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Solving the Inverse Problems of Laplace Equation to
Determine the Robin Coefficient/Cracks’ Position

Inside a Disk

Chein-Shan Liu1

Abstract: We consider an inverse problem of Laplace equation by recoverning
boundary value on the inner circle of a two-dimensional annulus from the overde-
termined data on the outer circle. The numerical results can be used to determine
the Robin coefficient or crack’s position inside a disk from the measurements of
Cauchy data on the outer boundary. The Fourier series is used to formulate the first
kind Fredholm integral equation for the unknown data f (θ) on the inner circle.
Then we consider a Lavrentiev regularization, by adding an extra term α f (θ) to
obtain the second kind Fredholm integral equation. The termwise separable prop-
erty of kernel function allows us to obtain a closed-form regularized solution, of
which the uniform convergence and error estimation are proved. Then we apply
this method to the inverse Cauchy problem, the unknown shape of zero-potential
problem, the problem of detecting crack position, as well as the problem of un-
known Robin coefficient. These numerical examples show the effectiveness of the
new method in providing excellent estimates of the unknown data.

Keywords: Laplace equation, Inverse Cauchy problem, Fredholm integral equa-
tion, Lavrentiev regularization, Robin coefficient, Crack position

1 Inverse boundary value problem

The use of electrostatic image in the nondestructive testings of metalic disks leads
to an inverse boundary value problem of Laplace equation in two-dimension. In
order to detect the unknown shape of the inclusion inside a conducting metal we
imposed overdetermined Cauchy data, for example the voltage and current, on the
accessible exterior boundary. This amounts to solving an inverse Cauchy problem
from available data on part of the boundary [Liu (2008a)]. This problem is well
known to be highly ill-posed.
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We consider a mathematical modeling of this problem. Given the Cauchy data
u(x,y) and ∂u/∂n(x,y) at the point (x,y) ∈R2 with the unit outward normal n(x,y)
on the external circle Γ1 with a radius r1 of an annulus Ω, we consider the Cauchy
problem of the Laplace equation ∆u(x,y) = 0 in two dimensions to find the un-
known function u(x,y) on an internal circle Γ2 with a radius r2 < r1. This problem
setting can be used in the electrostatic image of the inverse problem in the human
electro-cardiography [Johnston (2001)].

The problem we consider consists of the Laplace equation in a disk and the over-
specified Cauchy data on boundary:

∆u = urr +
1
r

ur +
1
r2 uθθ = 0, r < r1, 0≤ θ ≤ 2π, (1)

u(r1,θ) = g(θ), 0≤ θ ≤ 2π, (2)

ur(r1,θ) = h1(θ), 0≤ θ ≤ 2π, (3)

where g(θ) and h1(θ) are given functions obtained from measurements.

The inverse Cauchy problems may arise in the steady-state heat conduction inverse
boundary value problems [Mera, Elliott, Ingham and Lesnic (2000)]. The situation
is that there are many practical engineering applications where a part of the bound-
ary is not accessible for temperature and heat flux measurements, and both of them
are known on the other part. In order to get the whole temperature field of the body
one may encounter the Cauchy problems.

On the other hand, for the data completion issues in elliptic inverse problems there
are the tasks from the superfluous measurements made on the accessible boundary
of a domain to recover either the Dirichlet or Neumann boundary data [Berntsson
and Eldén (2001); Azaiez, Ben Abda and Ben Abdallah (2005); Leblond, Mahjoub
and Partington (2006)], the Robin type exchange coefficient [Fasino and Inglese
(1999); Chaabane and Jaoua (1999); Chaabane, Elhechmi and Jaoua (2004); Slodička
and Van Keer (2004); Lin and Fang (2005)], the geometrical singularities [Brühl,
Hanke and Pidcock (2001); Kress (2004); Chapko and Kress (2005)], or the geo-
metrical shape of a constant temperature curve [Liu, Chang and Chiang (2008)].

