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A boundary element formulation for incremental
nonlinear elastic deformation of compressible solids

Sergia Colli1, Massimiliano Gei1 and Davide Bigoni1,2

Abstract: Incremental plane strain deformations superimposed upon a uniformly
stressed and deformed nonlinear elastic (compressible) body are treated by devel-
oping ad hoc boundary integral equations that, discretized, lead to a novel bound-
ary element technique. The approach is a generalization to compressible elastic-
ity of results obtained by Brun, Capuani, and Bigoni (2003, Comput. Methods
Appl. Mech. Engrg. 192, 2461-2479), and is based on a Green’s function here
obtained through the plane-wave expansion method. New expressions for Green’s
tractions are determined, where singular terms are solved in closed form, a fea-
ture permitting the development of a optimized numerical code. An application of
the presented formulation, namely, bifurcation of a compressible Mooney-Rivlin
rectangular block, highlights the strengths of the approach.

Keywords: Green’s function; boundary integral equations; shear bands; bifurca-
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1 Introduction

The presence of prestress strongly influences the incremental response of nonlin-
ear elastic solids, opening the possibility of bifurcations and instabilities (shear
bands included), and ‘shifting’ the natural frequencies of the system towards the
low-frequency range. Consequently, the analysis of the incremental problem in
nonlinear elasticity becomes important in view of various engineering applications
[Stafford, Harrison, Beers, Karim, Amis, Vanlandingham, Kim, Volksen, Miller
and Simonyi (2004), Plante and Dubowsky (2006), Michel, Lopez-Pamies, Ponte
Castañeda and Triantafyllidis (2007), DeBotton, Tevet-Deree and Socolsky (2007),
Bigoni, Gei and Movchan (2008), Gei (2008), Gei, Movchan and Bigoni (2009)].
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2 Corresponding author, Tel. +39 0461 882507; Fax: +39 0461 882599; Web-site:
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It has been shown in a series of recent papers [Bigoni and Capuani (2002, 2005),
Bigoni, Capuani, Bonetti and Colli (2007), Brun, Capuani and Bigoni (2003a, b)]
that Green’s functions and boundary integral equations can be derived and suc-
cessfully applied to the solution of incremental problems of nonlinear elasticity.
This application becomes, say, ‘direct’ when the state of prestress and prestrain is
uniform1, but can also be pursued in cases where this is not, employing volume dis-
cretization, but without introducing domain integrals as shown by Bertoldi, Brun
and Bigoni (2005)2. All these results are referred to incompressible elasticity, while
ordinary materials are usually compressible. Therefore, the question spontaneously
arises whether or not compressible elasticity can also be successfully approached.
We provide a positive and definitive answer to this question in the present article,
so that, with reference to the general constitutive framework for incremental elas-
ticity proposed by Hill (1979), which describes all possible compressible elastic
orthotropic materials, we obtain the following results.

• The Green’s functions for incremental displacements, deformations and stresses
are derived through the plane wave expansion method [Courant and Hilbert
(1962), Gel’fand and Shilov (1964)], within the elliptic regime. Simple for-
mulae are derived in which the singular terms are solved in closed-form. It is
shown that these Green’s functions reduce in the incompressible case to the
corresponding formulae given by Bigoni and Capuani (2002) and Bigoni,
Capuani, Bonetti and Colli (2007).

• Following the perturbative approach to material instabilities proposed by
Bigoni and Capuani (2002, 2005), shear band formation is analyzed near (but
still within) the elliptic boundary for an infinite, compressible material, the
so-called ‘Kirchhoff-Saint Venant material’, thus confirming previous results
obtained in the incompressible limit.

• The boundary element technique for incremental elastic boundary value prob-
lems proposed by Brun, Capuani and Bigoni (2003a, b) and Bigoni, Ca-

1 For uniform prestress, the incremental response of a nonlinear elastic material becomes, in a sense,
similar to that of an orthotropic elastic solid, for which Green’s functions are known [see Vogel
and Rizzo (1973), Cruse (1988), Balas, Sladek and Sladek (1989), Mantic and Paris (1998), Gaul,
Kögl and Wagner (2003), and Shiah, Lin and Tan (2006)].

2 The standard approach to boundary elements for nonlinear constitutive equations, as for instance
elastoplasticity, is to discretize the domain under consideration to treat the hypersingular integrals
connected to the nonlinearity (Swedlow and Cruse, 1971; Mukherjee, 1977; Maier, 1983; Telles,
1983; Sladek and Sladek, 1999; Miers and Telles, 2004). A volume discretization is also needed
when the method proposed by Bertoldi, Brun and Bigoni (2005) is employed, but no hypersingular
terms arise, so that the method results in a sort of direct applications of techniques for linear
anisotropic elasticity.
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puani, Bonetti and Colli (2007) is generalized to compressible incremental
orthotropic elasticity.

The boundary element formulation derived in the present article has been imple-
mented in a Fortran90 collocation code3, in which integrations are numerically
performed using Gaussian quadrature formulae. In this approach, the proposed
boundary element formulation retains the essential advantage that only the bound-
ary of the body is discretized, without introduction of volume terms. The numerical
model has been tested addressing the simple problem of shearing of an elastic block
(for which the analytical solution is available) and attacking the bifurcation prob-
lem of a rectangular compressible Mooney-Rivlin material [Ogden and Roxburgh
(1994)], where an excellent agreement has been found with analytical solutions
(also derived here and included in Appendix B) and with analyses performed with
other commercial codes (ABAQUS).

The paper is organized as follows. After the constitutive framework for incremen-
tal elastic deformations superimposed upon a homogeneously, but arbitrarily, de-
formed elastic material is presented in Section 2, the infinite-body Green’s func-
tions for incremental displacements and for incremental displacement gradient and
nominal incremental tractions are obtained in Section 3. Boundary integral equa-
tions and boundary element discretization are presented in Section 4, while exam-
ples are given in Section 5.

2 Incremental constitutive equations for compressible elastic solids

A compressible, elastic body, is considered, homogeneously prestressed under plane-
strain conditions, with Cauchy principal stresses σ1 and σ2 aligned parallel to the
x1 and x2 axes, respectively. The incremental constitutive equations may be written

in terms of the Jaumann increment of the Kirchhoff stress
∇

τ as [see Hill (1979)]

∇

τ11= µ1v1,1 + µ3v2,2,
∇

τ22= µ3v1,1 + µ2v2,2,

∇

τ12=
∇

τ21= µ(v1,2 + v2,1),
(1)

where a comma denotes partial differentiation and µ , µ1, µ2 and µ3 are instanta-
neous moduli, depending on the prestress state.

