hand,
the finite element method (FEM), in which an unstructured grid assures bound-
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ary conformity efficiently, is regarded desirable [Fujitsu Ltd. Poynting homepage].
The finite element method has been used to solve the Helmholtz equations in high-
frequency electromagnetic problems, resulting in solving large-scale systems of si-
multaneous linear equations [Vouvakis, N.M. and Lee, J.F. (2004)] [Bertazzi, F. and
Cappelluti, F. et al. (2006)] [Bleszynski, E. and Bleszynski, M. et al. (2004)]. It is
also a crucial problem how to solve such large scale systems of equations derived
from finite element discretization of the Helmholtz equations in high-frequency
electromagnetic problems. It is known that the convergence of the Incomplete
Cholesky Conjugate Orthogonal Conjugate Gradient (ICCOCG) method becomes
worse as the size of the system increases. There have been efforts to improve the
robustness of iterative solution methods in large-scale parallel analyses of electro-
magnetic environment problems requiring a complicated domain [Bielak, J., Ghat-
tas, O. et al. (2005)] [Okamoto, M. and Himeno, R. et al. (2007)] [Takei, A. and
Yoshimura, S., Kanayama, H. (2008)].

Currently, we are conducting a research on large-scale finite element analyses for
problems using more than 10 million complex DOFs (degrees of freedom). In this
study, we solve high-frequency electromagnetic fields in the range of several MHz
to several GHz by using parallelization techniques based on the hierarchical do-
main decomposition method (HDDM). The HDDM has been successfully applied
to solve elastic problems of approximately 100 million DOFs.

In this research, the equations to be solved are formulated according to the E
Method, which takes the electric field E as an unknown function, and accord-
ing to the E-φ Method, which takes the electric field E and the scalar potential
φ as unknown functions. We reported the numerical examples of about 5.2 million
complex DOFs by the E Method with the additional term until now [Takei, A. and
Yoshimura, S., Kanayama, H. (2008)]. The iterative domain decomposition method
based on the Conjugate Orthogonal Conjugate Gradient (COCG) method is applied
to solve the interface problem. In a low-frequency eddy current problem, it has been
shown that the computational time of an interface problem is reduced by the A-φ
Method, which introduces the scalar potential φ into the A Method as an unknown
function [Kanayama, H. and Sugimoto, S. (2006)]. The reentrant type whole cav-
ity resonator model based on TEAM (Testing Electromagnetic Analysis Methods)
workshop problem 29, one of the standard problems in numerical electromagnetic
field analyses, is employed for assessing both accuracy and performance of our
proposed method. To verify the accuracy of the developed method, we compare
the calculated value with an actual measurement as well as the value calculated by
the FDTD method. In addition, we compare the E method and the E-φ Method to
discuss the effects on computational time and memory size. In these analyses, we
employ two models with approximately 6 million and 12 million complex DOFs,
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respectively. To the best of our knowledge, there has been currently no published
result such that the scalar potential φ is considered in large-scale high-frequency
electromagnetic field problems with more than 10 million complex DOFs.

2 Finite element formulation

2.1 E Method

Let Ω be a domain with the boundary ∂Ω. The Helmholtz equation which describes
an electromagnetic field with single angular frequency ω [rad/s] is drawn from
Maxwell’s equations containing the displacement current [Lu, Y.Y. and Zhu, J.
(2007)] [Soares Jr, D. and Vinagre, M.P. (2008)] [Young, D.L. and Ruan, J.W.
(2005)] [Reitich, F. and Tamma, K.K. (2004)]. The Helmholtz equations describing
an electric field E [V/m] are given by (1a) and (1b) below, using the current density
J [A/m2] and the electric field E, and assigning j as an imaginary unit:

rot (1/µrotE)−ω
2
εE = jωJ in Ω (1)

E×n = 0 on ∂ Ω (2)

J = σ Ê (3)

Permittivity and permeability are given by ε = ε0εr and µ = µ0µr, respectively.
Here, ε0 and µ0are the vacuum permittivity [F/m] and permeability [H/m], and εr

and µr are the relative permittivity and permeability, respectively. In this formula-
tion, permittivity becomes complex permittivity ε = ε0εr = ε0ε ′r +σ/ j [Chen, R.S.
and Ping, X.W. et al. (2006)].