The Cauchy problem is difficult to solve both numerically and analytically, since its
solution, if exists, does not depend continuously on the given data. Therefore, we
have to treat this type problem with a different numerical algorithm from that used
in the direct problem, which compromises the accuracy and stability. When the
influence matrix is highly ill-posed, Chang, Yeih and Shieh (2001) have shown that
neither the traditional Tikhonov’s regularization method nor the singular value de-
composition method can yield acceptable numerical results for the inverse Cauchy
problem of Laplace equation. A recent review of the Cauchy problems was given
by Ben Belgacem and El Fekih (2005).
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In this paper, we cast the Cauchy problem in an annular into the first kind Fred-
holm integral equation, and then we propose a Lavrentiev type regularization to
transform it into the second kind Fredholm integral equation. By utilizing the sepa-
rating characteristic of kernel function and eigenfunctions expansion techniques we
can derive a closed-form regularized solution of the second kind Fredholm integral
equation. This method was first used by Liu (2007a) to solve a direct problem of
elastic torsion in an arbitrary plane domain, where it was called a meshless regu-
larized integral equation method. Then, Liu (2007b, 2007c) extended it to solve
the Laplace direct problem in arbitrary plane domains. The new method would
provide us a semi-analytical solution, and renders a more compendious numerical
implementation than other schemes to solve the inverse Cauchy problems.

Liu (2008b) has applied a modified Trefftz method to recover the unknown bound-
ary data for the inverse Cauchy problem, but needs to consider a regularization
technique by truncating the higher-mode components of the given data. Then, Liu
(2008a) extended the modified Trefftz method by a simple collocation technique
to treat the inverse Cauchy problem of Laplace equation in arbitrary plane domain.
Furthermore, Liu (2008c) used the same technique to calculate the inverse Cauchy
problem of biharmonic equation in arbitrary plane domain.

The method of fundamental solutions (MFS) utilizes the fundamental solutions as
basis functions to expand the solution. While Jin and Zheng (2006) have applied the
MFS to solve the inverse problem of Helmholtz equation, Marin and Lesnic (2005)
have applied the MFS to solve the inverse Cauchy problem associated with a two-
dimensional biharmonic equation. In order to tackle of the ill-posedness of MFS
and the inherent ill-posed property of the inverse Cauchy problems, those authors
proposed new numerical schemes with the regularization parameters determined
by the L-curve method. Ling and Takeuchi (2008) have combined the MFS and
boundary control technique to solve the inverse Cauchy problem of Laplace equa-
tion. Liu and Atluri (2008a) reformulated the inverse Cauchy problem of Laplace
equation in a rectangle as an optimization problem, and applied a fictitious time
integration method [Liu and Atluri (2008b)] to solve an algebraic equations system
to obtain the data on an unspecified portion of boundary. When an extension to
nonlinear inverse Cauchy problem is concerned with, they showed that good result
can be obtained by using their method.

The remaining sections of this paper are organized as follows. In Section 2 we
derive the second kind Fredholm intergral equation by a Lavrentiev regularization
of the first kind Fredholm intergral equation. In Section 3 we derive a two-point
boundary value problem, which can be used to derive a closed-form regularized
solution of the second kind Fredholm intergral equation in Section 4. In Section
5 we prove the uniform convergence of the regularized solution, as well as give
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an error estimate. In Section 6 we use some numerical examples to test the new
method. Then, we give conclusions in Section 7.

2 The Fredholm integral equation

We replace Eq. (3) by the following boundary condition:

u(r2,θ) = f (θ), 0≤ θ ≤ 2π, (4)

where f (θ) is an unknown function to be determined. The constant radius r2 can
be selected freely in addition r2 < r1, such that the annular with radii r1 and r2 can
cover the entire domain of the problem we consider.

We can write a series expansion of u(r,θ) satisfying Eqs. (1), (2) and (4):

u(r,θ) =
1
2
(a0 +b0 lnr)+

∞

∑
k=1

[(akrk +bkr−k)coskθ +(ckrk +dkr−k)sinkθ ], (5)

where

a0 =
1

π(lnr1− lnr2)

[
lnr1

∫ 2π

0
f (ξ )dξ − lnr2

∫ 2π

0
g(ξ )dξ

]
, (6)

b0 =
1

π(lnr1− lnr2)