3 A general-purpose Fortran90 code for two-dimensional incremental and quasi-static deformations
of compressible elastic solids, superimposed upon a given uniform prestressed state has been de-
veloped at the Solid & Structural Computational Mechanics Laboratory of the University of Trento,
whose executable is available on:
http://www.ing.unitn.it/dims/laboratories/comp_solids_structures.php.
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In an updated Lagrangian formulation, incremental equilibrium requires, in the
absence of body forces, that

ṫi j,i = 0, (2)

where ṫ is the nominal stress increment (transpose of the first Piola-Kirchhoff stress
tensor). Using the relationship between Jaumann increment of Kirchhoff stress and
the increment of nominal stress, namely,

ṫi j =
∇

τi j −σikWk j−Dikσk j, (3)

where Wi j = (vi, j − v j,i)/2 and Di j = (vi, j + v j,i)/2 are the spin tensor and the
stretching tensor, respectively, and the dimensionless constants

k =
σ1−σ2

2µ
, χ =

σ1 +σ2

2µ
, (4)

the constitutive equations (1) can be rewritten in terms of tensor ṫ as

ṫ11 = µ(ā v1,1 + µ̄3 v2,2), ṫ22 = µ(µ̄3 v1,1 + b̄ v2,2),

ṫ12 = µ(ᾱ v2,1 + γ̄ v1,2), ṫ21 = µ (β̄v1,2 + γ̄v2,1),
(5)

where

µ ā = µ1−σ1, µ b̄ = µ2−σ2, µµ̄3 = µ3,

ᾱ = 1+ k, β̄ = 1− k, γ̄ = 1−χ.
(6)

Uniaxial tension (compression) along the x1-axis corresponds to χ = k and k > 0
(k < 0), whereas, along the x2-axis, uniaxial tension (compression) corresponds to
χ =−k and k < 0 (k > 0).

For a hyperelastic material, incremental moduli and current Cauchy stress are func-
tions of principal stretches λ1,λ2,λ3 (λ3 = 1 for plane strain) through the strain-
energy function W (λ1,λ2,λ3), in the following form

µ1 =
1
λ2

(
λ1

∂ 2W
∂λ 2

1
+

∂W
∂λ1

)
, µ2 =

1
λ1

(
λ2

∂ 2W
∂λ 2

2
+

∂W
∂λ2

)
, µ3 =

∂ 2W
∂λ1∂λ2

,

µ =
σ1−σ2

2
λ 2

1 +λ 2
2

λ 2
1 −λ 2

2
, σ1 =

1
λ2

∂W
∂λ1

, σ2 =
1
λ1

∂W
∂λ2

.

(7)

From eqn. (7)4 we obtain

k =
λ 2

1 −λ 2
2

λ 2
1 +λ 2

2
, (8)

regardless of the form of the strain-energy function.
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2.1 The classification of regimes

The substitution of eqns. (5) and (4) into eqn. (2) provides a system of coupled
partial differential equations

āv1,11 +(µ̄3 + γ̄)v2,12 + β̄v1,22 = 0,

b̄v2,22 +(µ̄3 + γ̄)v1,21 + ᾱv2,11 = 0.

(9)

Hill (1979) has classified the general solutions of (9) in the form

vi = Vi f (ρx1 + x2) (i = 1,2), (10)

where f is a twice differentiable function, V1,V2 are constant amplitudes and ρ

satisfies the characteristic equation

āᾱρ
4 + d̄ρ

2 + b̄β̄ = 0, (11)

where

d̄ = āb̄+ ᾱβ̄ − (µ̄3 + γ̄)2. (12)

The regime of the system of differential eqns. (9) depends on the nature of solutions
to eqn. (11), namely

ρ2
+

ρ2
−

}
=
−d̄±

√
d̄2−4āb̄ᾱβ̄

2āᾱ
. (13)

In particular, the elliptic complex (EC) regime corresponds to four complex conju-
gate roots ρ , so that

|d̄|< 2
√

āb̄ᾱβ̄ and āb̄ᾱβ̄ > 0. (14)

In the elliptic imaginary (EI) regime the four solutions (13) are all pure imaginary.
The involved parameters satisfy either

|d̄|> 2
√

āb̄ᾱβ̄ and āᾱ > 0, b̄β̄ > 0, (15)

or

|d̄|<−2
√

āb̄ᾱβ̄ and āᾱ < 0, b̄β̄ < 0. (16)
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In the Hyperbolic (H) regime eqn. (11) admits four real and distinct solutions, so
that d̄ must satisfy

|d̄|> 2
√

āb̄ᾱβ̄ , (17)

together with either

āᾱ > 0, b̄β̄ > 0, d̄ < 0 or āᾱ < 0, b̄β̄ < 0, d̄ > 0. (18)

In the Parabolic (P) regime there are two real and two imaginary roots, a situation
occurring when

āb̄ᾱβ̄ < 0. (19)

The classification of regimes can be graphically represented in the three-dimensional
space spanned by variables X = āb̄− ᾱβ̄ , Y = (µ̄3 + γ̄)2 and Z = āb̄+ ᾱβ̄ . The van-
ishing of the discriminant in condition (13), namely d̄2−4āb̄ᾱβ̄ = 0 or, X2 +Y 2−
2ZY = 0, describes the surface of a cone in that space with the vertex in the origin
and the axis described by equations X = 0 and Y = Z. The cone has circular section
at constant Z. The region inside the cone corresponds to the EC regime, while the
regions corresponding to the other regimes can be inferred from the X/Z−Y/Z
plane representation of Fig. 1.

Simple models of compressible elasticity will be presented below to be employed
in the numerical applications deferred to Section 5.

2.2 Limit of incompressibility and isotropic elasticity

The compressible constitutive equations (5) yield the incompressible constitutive
framework given by Biot (1965) in the limit {µ1, µ2, µ3} −→ ∞, but with their
differences [i.e. µi−µk (i 6= k)] remaining bounded, yielding

4µ
∗ = µ1 + µ2−2µ3 +σ1 +σ2, (20)

where µ∗ is an incremental modulus which, together with µ , governs the in-plane
incompressible response, and depends on the current state.

In the unstressed state (in other words, in the infinitesimal theory)
∇

τ coincides with
the Cauchy stress and, for isotropic materials, the incremental moduli become func-
tions of the Young modulus E and Poisson’s ratio ν as

µ1 = µ2 =
(1−ν)E

(1+ν)(1−2ν)
, µ3 =

ν E
(1+ν)(1−2ν)

, µ =
E

2(1+ν)
. (21)
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Figure 1: Graphical representation of the classification of regimes of equilibrium
[eqns. (9)] in the X/Z−Y/Z plane (X = āb̄− ᾱβ̄ , Y = (µ̄3 + γ̄)2, Z = āb̄ + ᾱβ̄ ).
EI denotes the elliptic imaginary regime, EC the elliptic complex regime, H the
hyperbolic regime, and P the parabolic regime. The paths followed in this plane
during plane-strain uniaxial tension/compression of two Kirchhoff–Saint Venant
elastic materials (λ0 = ν = 0, and λ0/µ0 = 2 corresponding to ν = 0.333) are also
reported.