The electric field Ê on known points is substituted into (1a) by equation (1c), where
the electrical conductivity is denoted as σ . By solving equation (1a), with imposing
the boundary condition of (1b), we calculate the electric field E. The magnetic field
H is then calculated from the electric field E by post-processing using equation (2)
bellow, which is one of Maxwell’s equations.

rotE− jωµ0µrH = 0 (4)

Finally, we assume that

divJ = 0 in Ω (5)

Next, we describe the finite element descritization. The electric field E is approx-
imated with Nedelec elements (edge elements) [Golias, N.A. and Antonopoulos,
C.S. et al. (1998)]. The finite element approximation is performed as follows
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[Kanayama, H. and Tagami, D. et al. (2000)] [Kanayama, H. and Shioya, R. et al.
(2002)] [Taeyoung, H. and Sangwon S. et al. (2006)] [Soares Jr., D. (2008)].

Find Eh such that

(1/µrotEh, rotE∗h)−ω
2 (εEh,E∗h) = jω (Jh,E∗h) (6)

where (,) denotes the complex valued L2-inner product. Here, Jhis a corrected
electric current density with consideration of the continuity [Kanayama, H. and
Sugimoto, S. (2006)].

2.2 E-φ Method

The scalar potential φ is introduced as an unknown function to the E Method de-
scribed in the previous section. The Helmholtz theorem shown in equation (5) splits
the vector field into the sum of the curl and gradient vectors as follows:

E = E1 +E2 (7)

divE1 = 0 (8)

rotE2 = 0 (9)

E2 =−gradφ (10)

where E1 and E2 represent the curl and gradient parts of the electric field E, respec-
tively. Equation (5) is substituted into equation (1a). Equation (6a) is then obtained
by rewriting E1 to E.

rot (1/µrotE)−ω
2
ε (E−gradφ) = jωJ in Ω (11)

div
{

ω
2
ε (E−gradφ)

}
= 0 in Ω (12)

E×n = 0, on ∂ Ω (13)

J = σ Ê (14)

Equation (6b) is obtained by taking the divergence of (6a). Let complex permittivity
ε , permeability µ , and angle frequency ω be known parameters, as in the E Method.
The electric field E and the scalar potential φ are calculated by the finite element
analysis with (6c) and (6d). The scalar potential φ is approximated with first-order
tetrahedral elements. The finite element approximation is as follows.

Find Eh and φh such that

(1/µrotEh, rotE∗h)−ω
2 (εEh,E∗h)+ω

2 (εgradφh,E∗h) = jω (Jh,E∗h) (15)
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ω
2 (εEh,gradφ

∗
h )−ω

2 (εgradφh,gradφ
∗
h ) = 0 (16)

These formulations based on Maxwell’s equations contain the displacement cur-
rent, which cannot be disregarded in high-frequency electromagnetic field analysis.
The electric field E, which is not usually considered in conventional eddy current
analysis, is also calculated.

3 Algorithm for parallel computing

3.1 Interface problem

Let us put the finite element equations of (4) or (7) in matrix form, as follows:

Ku = f (17)

where K denotes the coefficient matrix, u the unknown vector, and f the known
right-hand side. As shown in the following equation, the domain Ω is decomposed
into N pieces so there is no overlap in the boundary between the subdomains. A
single element makes the minimum possible unit.

Ω =
N⋃

i=1

Ω
(i) (18)

The domain Ω is partitioned into non-overlapping subdomains. Then the linear
system (8) is rewritten as follows:

K(1)
II · · · 0 K(1)

IB R(1)
B

T

0
. . .

...
...

0 · · · K(N)
II K(N)

IB R(N)
B

T

R(1)
B K(1)

IB
T
· · · R(N)

B K(N)
IB

T N
∑

i=1
R(i)

B K(i)
BBR(i)

B
T




u(1)

I
...

u(N)
I
uB

=


f (1)
I
...

f (N)
I
fB

 (19)

where subscripts I, B correspond to nodal points in the interior of the subdomains,

on the interface boundary, respectively. Here, R(i)
B

T
represents the internal DOFs

u(i)
B of subdomain Ω(i) about uB. It is a 0-1 procession to restrict. Equations (11)

and (12) are obtained from equation (10).

K(i)
II u(i)

I = f (i)
I −K(i)

IB u(i)
B i = 1, ...,N (20)

{
N

∑
i=1

R(i)
B

{
K(i)

BB−K(i)
IB

T
(K(i)

II )−1K(i)
IB

}
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B
T
}

uB =
N
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R(i)
B
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f (i)
B −K(i)

IB
T
(K(i)

II )−1 f (i)
I

}
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(21)

where f (i)
B is the right-hand side vector of the equation regarding uB. Equation (12)

represents the interface problem of enforcing the continuity between subdomains
in the domain decomposition method. Here, (K(i)

II )−1 is the inverse matrix of K(i)
II .