[∫ 2π

0
g(ξ )dξ −

∫ 2π

0
f (ξ )dξ

]
, (7)

ak =
ek

rk
2

∫ 2π

0
g(ξ )coskξ dξ − ek

rk
1

∫ 2π

0
f (ξ )coskξ dξ , (8)

bk = ekrk
1

∫ 2π

0
f (ξ )coskξ dξ − ekrk

2

∫ 2π

0
g(ξ )coskξ dξ , (9)

ck =
ek

rk
2

∫ 2π

0
g(ξ )sinkξ dξ − ek

rk
1

∫ 2π

0
f (ξ )sinkξ dξ , (10)

dk = ekrk
1

∫ 2π

0
f (ξ )sinkξ dξ − ekrk

2

∫ 2π

0
g(ξ )sinkξ dξ , (11)

and

ek :=
1

π

[(
r1
r2

)k
−
(

r2
r1

)k
] . (12)

Taking the differential of Eq. (5) with respect to r, leads to

ur(r,θ) =
b0

2r
+

∞

∑
k=1

[(kakrk−1− kbkr−k−1)coskθ +(kckrk−1− kdkr−k−1)sinkθ ].
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(13)

By imposing condition (3) on the above equation we obtain

b0

2r1
+

∞

∑
k=1

[(kakrk−1
1 − kbkr−k−1

1 )coskθ +(kckrk−1
1 − kdkr−k−1

1 )sinkθ ] = h1(θ).

(14)

Substituting Eqs. (7)-(11) into Eq. (14) yields the first kind Fredholm integral equa-
tion:∫ 2π

0
K(θ ,ξ ) f (ξ )dξ = h(θ), (15)

where

h(θ) :=−h1(θ)+
1

2r1π(lnr1− lnr2)

∫ 2π

0
g(ξ )dξ

+
∞

∑
k=1

{
Ak

(∫ 2π

0
g(ξ )coskξ dξ coskθ +

∫ 2π

0
g(ξ )sinkξ dξ sinkθ

)}
(16)

is the source function, and

K(θ ,ξ ) =
1

2r1π(lnr1− lnr2)
+

∞

∑
k=1

{
Bk [coskθ coskξ + sinkθ sinkξ ]

}
(17)

is the kernel function. Here, we note that

Ak := krk−1
1 ekr−k

2 + kr−k−1
1 ekrk

2, (18)

Bk := krk−1
1 ekr−k

1 + kr−k−1
1 ekrk

1 = 2r−1
1 kek. (19)

In order to obtain f (θ) we have to solve the first kind Fredholm integral equation
(15), which is however well known to be highly ill-posed [Tikhonov, Goncharsky,
Stepanov and Yagola (1990)]. We assume that there exists a regularized parameter
α , such that Eq. (15) can be regularized by

α f (θ)+
∫ 2π

0
K(θ ,ξ ) f (ξ )dξ = h(θ), (20)

which is known as the second type Fredholm integral equation. The above regu-
larization method to obtain a regularized solution by solving a singularly perturbed
operator equation is usually called the Lavrentiev regularization method [Lavren-
tiev (1967)].
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3 Two-point boundary value problem

We assume that the kernel function can be approximated by m terms with

K(θ ,ξ ) =
1

2r1π(lnr1− lnr2)
+

m

∑
k=1

{
Bk [coskθ coskξ + sinkθ sinkξ ]

}
. (21)

This assumption is for the convenience of our later derivation but is not necessary.
When an analytical solution is obtained, we can let m = ∞ again.

By inspection we have

K(θ ,ξ ) = P(θ) ·Q(ξ ), (22)

where P and Q are 2m+1-vectors given by

P :=



1
2r1π(lnr1−lnr2)

B1 cosθ

B1 sinθ

B2 cos2θ

B2 sin2θ

...
Bm cosmθ

Bm sinmθ


, Q :=



1
cosξ

sinξ

cos2ξ

sin2ξ

...
cosmξ

sinmξ


. (23)

The dot between P and Q in Eq. (22) denotes the inner product, which is sometimes
written as PTQ, where the superscript T signifies the transpose. The sequence of
functions in Q form an orthogonal Fourier bases system in [0,2π].
With the aid of Eq. (22), Eq. (20) can be decomposed as