2.3 Kirchhoff-Saint Venant material

The Kirchhoff-Saint Venant model has well-known limitations4 [see for instance
Ciarlet (1988)], but adds to the merit of a great simplicity the capability of correctly
capturing a number of bifurcations in structures. For this material model, the energy
function takes the simple form

W =
λ0

2
(trE(2))2 + µ0 E(2) ·E(2), (22)

4 Under plane-strain conditions, the tensile branch of the uniaxial true stress–longitudinal stretch
law exhibits a limit stretch –where the stress becomes unbounded– at

λ
t
1 =

√
2(µ0 +λ0)

λ0
,

whereas, in compression, the true stress reaches a maximum loading at

λ
c
1 =

√√√√3
2

+
3µ0

2λ0
−

√
9µ2

0 +14λ0µ0 +5λ 2
0

2λ0
.
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where E(2) denotes the Green-Lagrange strain tensor and λ0 and µ0 are constants
playing the same role of the Lamé constants within the infinitesimal theory, so that
a Poisson’s ratio can be defined by ν = λ0/[2(λ0 + µ0)]. Differentiation of W with
respect to E(2) yields the second Piola-Kirchhoff stress T(2), in the following form

T(2) = λ0(trE(2))I+2µ0 E(2), (23)

akin to the constitutive equations of the infinitesimal elasticity theory. The incre-
mental moduli can be readily calculated employing eqns. (7).

The classification of regimes for this material is illustrated in Fig. 1, where the
paths followed by two different materials (corresponding to Poisson’s ratios equal
to 0 and 0.333) during a monotonic loading starting at λ1 = 1, and corresponding to
uniaxial tension and compression are reported. In these conditions of plane strain
uniaxial stress, loss of ellipticity at the EC/H border always occurs under com-
pressive stress before λ c

1 is reached, while under tensile stress the regime remains
always elliptic.

2.4 Compressible Mooney-Rivlin material

A strain-energy function will be used in the examples, based on the splitting be-
tween isovolumetric and pure volumetric response as

W (λ1,λ2,λ3) = Wiso(λ̄1, λ̄2, λ̄3)+Wvol(J), (24)

where

J = λ1λ2λ3, (25)

and λ̄i = J−1/3λi (i = 1,2,3) are the modified principal stretches. In particular,
a Mooney-Rivlin strain-energy potential is adopted, which, in terms of the strain
invariants Ī1 and Ī2, is expressed by

W = c1(Ī1−3)+ c2(Ī2−3)+
1
c3

(J−1)2, (26)

where c1, c2 and c3 are constitutive parameters expressed in terms of the initial
shear modulus µ0 and initial bulk modulus q0 as

µ0 = 2(c1 + c2), q0 =
2
c3

, (27)

and Ī1 and Ī2 are expressed in terms of the deviatoric stretches λ̄i = J−1/3λi as

Ī1 = λ̄ 2
1 + λ̄ 2

2 + λ̄ 2
3 = I1(B)J−2/3,

Ī2 = λ̄
−2
1 + λ̄

−2
2 + λ̄

−2
3 = I2(B)J−4/3,

(28)
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where I1(B) and I2(B) denote the principal invariants of the left Cauchy-Green
strain tensor B

I1(B) = trB, I2(B) =
1
2
(
I2
1 − trB2). (29)

The relevant incremental moduli can be calculated through eqns. (7). It can be
shown that this material remains always in the elliptic imaginary regime. Being
a compressible material, it is worth mentioning that the Poisson’s ratio for this
material becomes

ν = 1− 3+2µ0c3

6+ µ0c3
. (30)

3 The quasi-static Green’s function

The quasi-static, infinite-body Green’s function for a compressible, elastic material
subject to a homogenous prestress state can be obtained as the solution of eqns. (9)
when a unit point force is applied

ḟ g
j = δ jgδ (x), (31)

acting at the axes origin x = 0, where δ (x) is the two-dimensional Dirac delta
function. The solution is obtained by employing a plane wave expansion method
[Courant and Hilbert (1962), Gel’fand and Shilov (1964)] for which a generic func-
tion h(x) can be written as

h(x) =− 1
4π2

∮
|ωωω|=1

h̃(ωωω ·x)dω, (32)

where ωωω is the radial unit vector centered at the origin of the position vector x
(Fig. 2) and h̃ is the transformed function. Noting that the transformed function δ̃

of the Dirac delta is δ̃ (ωωω ·x) = 1/(ωωω ·x)2, equilibrium equations in the transformed
domain are [see the derivation in Bertoldi, Brun and Bigoni (2005)]

Aik(ωωω) ṽg
k
′′(ωωω ·x)+δigδ̃ = 0, (33)

where Aik is the acoustic tensor associated with the constitutive eqns. (5) and a
prime denotes differentiation with respect to the argument ωωω · x. Henceforth, our
attention will be focused on the elliptic regime (EI or EC) in which the acoustic
tensor is not singular, and where the solution to eqn. (33) is

ṽg
i (ωωω ·x) = (A−1)ig log |ωωω · x̄|, (34)
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Figure 2: Reference system, vectors ωωω , x, n, and angles θ , α and φ .

where x̄ is a dimensionless measure of x. The Green’s function can now be obtained
by antitransforming eqn. (34)

vg
i (x) =− 1

4π2

∮
|ωωω|=1

(A−1)ig log |ωωω · x̄|dω. (35)

Introducing the radial measure of the distance r̄ = |x̄| and the angle α between ωωω

and x (Fig. 2), the Green’s function for incremental displacement satisfying eqns.
(9) can be expressed as

vg
i (x) =− log r̄

4π2

∫ 2π

0
(A−1)ig dα− 1

4π2

∫ 2π

0
(A−1)ig log |cosα|dα. (36)

3.1 The incremental displacements

The components of the acoustic tensor A(ωωω) appearing in eqn. (33) for the consti-
tutive eqns. (5) are

A11 = µ(āω
2
1 + β̄ω

2
2 ), A22 = µ(ᾱω

2
1 + b̄ω

2
2 ), (37)

A12 = A21 = µ(µ̄3 + γ̄)ω1ω2.

The determinant of the acoustic tensor (37) is µ2Λ(α +θ), where

Λ(α +θ) = āᾱ sin4(α +θ) [cot2(α +θ)−ρ
2
+][cot2(α +θ)−ρ

2
−], (38)

in which α + θ = arctan(ω2/ω1) and ω1 and ω2 are the components of the vector
ωωω along the x1 and x2 axes.
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Note that Λ(α +θ) is always different from zero in the elliptic regime and

Λ(0) = Λ(π) = āᾱ, Λ(π/2) = Λ(3π/2) = b̄β̄ . (39)

Employing eqn. (36), with the inverse of the acoustic tensor (37), the Green’s
function in nondimensional polar coordinates r̄ and θ becomes

v1
1 =− 1

2πµ ā

(
η1−

b̄
ᾱ

η2

)
log r̄

− 1
2π2µ

∫
π

0

ᾱ cos2(α +θ)+ b̄sin2(α +θ)
Λ(α +θ)

log |cosα|dα,

v2
2 =− 1

2πµᾱ

(
η1−

β̄

ā
η2

)
log r̄

− 1
2π2µ

∫
π

0

ācos2(α +θ)+ β̄ sin2(α +θ)
Λ(α +θ)

log |cosα|dα,

v2
1 = v1

2 =
µ̄3 + γ̄

2π2µ

∫
π

0

sin(α +θ)cos(α +θ)
Λ(α +θ)

log |cosα|dα,

(40)

where

η1 =
1√

−ρ2
+ +

√
−ρ2
−

, η2 =
1

ρ2
−

√
−ρ2

+ +ρ2
+

√
−ρ2
−

. (41)

Note that the terms multiplying log r̄ in eqns. (40) are all independent of θ and have
been solved explicitly; moreover, all remaining functions of α are π–periodic.