Next, (12) is rewritten as equation (13).

SuB = g (22)

where S is described as follows:

S =
N

∑
i=1

R(i)
B S(i)R(i)

B
T

(23)

S(i) = K(i)
BB−K(i)

IB
T
(K(i)

II )−1K(i)
IB (24)

where subscripts S and S(i) are the Schur complement matrix and the local Schur
complement matrix in subdomain Ω(i), respectively.

3.2 Iterative domain decomposition method

The algorithm based on the COCG method is applied to solve the interface problem
shown in equation (13), and the internal boundary DOF uB is calculated first. Here,
δ is a non-negative constant used for testing convergence, and || || indicates the Eu-
clidean norm. Because the construction of the Schur complement matrix S requires
a very large amount of computation time, we replace it with sub-steps (a) and (b),
which are executed in each COCG step. Although a dot product operation must be
performed for both sub-steps, the overall computation time is greatly reduced.
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Finally, the solution of a whole domain can be obtained by calculating each subdo-
main DOF u(i)

I from equation (11). The finite element calculations of (a), (b) and
equation (11) can be performed on each subdomain independently.
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4 Hierarchical domain decomposition method

The original analysis domain is first divided into parts, which are further decom-
posed into smaller domains called subdomains. This is called the hierarchical do-
main decomposition method (HDDM). This is one of the most efficient techniques
for parallel computing. HDDM has some modes depending on roles of processors.

4.0.1 Hierarchical Processor Mode

In the hierarchical processor mode (H-mode) [Yoshimura, S. and Shioya, R. et
al. (2002)], processors are classified into three groups: Grand Parent, Parent, and
Child. One of the processors is assigned as Grand Parent, a few as Parent, and
others as Child. The number of Parent processors is the same as that of the parts.
The number of Child processors can be varied; and it affects parallel performance.

The role of Grand Parent is to organize all processor communications (i.e., message
passing) that occur between all processors. Parents prepare mesh data, manage
finite-element analysis (FEA) results, and coordinate COCG iterations, including
the convergence decision for COCG iterations. Parents send data to Child proces-
sors, where FEA is performed in parallel. After the FEA is finished, Child proces-
sors send the results to the Parents. This computation is repeated until the COCG
iterations converge.

4.0.2 Parallel Processor Mode

An original HDDM is explained in the previous section. However, because most
communication time is spent between Parent processors and Child processors, the
communication speed is important. Although computer performance has been im-
proved by advances in network technology in recent years, a high-speed network
is still expensive. Generally in PC clusters often used, network speed is a bottle-
neck degrading the processing performance of the CPU. Moreover, when parallel
processing performance is considered, it is important to reduce an amount of com-
munications as much as possible. Therefore, the Parent-only type (parallel pro-
cessor mode [P-mode]) is more useful than the H-mode that uses all three groups
[Kanayama, H. and Sugimoto, S. (2006)].

In the P-mode, only Parent processors perform the FEA, which in the H-mode is
computed by Child processors. In the H-mode, although Parent processors store
some of the subdomain analyses data and coordinate the COCG iterations as pri-
mary work, the idle time of the CPU increases because the Parent processors per-
form fewer computations. In contrast, in P-mode, all processors in the P-mode
perform the FEA, and every CPU can be used without idleness in an environment
with 10-20 CPUs. Thus, the P-mode is considered superior to the H-mode in an
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aspect of performance. In the P-mode, the number of Parent processors should be
equal to that of the parts.

 
Figure 1: Data distribution and communication in the parallel processor mode.

5 Verification

5.1 Whole body cavity resonator

A reentrant resonator model is used to verify the accuracy and performance of the
parallel computation, of our proposed method. The cavity is originally invented for
hyperthermic cancer therapy. A disk-shaped lossy dielectric phantom is placed in
the resonator cavity, then radio frequency electromagnetic energy is supplied. Be-
cause the resonant state must be maintained during a heating process, it is important
to derive accurate resonant frequencies beforehand. To do so, the high-frequency
electromagnetic problem must be solved. The cavity has a diameter of 1.90 [m]
and a height of 1.45 [m]. In this analysis, the dielectric phantom of the shape of
a disk with specific dielectric constant εr = 80 and electric conductivity σ = 0.52
[S/m] is placed, and the resonance state is investigated. This problem is one of the
benchmark problems defined as TEAM Workshop Problem 29 [Kanai, Y. (1998)].