α f (θ)+
∫

θ

0
PT(θ)Q(ξ ) f (ξ )dξ +

∫ 2π

θ

PT(θ)Q(ξ ) f (ξ )dξ = h(θ). (24)

Let us define

u1(θ) :=
∫

θ

0
Q(ξ ) f (ξ )dξ , (25)

u2(θ) :=
∫

θ

2π

Q(ξ ) f (ξ )dξ , (26)

and Eq. (24) can be expressed as

α f (θ)+PT(θ)[u1(θ)−u2(θ)] = h(θ). (27)
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If u1 and u2 can be solved, we can calculate f (θ).
Taking the differentials of Eqs. (25) and (26) with respect to θ we obtain

u′1(θ) = Q(θ) f (θ), (28)

u′2(θ) = Q(θ) f (θ). (29)

Multiplying the above two equations by α , and inserting Eq. (27) for α f (θ) we
can derive

αu′1(θ) = Q(θ)PT(θ)[u2(θ)−u1(θ)]+h(θ)Q(θ), u1(0) = 0, (30)

αu′2(θ) = Q(θ)PT(θ)[u2(θ)−u1(θ)]+h(θ)Q(θ), u2(2π) = 0, (31)

where the last two conditions follow from Eqs. (25) and (26) readily. The above two
equations constitute a two-point boundary value problem of 4m + 2-dimensional
ODEs.

4 A closed-form regularized solution

In this section we will find a closed-form solution of f (θ). From Eqs. (28) and (29)
it can be seen that u′1 = u′2, which means that

u1 = u2 + c, (32)

where c is a constant vector to be determined. By using the final condition in
Eq. (31) we find that

u1(2π) = u2(2π)+ c = c. (33)

Substituting Eq. (32) into Eq. (30) we have

αu′1(θ) =−Q(θ)PT(θ)c+h(θ)Q(θ), u1(0) = 0. (34)

Integrating the above equation and using the initial condition, one has

u1(θ) =
−1
α

∫
θ

0
Q(ξ )PT(ξ )dξ c+

1
α

∫
θ

0
h(ξ )Q(ξ )dξ . (35)

Taking θ = 2π in the above equation and imposing condition (33), one obtains a
governing equation for c:(

αI2m+1 +
∫ 2π

0
Q(ξ )PT(ξ )dξ

)
c =

∫ 2π

0
h(ξ )Q(ξ )dξ . (36)
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It is straightforward to write

c =
(

αI2m+1 +
∫ 2π

0
Q(ξ )PT(ξ )dξ

)−1 ∫ 2π

0
h(ξ )Q(ξ )dξ . (37)

On the other hand, from Eqs. (27) and (32) we have

α f (θ) = h(θ)−P(θ) · c. (38)

Inserting Eq. (37) for c into the above equation we obtain

α f (θ) = h(θ)−PT(θ)
(

αI2m+1 +
∫ 2π

0
Q(ξ )PT(ξ )dξ

)−1 ∫ 2π

0
h(ξ )Q(ξ )dξ .

(39)

Due to the orthogonality of P and Q, the (2m+1)× (2m+1) matrix can be written
as

∫ 2π

0
Q(ξ )PT(ξ )dξ = diag

[
1

r1(lnr1− lnr2)
,πB1,πB1,πB2,πB2, . . . ,πBm,πBm

]
,

(40)

where diag means a diagonal matrix.

Inserting Eq. (40) into Eq. (39) we thus obtain

f (θ) =
1
α

h(θ)− 1
α

PT(θ)diag

[
1

α + 1
r1(lnr1−lnr2)

,
1

α +πB1
,

1
α +πB1

, . . . ,

1
α +πBm

,
1

α +πBm

]∫ 2π

0
h(ξ )Q(ξ )dξ . (41)

While Eq. (23) for P and Q is used, we can get

f (θ) =
1
α

h(θ)− 1
2π[α2r1(lnr1− lnr2)+α]

∫ 2π

0
h(ξ )dξ

− 1
α

m

∑
k=1

Bk

α +πBk

∫ 2π

0
(coskθ coskξ + sinkθ sinkξ )h(ξ )dξ . (42)

For a given h(θ) obtained from Eq. (16), through some integrals one may employ
the above equation to calculate f (θ) very efficiently.
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Moreover, due to∫ 2π