3.2 The gradient of incremental displacements

The gradient of incremental displacements is necessary for the formulation of the
boundary element technique and can be obtained either directly from eqns. (40),
employing the rule

∂vg
i

∂x1
= cosθ

∂vg
i

∂ r
− sinθ

r
∂vg

i
∂θ

,
∂vg

i
∂x2

= sinθ
∂vg

i
∂ r

+
cosθ

r
∂vg

i
∂θ

, (42)

where r = |x|, or by differentiation and subsequent transformation of ṽg as

vg
i,k =− 1

4π2

∮
|ωωω|=1

ṽg
i,k(ωωω ·x)dω. (43)
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By application of the chain rule, it turns out that the spatial gradient of a generic
function h̃ in the transformed domain writes as

grad h̃ = h̃′(ωωω ·x)ωωω, (44)

so that, from (34), we obtain

ṽg
i,k = (A−1)ig ωk. (45)

In both cases the result remains the same, namely,

v1
1,1 =− cosθ

2πrµ ā

(
η1−

b̄
ᾱ

η2

)
+

sinθ

2π2rµ

∫
π

0
ζ1(α +θ) log |cosα|dα,

v1
1,2 =− sinθ

2πrµ ā

(
η1−

b̄
ᾱ

η2

)
− cosθ

2π2rµ

∫
π

0
ζ1(α +θ) log |cosα|dα,

v1
2,1 =− sinθ

2π2rµ

∫
π

0
ζ2(α +θ) log |cosα|dα,

v1
2,2 =

cosθ

2π2rµ

∫
π

0
ζ2(α +θ) log |cosα|dα,

(46)

for g = 1, and

v2
1,1 = v1

2,1, v2
1,2 = v1

2,2,

v2
2,1 =− cosθ

2πrµᾱ

(
η1−

β̄

ā
η2

)
+

sinθ

2π2rµ

∫
π

0
ζ3(α +θ) log |cosα|dα,

v2
2,2 =− sinθ

2πrµᾱ

(
η1−

β̄

ā
η2

)
− cosθ

2π2rµ

∫
π

0
ζ3(α +θ) log |cosα|dα,

(47)

for g = 2, where functions ζi(ξ ) (i = 1,2,3) are given by

ζ1(ξ ) =
Λ(ξ )(b̄− ᾱ)sin2ξ −Λ′(ξ )(ᾱ cos2 ξ + b̄sin2

ξ )
Λ2(ξ )

,

ζ2(ξ ) =
(µ̄3 + γ̄)(Λ(ξ )cos2ξ −Λ′(ξ )sinξ cosξ )

Λ2(ξ )
,

ζ3(ξ ) =
Λ(ξ )(β̄ − ā)sin2ξ −Λ′(ξ )(ācos2 ξ + β̄ sin2

ξ )
Λ2(ξ )

,

(48)

with Λ′(ξ ) = dΛ(ξ )/dξ .
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3.3 The nominal incremental stresses

The Green’s functions for incremental nominal stresses can now be obtained using
the Green’s functions for the gradient of incremental displacements (46) and (47)
into the constitutive laws (5) as

ṫg
11 = µ(ā vg

1,1 + µ̄3 vg
2,2), ṫg

22 = µ(µ̄3 vg
1,1 + b̄ vg

2,2),

ṫg
12 = µ(ᾱ vg

2,1 + γ̄ vg
1,2), ṫg

21 = µ(β̄vg
1,2 + γ̄vg

2,1).
(49)

3.4 The quasi-static tractions

Although the Green’s functions for incremental applied nominal tractions τ
g
j at a

boundary of unit outward normal n can be evaluated through substitution of eqns.
(5) into

τ
g
j = ṫg

i jni, (50)

an alternative derivation has been suggested by Bigoni, Capuani, Bonetti and Colli
(2007). The alternative will now be followed, since it has the merit that it leads to
formulae more explicit than those that can be directly achieved from eqn. (50). We
operate, in particular, employing the plane wave expansion of nominal traction

τ
g
j (x) =− 1

4π2

∮
|ωωω|=1

τ̃
g
j (ωωω ·x)dω, (51)

where

τ̃
1
1 =

1
ωωω ·x

{
n1

ω1
− n1ω2−n2ω1

Λ(ωωω)

[
b̄β̄

ω2

ω1
−{γ̄(µ̄3 + γ̄)+ β̄ (b̄− ᾱ)}ω1ω2

]}
,

[5mm]τ̃2
2 =

1
ωωω ·x

{
n2

ω2
+

n1ω2−n2ω1

Λ(ωωω)

[
āᾱ

ω2

ω1
−{γ̄(µ̄3 + γ̄)+ ᾱ(ā− β̄ )}ω1ω2

]}
,

[5mm]τ̃1
2 =

1
ωωω ·x

n1ω2−n2ω1

Λ(ωωω)
(γ̄ b̄ω

2
2 − µ̄3ᾱω

2
1 ),

[5mm]τ̃2
1 =

1
ωωω ·x

n1ω2−n2ω1

Λ(ωωω)
(µ̄3β̄ω

2
2 − γ̄ āω

2
1 ).

(52)

Assuming that the normal to the material surface, to which the traction is referred,
can be expressed in terms of the angle φ measured from θ (see Fig. 2) as

n1 = sin(φ +θ), n2 =−cos(φ +θ), (53)
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the tractions (52) become (see Appendix A)

τ1
1 =

sinφ

2π2r

{
b̄β̄ −
∫

π

0

tanα tan(α +θ)
Λ(α +θ)

dα

−[γ̄(µ̄3 + γ̄)+β̄ (b̄− ᾱ)]−
∫

π

0

tanα sin(α +θ)cos(α +θ)
Λ(α +θ)

dα

}
,

τ2
2 =− sinφ

2π2r

{
āᾱ−
∫

π

0

tanα cot(α +θ)
Λ(α +θ)

dα

−[γ̄(µ̄3 + γ̄)+ᾱ(ā− β̄ )]−
∫

π

0

tanα sin(α +θ)cos(α +θ)
Λ(α +θ)

dα

}
,

τ1
2 =

sinφ

2π2r
−
∫

π

0

tanα

Λ(α +θ)
[µ̄3ᾱ cos2(α +θ)− γ̄ b̄sin2(α +θ)]dα

+
cosφ

2πrā

(
µ̄3η1 +

γ̄ b̄
ᾱ

η2

)
,

τ2
1 =

sinφ

2π2r
−
∫

π

0

tanα

Λ(α +θ)
[γ̄ ācos2(α +θ)− µ̄3β̄ sin2(α +θ)]dα

+
cosφ

2πrᾱ

(
γ̄η1 +

µ̄3β̄

ā
η2

)
.