The analysis model is shown in Fig. 2 (a). The mesh, divided into first-order
tetrahedral Nedelec elements, is shown in Fig. 2 (b). Verification is performed on
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three kinds of meshes, described in Table 1. As in our previous work involving
low-frequency eddy currents [Kanayama, H. and Sugimoto, S. (2006)], the highest
calculation efficiency is achieved when the number of elements contained in one
subdomain is about 100, and the number of partial domains is determined as such
as that the number of elements contained in one subdomain be equal to 100.

              

(a) Sketch of the model (unit: m)                                          (b) Mesh 

 Figure 2: TEAM Workshop Problem 29.

Table 1: Meshes for verification.
No. of Elements DOFs No. of Subdomains

Mesh (1) 108,787 134,889 36 x 302
Mesh (2) 4,528,311 6,108,779 36 x 1,258
Mesh (3) 10,073,267 13,515,847 36 x 2,798

5.2 Accuracy verification in frequency response analysis

Accuracy verification is performed using Mesh (1). To detect the resonant fre-
quency and to compare solutions with actual measurements, the resonance state
is investigated. The frequency band of 60 [MHz]-140 [MHz] is calculated for
2 [MHz] steps, and the response for every frequency step is investigated. Addi-
tionally, calculations near the resonance frequency are performed in 0.4 [MHz]
intervals. All calculations are performed on an 18-node (36-core) PC cluster with
Core2Duo 1.86 GHz processors and 2 GB RAM. The average CPU time per 1 fre-
quency step and the average memory requirements are shown in Table 2. As for the
E Method, the average CPU time per 1 step is 0.21 [h], and the CPU time solving
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all 73 steps is 14.6 [h]. As for the E-φ Method, the average CPU time per 1 step
is 0.18 [h], and the CPU time solving all 73 steps is 13.4 [h]. By using the E-φ
Method, the CPU time is reduced by 11.5% compared to that using the E Method.
The effect of the shortened CPU time by the introduction of the scalar potential
φ is similar to the result previously reported for the A-φ Method [Kanayama, H.
and Sugimoto, S. (2006)]. Moreover, compared with the E Method, the number of
DOFs for the E-φ Method increases by more than 10%, and the memory usage also
increases by more than 10%. However, since is far smaller than the total memory
available on the cluster, it is not an obstacle in calculations.

Table 2: Average of CPU time and memory requirements.

Formula -tion DOFs CPU time [h] Memory size [Mbyte]

Mesh (1)
E 114,649 0.21 73.7

E-φ 134,889 0.18 88.2

The frequency responses of the magnetic field by the E Method and the E-φ Method
are shown in Fig. 3 (a) and (b), respectively. A comparison between the measured
resonant frequencies and the solutions obtained by the FDTD method in each mode
is shown in Table 3. The solution of the E Method and the E-φ Method are ex-
actly the same as each other for each mode. The maximum error rate between the
obtained solution and the measurement is 4.96% in the 1st mode. As the mode
becomes higher, the error rate decreases. The same tendency is shown in the com-
parison of the error rate with solution of the FDTD method. Therefore, it is proved
that the solution obtained by the proposed method has sufficiently high accuracy.

Table 3: Comparison of resonant frequencies in MHz. (Units: [MHz]. Error rate
between measured data and numerical solution is shown in () [%].)

Resonance Measured FDTD E E-φ
mode data 25-mm mesh Result Result

1st 68.6 67 (2.33) 65.2 (4.96) 65.2 (4.96)
2nd 110 110 109 (0.91) 109 (0.91)
3rd 134 134 134 134

5.3 Performance verification by large-scale model

Performance verification by large-scale computation using Mesh (2) and (3) is de-
scribed next. In the analyses, the 1st mode (65.2 [MHz]) frequency is analyzed.
Other calculation conditions are the same as those for Mesh (1). Average CPU
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(a) Frequency response by the E Method 

 

 
(b) Frequency response by the E-φ Method 

 
Figure 3: Comparison of frequency responses of the E Method and the E-φ Method
with measured data.



Large-Scale Full Wave Analysis 75

time and average memory requirements are shown in Table 4. For Mesh (2) solv-
ing with the E-φ Method, the CPU time is reduced by 11.5% as compared to that
of the E Method. For Mesh (3), the E Method does not converge, but the E-φ
Method successfully converges to compute a result. Although the E-φ Method
uses approximately 10% more memory, the total amount used exceeds 25% of the
available RAM, even for Mesh (3). Therefore, we do not consider memory usage
to be a problem. The residual norm convergence history of COCG iterations in the
interface problem is shown in Fig. 4. For the E Method, the number of iterations
required until convergence is 5,865, whereas 4,685 iterations are required for the
E-φ Method. In the calculations with Mesh (3), we can see the convergence be-
havior of the E Method. Here the interface problem does not converge even after
10,000 iterations. In contrast, by the E-φ Method, convergence is achieved after
4,556 iterations with a calculation time of 16.77 [h]. Those results confirm the su-
periority of the E-φ Method in large-scale computations. It is also demonstrated
that the proposed method with the E-φ Method is able to solved high-frequency
electromagnetic field problems of more than 10 million complex DOFs.