0
f (ξ )dξ =

r1(lnr1− lnr2)
αr1(lnr1− lnr2)+1

∫ 2π

0
h(ξ )dξ , (43)∫ 2π

0
f (ξ )coskξ dξ =

1
α +πBk

∫ 2π

0
h(ξ )coskξ dξ , (44)∫ 2π

0
f (ξ )sinkξ dξ =

1
α +πBk

∫ 2π

0
h(ξ )sinkξ dξ , (45)

we can insert the above three equations into Eqs. (6)-(11) to calculate all coeffi-
cients, which are given as follows:

aα
0 =

r1 lnr1

π[1+αr1(lnr1− lnr2)]

∫ 2π

0
h(ξ )dξ − lnr2

π(lnr1− lnr2)

∫ 2π

0
g(ξ )dξ , (46)

bα
0 =

1
π(lnr1− lnr2)

∫ 2π

0
g(ξ )dξ − r1

π[1+αr1(lnr1− lnr2)]

∫ 2π

0
h(ξ )dξ , (47)

aα
k =

ek

rk
2

∫ 2π

0
g(ξ )coskξ dξ − ek

rk
1(α +πBk)

∫ 2π

0
h(ξ )coskξ dξ , (48)

bα
k =

ekrk
1

α +πBk

∫ 2π

0
h(ξ )coskξ dξ − ekrk

2

∫ 2π

0
g(ξ )coskξ dξ , (49)

cα
k =

ek

rk
2

∫ 2π

0
g(ξ )sinkξ dξ − ek

rk
1(α +πBk)

∫ 2π

0
h(ξ )sinkξ dξ , (50)

dα
k =

ekrk
1

α +πBk

∫ 2π

0
h(ξ )sinkξ dξ − ekrk

2

∫ 2π

0
g(ξ )sinkξ dξ . (51)

Then, from Eq. (5) by inserting the above regularized coefficients we can calculate
uα(r,θ) by

uα(r,θ) =
1
2
(aα

0 +bα
0 lnr)+

∞

∑
k=1

[(aα
k rk +bα

k r−k)coskθ +(cα
k rk +dα

k r−k)sinkθ ],

(52)

where we use uα(r,θ) to stress that it is a regularized solution of u.

5 Error estimation

In the previous section we have derived a regularized solution uα(r,θ) of Eqs. (1)-
(3) under the regularization in Eq. (20) with a regularized parameter α > 0. We can
prove the following main results. Because an analytic solution is already derived
exactly, we let m = ∞ again.
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Theorem 1: Assume that the data g(θ),h(θ) ∈ L2(0,2π). Then the sufficient and
necessary condition that the inverse problem (1)-(3) has a solution is that

∞

∑
k=1

[(
1
π

∫ 2π

0
g(ξ )coskξ dξ

)2

+
(

1
π

∫ 2π

0
g(ξ )sinkξ dξ

)2
]

< ∞, (53)

∞

∑
k=1

[(
1

π2Bk

∫ 2π

0
h(ξ )coskξ dξ

)2

+
(

1
π2Bk

∫ 2π

0
h(ξ )sinkξ dξ

)2
]

< ∞. (54)

Proof: Taking α = 0 in Eqs. (46)-(51) and inserting them into Eq. (52) we have a
unique solution of Eqs. (1)-(3):

u(r,θ) =
1
2
(a?

0 +b?
0 lnr)+

∞

∑
k=1

[(a?
krk +b?

kr−k)coskθ +(c?
krk +d?

k r−k)sinkθ ], (55)

where

a?
0 =

r1 lnr1

π

∫ 2π

0
h(ξ )dξ − lnr2

π(lnr1− lnr2)

∫ 2π

0
g(ξ )dξ , (56)

b?
0 =

1
π(lnr1− lnr2)