(54)

Expressions (53) are singular for θ = π/2, but can be regularized by applying the
rule

−
∫ b

a
f (x)g(x)dx =

∫ b

a
[ f (x)− f (x0)]g(x)dx+ f (x0)

∫ b

a
g(x)dx, (55)

where function g(x) is singular at x0 ∈ [a,b], while function f (x) remains regular
everywhere in [a,b]. Furthermore, the following Cauchy principal values can be
calculated

−
∫

π

0

dα

π/2−α
= 0, −

∫
π

0

dα

β −α
= log

∣∣∣∣ β

β −π

∣∣∣∣ . (56)



A boundary element formulation 43

In detail, assuming 0≤ θ ≤ 2π , expressions (54) become

τ
1
1 =

sinφ

2π2r

×
{

b̄β̄

[∫
π

0

(
tanα tan(α +θ)

Λ(α +θ)
+

cotθ

Λ(π/2+θ)cosα
− cotθ

Λ(π/2)(β1−α)

)
dα

+
cotθ

Λ(π/2)
log
∣∣∣∣ β1

β1−π

∣∣∣∣]− [γ̄(µ̄3 + γ̄)+ β̄ (b̄− ᾱ)]∫
π

0

(
tanα sin(α +θ)cos(α +θ)

Λ(α +θ)
+

sinθ cosθ

Λ(π/2+θ)cosα

)
dα

}
,

τ
2
2 =− sinφ

2π2r

×
{

āᾱ

[∫
π

0

(
tanα cot(α +θ)

Λ(α +θ)
+

tanθ

Λ(π/2+θ)cosα
− tanθ

Λ(π)(β2−α)

)
dα

+
tanθ

Λ(π)
log
∣∣∣∣ β2

β2−π

∣∣∣∣]− [γ̄(µ̄3 + γ̄)+ ᾱ(ā− β̄ )]
∫

π

0

(
tanα sin(α +θ)cos(α +θ)

Λ(α +θ)
sinθ cosθ

Λ(π/2+θ)cosα

)
dα

}
,

τ
1
2 =− sinφ

2π2r

×
∫

π

0

(
tanα[γ̄ b̄sin2(α +θ)− µ̄3ᾱ cos2(α +θ)]

Λ(α +θ)
− γ̄ b̄cos2 θ − µ̄3ᾱ sin2

θ

Λ(π/2+θ)cosα

)
dα

+
cosφ

2πrā

(
µ̄3η1 +

γ̄ b̄
ᾱ

η2

)
,

τ
2
1 =− sinφ

2π2r

×
∫

π

0

(
tanα[µ̄3β̄ sin2(α +θ)− γ̄ ācos2(α +θ)]

Λ(α +θ)
− µ̄3β̄ cos2 θ − γ̄ āsin2

θ

Λ(π/2+θ)cosα

)
dα

+
cosφ

2πrᾱ

(
γ̄η1 +

µ̄3β̄

ā
η2

)
, (57)
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with angles β1, β2 defined as

β1 =



π

2
−θ if 0 < θ ≤ π

2
,

3π

2
−θ if

π

2
≤ θ ≤ 3π

2
, θ 6= π,

5π

2
−θ if

3π

2
≤ θ < 2π,

(58)

β2 =


π−θ if 0≤ θ ≤ π, θ 6= π

2
,

2π−θ if π ≤ θ ≤ 2π, θ 6= 3π

2
.

(59)

Note that when θ vanishes or equals π in eqn. (57)1 or θ equals π/2 or 3π/2 in
eqn. (57)2, the integrals become hypersingular and retain a meaning only in the
Hadamard sense. Therefore, in the limits θ → 0 or θ → π , eqn. (57)1 reduces to

τ1
1 =

sinφ

2π2r

{[∫
π

0

(
b̄β̄ tan2 α

Λ(α)
− 1

(π/2−α)2

)
dα− 4

π

]
−[γ̄(µ̄3 + γ̄)+ β̄ (b̄− ᾱ)]

∫
π

0

sin2
α

Λ(α)
dα

}
,

(60)

while, when θ → π/2 or θ → 3π/2, eqn. (57)2 reduces to

τ2
2 =

sinφ

2π2r

{[∫
π

0

(
āᾱ tan2 α

Λ(α +π/2)
− 1

(π/2−α)2

)
dα− 4

π

]
−[ᾱ(ā− β̄ )+ γ̄(µ̄3 + γ̄)]

∫
π

0

sin2
α

Λ(α +π/2)
dα

}
,

(61)

so that the integrals are regularized and correspond to Hadamard finite parts in the
above eqns. (60) and (61).

4 Boundary element formulation

We consider here a homogeneously deformed nonlinear elastic solid, with a con-
tinuous and piecewise smooth boundary [Kellog (1953)], subjected to incremental
tractions and displacements on prescribed parts of the boundary

vi = v̄i on ∂Bv, and τi = τ̄i on ∂Bτ . (62)
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Figure 3: Angles θ0 and θ1 for a corner point y.

The boundary integral equation for incremental displacements at a point y belong-
ing to B̄ = B∪∂B, in the form obtained by Bigoni and Capuani (2002), is

Cg
i vi(y) =

∫
∂B

τi(x)vg
i (x,y)dlx−−

∫
∂B

τ
g
i (x,y)vi(x)dlx, (63)

where Cg
i is the so-called C-tensor defined such that:

• C = I, at internal points of B;

• C = I/2, at points on a smooth portion of the boundary ∂B;

• at corner points of a piecewise-smooth boundary:

Cg
i = lim

r→0

∫
θ1

θ0

τ
g
i (r,θ)rdθ , (64)

where r and θ are polar coordinates centered at the corner point y and θ0 and
θ1 are the angular coordinates of the half-tangents to the boundary at y (Fig.
3).

Note that the C-tensor depends on material parameters, prestress state and geom-
etry of the boundary. Values of the components of this tensor for a π/2–corner
are listed in Table 1, for a Kirchhoff-Saint Venant material with λ0/µ0 = 2, cor-
responding to ν = 0.333 (the diagonal terms C1

1 and C2
2 , both equal to 1/4, are not

reported for conciseness). Different values of in-plane deviatoric prestress k and in-
plane hydrostatic stress χ have been explored. As a consequence of the fact that the
first Piola-Kirchhoff stress is unsymmetric, the C-tensor results also unsymmetric,
when the deviatoric prestress is different from zero.
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Table 1: C-matrix for a Kirchhoff-Saint Venant material with λ0/µ0 = 2. The
collocation point y is set at a right-angle corner. Diagonal terms C1

1 and C2
2 are

equal to 1/4 from symmetry considerations.