Table 4: CPU time and memory requirements for each mesh.

Formulation DOFs CPU time [h] Memory size
[Mbyte]

Mesh (2)
E 5,355,008 7.43 1,860

E-φ 6,108,799 6.44 2,100

Mesh (3)
E 11,857,646 - -

E-φ 13,515,847 16.77 8,244

5.4 Real-world application

To examine the applicability of the proposed method to in a real-world problem, we
model the environment of a commuter train with four phantoms of human bodies
inside. In such a commuter train, dielectrics such as phantoms and some plastic
parts and metal parts exist. The electromagnetic field distribution may change due
to differences of the geometric arrangement among these materials. Therefore,
it is necessary to reproduce correctly a real environment. Some dielectrics such
as plastic parts, and some reflective parts such as metals, which exist in a real
commuter train, are modeled precisely in this numerical model [Monthly TRAIN
(2004)]. The dimensions of the analysis model are shown in Figs. 5 (a) and (b).
The CAD model is shown in Fig. 5 (c). The model has a length of 3.3 [m], a width
of 3.4 [m], and a height of 3.25 [m]. A phantom is talking on a cellular phone. The
electromagnetic field source is a cylinder type wave source imitating the cellular



76 Copyright © 2009 Tech Science Press CMES, vol.40, no.1, pp.63-81, 2009

 
(a) Mesh (2) 

 
 

 
(b) Mesh (3) 

 
Figure 4: Residual norm on the interface.
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phone. In this analysis, the phantom composition is approximated by water, and
the seats are considered to be plastic. The maximum size of the element edge
length is 0.025 [m]. The number of complex DOFs is 12,869,405. The analysis
frequency is set to be 300 [MHz].

        
(a) Side view                                            (b) Cross section 

 

(c) CAD model. 

 Figure 5: Commuter train model (units: m).

The average CPU time and average memory requirements are shown in Table 5.
The analyses do not converge when using the E Method as seriously as the numer-
ical result in the report [Takei, A. and Yoshimura, S., Kanayama, H. (2008)]. By
contrast, the analyses converge and complete the calculation when using the E-φ
Method. The numerical solution (electric field intensity), visualized by ADVEN-
TURE AutoGL [Kawai H. (2006)], is shown in Fig. 6. The mode of the electric
field E in the commuter train is observed with a peak at the cellular phone circum-
ference.
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Table 5: Average of CPU time and memory requirements.

Formula-tion DOFs CPU time [h] Memory size
[Mbyte]

Commuter
train
model

E 11,289,828 - -

E-φ 12,869,405 8.91 7,849

 
Figure 6: Electric fields in the commuter train.

6 Conclusions

In this paper, a large-scale finite element analysis techniques for high-frequency
electromagnetic fields is newly proposed. Here, based on the hierarchical do-
main decomposition method (HDDM), the Helmholtz equation is discretized from
Maxwell’s equations of the frequency domain, including the displacement current.

Two kinds of formulations by the E Method and the E-φ Method are described and
evaluated. The COCG method is employed to solve an interface problem in the
HDDM.

Accuracy in frequency response analysis is verified by solving using the reentrant
type whole cavity resonator model (TEAM Workshop Problem 29), and the perfor-
mance is also verified by solving a large-scale analysis model. The values calcu-
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lated by the E Method and the E-φ Method agree well each other, and also show
good agreement with actual measurements and the numerical results obtained by
the FDTD method. To assess performance in solving large scale problems, calcula-
tions for 6 million and 12 million complex DOF meshes are performed by both the
E Method and the E-φ Method. When solving the problem with 6 million complex
DOFs, the iterative calculation of the interface problem converges for both meth-
ods. However, as for the problem with 12 million complex DOFs, only the E-φ
Method can converge and complete the calculation. This result shows that the E-φ
Method is useful in large-scale problems.

We further confirm the effectiveness of our method with an environmental model of
a real-world problem, i.e. a person making a cellular phone call in a commuter train.
This high-frequency electromagnetic field analysis, at approximately 300 [MHz],
is carried out using a large-scale numerical environmental model of approximately
12.8 million complex DOFs.
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