∫ 2π

0
g(ξ )dξ − r1

π

∫ 2π

0
h(ξ )dξ , (57)

a?
k =

ek

rk
2

∫ 2π

0
g(ξ )coskξ dξ − ek

πrk
1Bk

∫ 2π

0
h(ξ )coskξ dξ , (58)

b?
k =

ekrk
1

πBk

∫ 2π

0
h(ξ )coskξ dξ − ekrk

2

∫ 2π

0
g(ξ )coskξ dξ , (59)

c?
k =

ek

rk
2

∫ 2π

0
g(ξ )sinkξ dξ − ek

πrk
1Bk

∫ 2π

0
h(ξ )sinkξ dξ , (60)

d?
k =

ekrk
1

πBk

∫ 2π

0
h(ξ )sinkξ dξ − ekrk

2

∫ 2π

0
g(ξ )sinkξ dξ . (61)

Inserting r = r1 into Eq. (55) and noting Eq. (2), we have

g(θ) = u(r1,θ)

=
1
2
(a?

0 +b?
0 lnr1)+

∞

∑
k=1

[(a?
krk

1 +b?
kr−k

1 )coskθ +(c?
krk

1 +d?
k r−k

1 )sinkθ ],
(62)

where g(θ) ∈ L2(0,2π). The above is a Fourier expansion of g(θ), and then by the
Parseval equality we have

1
4
(a?

0 +b?
0 lnr1)2 +

∞

∑
k=1

[
(a?

krk
1 +b?

kr−k
1 )2 +(c?

krk
1 +d?

k r−k
1 )2

]
= ‖g(θ)‖2

L2(0,2π) < ∞,
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(63)

where ‖g(θ)‖L2(0,2π) is the L2-norm of g(θ) in the interval of (0,2π). Then, by
utilizing Eqs. (56)-(61) and (12) we can derive the condition (53).

Similarly, inserting r = r2 into Eq. (55) and noting Eq. (4), we have

f (θ) = u(r2,θ)

=
1
2
(a?

0 +b?
0 lnr2)+

∞

∑
k=1

[(a?
krk

2 +b?
kr−k

2 )coskθ +(c?
krk

2 +d?
k r−k

2 )sinkθ ],
(64)

where f (θ) ∈ L2(0,2π). The above is a Fourier expansion of f (θ), and then by the
Parseval equality we have

1
4
(a?

0 +b?
0 lnr2)2 +

∞

∑
k=1

[
(a?

krk
2 +b?

kr−k
2 )2 +(c?

krk
2 +d?

k r−k
2 )2

]
= ‖ f (θ)‖2

L2(0,2π) < ∞,

(65)

Then, by utilizing Eqs. (56)-(61) we can derive condition (54). �

Remark: The condition (53) is insufficient to guarantee that the series in Eq. (16)
exists. From Eqs. (18) and (12) it follows that

Ak =
kek

r1

[(
r1

r2

)k

+
(

r2

r1

)k
]

=
k
[(

r1
r2

)k
+
(

r2
r1

)k
]

r1π

[(
r1
r2

)k
−
(

r2
r1

)k
] . (66)

Obviously, Ak is divergent. Therefore, we need to impose

∞

∑
k=1

A2
k

{(∫ 2π

0
g(ξ )coskξ dξ

)2

+
(∫ 2π

0
g(ξ )sinkξ dξ

)2}
< ∞. (67)

This condition about the boundary data g(θ) is stronger than condition (53); how-
ever, it guarantees that the series in Eq. (16) is convergent.

Theorem 2: If the Cauchy data g(θ) and h(θ) satisfy Eqs. (53) and (54), and are
also bounded in the interval θ ∈ [0,2π], i.e.,

|g(θ)| ≤C1, |h(θ)| ≤C2, θ ∈ [0,2π], (68)

where C1 and C2 are positive constants, then for any α > 0 the regularized solution
uα(r,θ) converges uniformly for all r ∈ (r2,r1) and θ ∈ [0,2π].
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Proof: From Eqs. (19) we have
ek

Bk
=

r1

2k
. (69)

Depending on the ratio r2/r1 = ρ < 1 there exists a positive number C0 ≥ 1/(1−
ρ2) > 1, such that the following inequality holds for all k ≥ 1:

ek =
1

π

[(
r1
r2

)k
−
(

r2
r1

)k
] ≤ C0

π
ρ

k. (70)

We only require to check that

C0ρ
k

[(
r1

r2

)k

−
(

r2

r1

)k
]

= C0(1−ρ
2k)≥ 1−ρ2k

1−ρ2 ≥ 1, ∀k ≥ 1.