χ = k C1
2 C2

1 χ =−k C1
2 C2

1
k = 0.00 0.11936 0.11936 k = 0.00 0.11936 0.11936
k = 0.20 0.11388 0.09196 k =−0.20 0.09196 0.11388
k = 0.40 0.10492 0.07074 k =−0.40 0.07074 0.10492
k = 0.60 0.09098 0.05265 k =−0.60 0.05265 0.09098
k = 0.80 0.06804 0.03499 k =−0.80 0.03499 0.06804
k = 0.95 0.03503 0.01722 k =−0.95 0.01722 0.03503

The boundary ∂B is discretized into elements Γe (e = 1, . . . ,m) of length le to arrive
at a boundary element formulation. Within each element, the following representa-
tions are employed for incremental displacements and tractions

vi = ϕp(ξ ) v̄e
ip, τi = ϕp(ξ ) τ̄

e
ip (p = 0, · · · ,Θ), (65)

where ξ ∈ [0,1], v̄e
ip and τ̄e

ip are, respectively, nodal incremental displacements and
nominal tractions, ϕp are Lagrange polynomial shape functions of degree Θ (Θ = 1
in the applications) and the repeated index p is to be summed between 0 and Θ. Em-
ploying representation (65) and collocating the point y at y(ē,p̄), corresponding to
the node p̄ of the element ē, the boundary integral equation (63) can be discretized
as

Cg
i v̄ē

ip̄ +
m

∑
e=1

v̄e
ip

∫
Γe

ϕp(ξ )τg
i (x(ξ ),y(ē,p̄))dlξ =

m

∑
e=1

τ̄
e
ip

∫
Γe

ϕp(ξ )vg
i (x(ξ ),y(ē,p̄))dlξ .

(66)

Eqn. (66) is then collocated at the m nodes along the two directions x1 and x2,
leading to an algebraic system of 2m equations in 2m unknowns.

5 Applications and numerical results

The main purpose of this Section is to test the validity of the boundary element for-
mulation on problems of prestressed elastic compressible solids. Before presenting
these applications, however, a digression is instrumental on the analysis of shear
band formation using the perturbative approach proposed by Bigoni and Capuani
(2002), which has never previously been used for compressible materials.
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5.1 Perturbative approach to shear band formation

Following the traditional approach [Rice (1977)], the formation of shear bands can
be considered as the emergence of discontinuous strain rate patterns, which become
possible when the boundary of the elliptic regime is reached. When this occurs, two
situations become possible:

• at the EI/P boundary shear bands are always aligned parallel to the tensile
axis for uniaxial traction and orthogonal to the compressive direction for
uniaxial compression;

• at the EC/H boundary two shear bands become possible, equally inclined
with respect to the principal axes of prestress at an angle ς between the x1–
axis and the shear band plane, solution of

tanς =±

√
2āᾱ− d̄
2b̄β̄ − d̄

. (67)

Using solution (40), a perturbative approach to localized deformations can be pur-
sued, following the Bigoni and Capuani (2002) proposal. In fact, since the in-
cremental problem is linear, several loading systems can be constructed by super-
imposing the unit force solution (40). We consider in this Section a dipole in an
infinite prestressed medium, which is the simplest self-equilibrated perturbation.
In particular, we consider two equal and opposite unit incremental forces acting at
a distance 2l and inclined of an angle ε (positive in the counterclockwise sense)
with respect to the principal axis of prestress x1. The modulus of the incremental
displacement field may be easily evaluated by superposition, using eqns. (40).

Level sets of the modulus of incremental displacement |v| are reported in Fig. 4 for
a Kirchhoff–Saint Venant material with λ0/µ0 = 2 (corresponding to ν = 0.333,
see Section 2.3 and Fig. 1), and a dipole inclined at angles ε = 0, ε = π/4, and
ε = π/2 with respect to the x1–axis. Three values of uniaxial compressive prestress
in the direction of the x2–axis have been considered, namely, k = 0.55 (close to the
EC/H boundary), k = 0.37, and k = 0.

An examination of Fig. 4 and a comparison with analogous results relative to in-
compressible elasticity [Bigoni and Capuani (2002)] reveals that volumetric com-
pressibility does not introduce qualitative changes and that the perturbative ap-
proach correctly predicts the shear band onset and directional properties.

5.2 Numerical results

The boundary element formulation developed in the previous sections has been im-
plemented into a Fortran 90 code and tested for different boundary value problems.
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Figure 4: Level sets of the modulus of the incremental displacement for a dipole ori-
ented at an angle ε with respect to the principal axis of prestress x1, for a Kirchhoff-
Saint Venant material (λ0/µ0 = 2, ν = 0.333, see Fig. 1 for the classification of
regimes of this material), at different level of compressive prestress. The inclina-
tion of bands visible when the prestress is near the EC/H boundary, k = 0.55, agrees
well with that predicted by eqn. (67), ς = 16◦49.

Linear shape functions have been adopted for incremental displacements and trac-
tions at the boundary and integrals have been numerically computed by standard
Gauss quadrature rules.

We consider in the following deformations of elastic blocks subject to uniaxial
stress and incrementally loaded i.) under shear and ii.) by symmetric and antisym-
metric perturbations, to reveal the onset of bifurcations in diffuse modes.
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5.2.1 Square elastic block under simple shear deformation

The first example consists of a square, elastic, orthotropic block of edge 2b, con-
strained to homogeneous plane deformations, subject to an incremental nominal
shear stress τ21 applied to the upper edge (Fig. 5).
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Figure 5: Simple shear deformation of an elastic block: dimensionless incremental
displacement of the corner point C versus prestress k. The numerical solution,
obtained with different numbers of Gauss nodes for Green’s functions (NG) and
for the boundary integral equations (NB), is compared with the analytical one, eqn.
(68).

A uniaxial state of prestress with principal directions aligned parallel to the edges
of the block is prescribed in terms of the non-dimensional parameters k and χ , the
latter taken equal to −k, so that σ1 is always null, while the block is subjected to
compression (k > 0) or tension (k < 0) aligned parallel to the x2-direction. The
analytical solution is known for this simple boundary value problem [see Bigoni,
Capuani, Bonetti and Colli (2007)] and can be written as

v1(x2) = (x2 +b)τ21
µ(1− k) , v2 = 0. (68)

Note that the solution (68) does not involve the material parameters µ1, µ2 and
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µ3, so that it remains valid for every µ and for k 6= 1. In the limit k → 1 the
material becomes vanishing stiff in the horizontal direction and the corresponding
displacement tends to infinity, so that a horizontal strain discontinuity (shear band)
becomes possible.

The numerical solution has been compared with the analytical one, eqn. (68),
adopting a uniform mesh of 72 boundary elements. Results in terms of non-
dimensional horizontal displacement of point C versus prestress parameter k are
displayed in Fig. 5. The number of Gauss points used for integrations of Green’s
functions (NG) and of boundary equations (NB) has been varied from 12-18 to 24-
36, respectively. In the latter case the numerical accuracy is higher, especially in
proximity of the parabolic boundary, which occurs at k = 1 (k = −1) in compres-
sion (in tension). It can be concluded that the numerical procedure is quite accurate,
but the numerical precision decreases for increasing k, so that the number of Gauss
points has to be increased to get results with comparable accuracy.

5.2.2 Bifurcation of a square elastic block

Loss of uniqueness is investigated in the incremental response of a uniaxially pre-
stressed square (in the current configuration) elastic block under plane-strain con-
ditions (λ3 = 1, J = λ1λ2), made up of compressible Mooney-Rivlin material (see
Section 2.4). In particular, we prescribe a homogeneous uniaxial compression σ2
along the x2–axis (σ2 < 0), so that by imposing the vanishing of tractions on the
lateral free sides (σ1 = 0), a relation between the in-plane stretches λ1 and λ2 can
be derived, namely

c1c3J2/3(2λ
2
1 −λ

2
2 −1)+3J7/3(J−1)+ c2c3(λ 2

1 −2λ
2
2 + J2) = 0, (69)

from which, for a given λ2, the value of λ1 can be evaluated, thus providing the
prestrain/prestress state.

Antisymmetric (and symmetric) bifurcations from this state are analyzed with our
BE code applying an antisymmetric (symmetric) perturbation load (τ in Figs. 6
and 7) on small portions of the lateral edges equal, respectively, to 1/6 and 2/9
of the total edge length. A coarse integration with NG=12 and NB=18 and a fine
integration with NG=24 and NB=36 have been adopted. The latter gives a much
better agreement with an exact analysis (reported in Appendix B and predicting
an antisymmetric mode for k ' 0.416 and a symmetric mode for k ' 0.595) and
with the numerical solution obtained with the commercial code ABAQUS-Standard
(Ver. 6.5–ABAQUS Inc., Providence, RI), as evidenced in Figs. 6 and 7.

In Figs. 6 and 7 the dimensionless horizontal incremental displacement of a rep-
resentative point of each problem (denoted with letter A) is plotted versus the pre-
stress k. It is clear that the stiffness in the incremental response varies significantly
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as a function of k. In particular, whereas a tensile prestress (k < 0) increases the
stiffness in the incremental problem, a compression state (corresponding to posi-
tive values of k) induces stiffness degradation, as can be inferred from the deformed
shapes of the lateral edges shown in Figs. 8 and 9 for three different values of k,
obtained at constant incremental load τ . This degradation becomes dramatic when
a critical value of k is reached, beyond which the stiffness becomes negative.

The numerical results obtained with our BE code are compared with the results
obtained with ABAQUS employing four-noded plane-strain quadrilateral elements
(CPE4) in Figs. 8 and 9. For the antisymmetric mode, results are in excellent
agreement, even when the bifurcation stresses k = 0.413 and k = 0.595 are ap-
proached. In both cases the qualitative deformations are similar for every value of
k, and the incremental displacements tend to blow up when the bifurcation point is
approached.
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Figure 6: Dimensionless horizontal incremental displacement of point A ver-
sus prestress k for antisymmetric perturbations of a compressible Mooney-Rivlin
square block prestressed under uniaxial tension/compression. NG: number of
Gauss nodes employed in the integration of the Green’s function; NB: number of
Gauss nodes employed in the integration of the boundary integral equation. The
asymptote in the graph corresponds to the first antisymmetric bifurcation mode,
occurring at k = 0.416 and calculated with the analysis reported in Appendix B.
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Figure 7: Dimensionless horizontal incremental displacement of point A versus
prestress k for symmetric perturbations of a compressible Mooney-Rivlin square
block prestressed under uniaxial tension/compression. NG: number of Gauss nodes
employed in the integration of the Green’s function; NB: number of Gauss nodes
employed in the integration of the boundary integral equation. The asymptote in the
graph corresponds to the first symmetric bifurcation mode, occurring for k = 0.595
and calculated with the analysis reported in Appendix B.

Finally, different results pertaining to the antisymmetric perturbation are reported
in Fig. 10, for a Mooney-Rivlin material with decreasing values of the ratio ν =
{0,0.18,0.32,0.40,0.50} (corresponding to µ0/q0 = {3/2,4/5,2/5,1/5,0}), are
shown. It is evident that the critical value of k increases with the increase of the ratio
ν . In the limit of incompressibility, ν = 0.5, the critical stress approaches that ob-
tained for incompressible Mooney-Rivlin model [Brun, Capuani, Bigoni (2003b)].

5.2.3 Bifurcations of a rectangular elastic block at different aspect ratios and
comparison with the Euler buckling model

The critical buckling stress for an elastic block of compressible Mooney-Rivlin
material (again under plane-strain conditions) is investigated in this Section for dif-
ferent values of aspect ratio, l/b in Fig. 11. Three different loading and constraint
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Figure 8: Profiles of the dimensionless incremental displacement components of
the vertical edge of the square compressible Mooney-Rivlin block (Fig. 6), for
different values of prestress parameter k. Left: component v1; right: component v2.
The bifurcation load corresponds to k ' 0.416.

schemes are considered, as represented in Fig. 11, where the qualitative deforma-
tions obtained with our numerical code near bifurcation are reported for l/b = 2.

Results in terms of the dimensionless critical prestress |σb
2 |/µ0 versus the aspect

ratio l/b are reported in Fig. 12 for ν = 0.32 (µ0/q0 = 2/5). Numerical results
obtained with our BE code are compared with the corresponding approximate so-
lutions obtained with the Euler buckling model, i.e.

|σb
2 |

µ0
=

π2

6(1−ν)

(
b
l0

)2

, (70)

where l0 is the ‘effective length’, respectively equal to l, 2l, l/
√

2 for the first, sec-
ond and third case. Furthermore, an analytical solution of a situation very similar to
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Figure 9: Profiles of the dimensionless incremental displacement components of
the vertical edge of the square compressible Mooney-Rivlin block (Fig. 7), for
different values of prestress parameter k. Left: component v1; right: component v2.
The bifurcation load corresponds to k ' 0.595.

case 1, namely, two rigid smooth constraints at the upper and lower face is provided
(deferred to Appendix B).

It can be observed that for high aspect ratios l/b, in other words for slender elastic
blocks, the values obtained with our BE code are in good agreement with those
predicted by the Euler model. However, the Euler model becomes inaccurate for
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Figure 10: Dimensionless incremental displacement of the corner point A versus
prestress k for an antisymmetric perturbation (geometry of Fig. 6), for different
values of the ratio ν for compressible Mooney-Rivlin solid.

low ratios l/b and a numerical approach is mandatory to study the instability of
thick specimens under different constraint conditions (the analytical solution is
only available for the constraints of infinite normal stiffness and free tangential
sliding, the so-called ‘case 1’). Our boundary element approach becomes now a
useful tool to compute the buckling loads for thick elastic blocks. In particular, the
limit l/b→ 0 for case 1 corresponds to surface instability stress, as checked with
the analytical solution reported in Appendix B. For cases 2 and 3, the approached
values for l/b→ 0 are lower than that for case 1 and strongly depend on the bound-
ary conditions of the specimen (Fig. 11) which provide a different constraint to
the block. However, caution should be exercised in the interpretation of numerical
results for very low values of l/b.

6 Conclusions

Infinite-body Green’s functions for incremental displacements, displacement gradi-
ents, nominal stresses and tractions have been derived for a uniformly prestressed
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Figure 11: Loading and constraint schemes for the numerical simulations of Fig.
12, qualitative deformations near the bifurcation load for l/b = 2 and corresponding
Euler buckling modes.

and prestrained nonlinear compressible elastic solid. From these singular solu-
tions and relevant boundary integral equations, a boundary element technique has
been developed to analyze incremental problems of nonlinear elastic deformations.
When the incremental deformation is superimposed upon a uniform state, the for-
mulation does not involve any volume integral (with the possible exception when
body forces are present) and yields an elegant and efficient numerical tool useful in
the analysis of bifurcation loads and modes, including shear bands.

The extension of the proposed approach to nonuniform ground fields has not been
addressed, but can be certainly pursued through a generalization of the technique
proposed by Bertoldi, Brun and Bigoni (2005), therefore opening the way to a new
boundary element approach for nonlinear elastic deformations.
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Figure 12: Dimensionless buckling load |σb
2 |/µ0 versus aspect ratio l/b for an

elastic block of compressible Mooney-Rivlin material with ν = 0.32. Numerical
results obtained with the BE code for the three cases of Fig. 11 are compared with
the corresponding buckling loads obtained with the Euler formula (70). For case 1,
results obtained from the exact analysis developed in Appendix B are reported.
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Appendix A. On singular integrals in eqns. (54)1,2

By noting that∮
|ωωω|=1

n1

ω1

dω

ωωω ·x
=

n1

r
−
∫ 2π

0

dα

cosα cos(α +θ)
= 0, (A.1)

and assuming (53), eqn. (52)1 can be written as

τ1
1 =

1
2π2r

∫
π

0

cosα cosφ + sinα sinφ

cosα Λ(α +θ)
{b̄β̄ tan(α +θ)

−[γ̄(µ̄3 + γ̄)+ β̄ (b̄− ᾱ)]sin(α +θ)cos(α +θ)}dα.

(A.2)

As factor multiplying cosφ vanishes in eqn. (A.2), we obtain the form (54)1 of the
incremental traction.

Let us consider now eqn. (52)2 and note that∮
|ωωω|=1

n2

ω2

dω

ωωω ·x
=

n2

r
−
∫ 2π

0

dα

cosα sin(α +θ)
= 0. (A.3)

Hence, we can write

τ2
2 =− 1

2π2r

∫
π

0

cosα cosφ + sinα sinφ

cosα Λ(α +θ)
{āᾱ cot(α +θ)

−[γ̄(µ̄3 + γ̄)+ ᾱ(ā− β̄ )]sin(α +θ)cos(α +θ)}dα,

(A.4)

and, since the factor multiplying cosφ vanishes in eqn. (A.4), we obtain the form
(54)2 of the incremental traction.

Appendix B. Diffuse bifurcations of a homogeneously deformed, compressible,
elastic layer

Diffuse bifurcations are investigated of an elastic rectangular block (−b/2 ≤ x1 ≤
b/2; −l/2 ≤ x2 ≤ l/2), subject to a homogenous compressive uniaxial stress (σ2)
along the direction x2, constrained with two smooth rigid plates at x2 =±l/2. The
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Table 2: Critical stretch λ2 and dimensionless prestress k at bifurcation for a
Mooney-Rivlin block in plane-strain uniaxial compression for different values of
ratio ν for antisymmetric and symmetric modes.

ν λ2,k λ2,k
(antisymm. mode) (symm. mode)

0.18 0.7065, 0.7011 0.5894, 0.8531
0.32 0.7216, 0.4152 0.5664, 0.5952
0.40 0.7321, 0.4678 0.5319, 0.7395

equilibrium equations (9) for a generic compressible material still hold true. Bifur-
cation of equilibrium is detected by considering, for the incremental displacement,
the form

v j = A jemx1einx2 ( j = 1,2), (B.1)

where n is the wavenumber of the bifurcation mode and m a parameter to be deter-
mined. For the antisymmetric mode, the first bifurcation corresponds to n = π/b,
whereas for the symmetric mode n = 2π/b. Introducing the form (B.1) into eqns.
(9) we obtain a homogenous system[

ām2− β̄n2 i(µ̄3 + γ̄)nm

i(µ̄3 + γ̄)nm ᾱm2− b̄n2

][
A1

A2

]
=

[
0

0

]
, (B.2)

which admits non trivial solutions only if the determinant of the coefficient matrix
vanishes. The characteristic equation governing the equilibrium at the bifurcation
thus is

āᾱm4 + d̄n2m2 + b̄β̄n4 = 0, (B.3)

which provides four solutions mp (p = 1, . . . ,4), so that the general solution in
terms of displacements can be written as a linear combination of the four eigenvec-
tors [Ap] (p = 1, . . . ,4) associated with mp as

v j =
4

∑
p=1

Ap
j emp x1einx2 ( j = 1,2). (B.4)

The boundary conditions for a rectangular block with smooth constraints at x2 =
±l/2 imply that along the free vertical edges the nominal incremental traction is
null, namely,

ṫ11 = 0, ṫ21 = 0 (x1 =±b/2), (B.5)
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which, substituting eqn. (B.4) in the constitutive eqns. (5) and exploiting the rela-
tionship between amplitudes Ap

1 and Ap
2 given by (B.2)1

Ap
2 = Ap

1
i(ām2

p− β̄n2)
(µ̄3 + γ̄)nmp

, (B.6)

can be rewritten in a compact form as

[M][Ap
1 ] = [0], (B.7)

where [M] is a coefficient matrix and [Ap
1 ]T = [A1

1 A2
1 A3

1 A4
1]. The critical value for

the stretch λ2 (under assumption of uniaxial state of stress in the x2 direction) is
finally obtained by imposing the vanishing of det[M].
For a compressible Mooney-Rivlin material bifurcations are only possible in com-
pression (k > 0), so that for ν = 0.32 (µ0/q0 = 2/5), the first bifurcation is an
antisymmetric mode (Fig. 6), occurring at k ' 0.415, while a symmetric mode
(Fig. 7) is detected at k ' 0.595. Different values of critical stretch λ2 and dimen-
sionless prestress k as functions of the constitutive parameters for a Mooney-Rivlin
material are shown in Table 2.