In order to prove the uniform convergence of uα(r,θ), we only estimate the coeffi-
cients aα

k rk and bα
k r−k appeared in the series functions aα

k rk coskθ and bα
k r−k coskθ ,

and the other two series cα
k rk sinkθ and dα

k r−k sinkθ can be estimated similarly.

From Eqs. (69) and (70), the following results are obtained by using α > 0 and
r2 < r < r1:

rkr−k
1 ek ≤

C0

π
ρ

k
(

r
r2

)k

=
C0

π

(
r
r1

)k

, (71)

r−krk
2ek ≤

C0

π
ρ

kr−krk
2 =

C0

π
ρ

k
(r2

r

)k
, (72)

ekrk

rk
1(α +πBk)

≤ ekrk

πrk
1Bk

=
r1rk

2πkrk
2

=
r1

2πk

(
r
r1

)k

, (73)

ekrk
1

rk(α +πBk)
≤

C0ρkrk
1

πrkα
=

C0

πα

(r2

r

)k
. (74)

Therefore, from Eqs. (71)-(74) and Eqs. (48)-(51) it follows that

|aα
k rk| ≤ 2πrkek

rk
1(α +πBk)

C2 +
2πrkek

rk
2

C1 ≤
[

r1C0C2

k
+2C0C1

](
r
r1

)k

, (75)

|bα
k r−k| ≤ 2πekr−krk

2C1 +
2πekr−krk

1
α +πBk

C2 ≤
[

2C0C1 +
2C0C2

α

]
ρ

k
(r2

r

)k
, (76)

|cα
k rk| ≤

[
r1C0C2

k
+2C0C1

](
r
r1

)k

, (77)

|dα
k r−k| ≤

[
2C0C1 +

2C0C2

α

]
ρ

k
(r2

r

)k
, (78)
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where C1 and C2 are the bounds of g(θ) and h(θ).
Hence, the series of uα(r,θ) defined by Eq. (52) is dominated by the following
series

2C0

∞

∑
k=1

([
r1C2

k
+2C1

](
r
r1

)k

+
[

2C1 +
2C2

α

]
ρ

k
(r2

r

)k
)

. (79)

This series is convergent due to r < r1, ρ < 1 and r2 < r. Then, by the Weierstrass
M-test [Apostol (1974)], the series in Eq. (52) converges uniformly with respect to
r and θ whenever r ∈ (r2,r1) and θ ∈ [0,2π]. This ends the proof. �

Theorem 3: If the datum h(θ) satisfies condition (54) and there exists an ε ∈ (0,1),
such that, moreover,

∞

∑
k=1

1
(π2Bk)2(1+ε)

[(∫ 2π

0
h(ξ )coskξ dξ

)2

+
(∫ 2π

0
h(ξ )sinkξ dξ

)2
]

=: M2(ε) < ∞, (80)

then for any α > 0 the regularized solution uα(r,θ) satisfies the following error
estimation:

‖uα(r,θ)−u(r,θ)‖L2(0,2π) ≤ α
εM(ε). (81)

Proof: From Eqs. (56)-(61) and (46)-(51) it follows that

u(r,θ)−uα(r,θ) =
α

2
(a�0 +b�0 lnr)

+α

∞

∑
k=1

[(a�krk +b�kr−k)coskθ +(c�krk +d�k r−k)sinkθ ], (82)
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where

a�0 := a?
0−aα

0 =
r2

1 lnr1(lnr1− lnr2)
π[1+αr1(lnr1− lnr2)]

∫ 2π

0
h(ξ )dξ , (83)

b�0 := b?
0−bα

0 =− r2
1(lnr1− lnr2)

π[1+αr1(lnr1− lnr2)]

∫ 2π

0
h(ξ )dξ , (84)

a�k := a?
k−aα

k =− ek

πrk
1Bk(α +πBk)

∫ 2π

0
h(ξ )coskξ dξ , (85)

b�k := b?
k−bα

k =
ekrk

1
πBk(α +πBk)

∫ 2π

0
h(ξ )coskξ dξ , (86)

c�k := c?
k− cα

k =− ek

πrk
1Bk(α +πBk)

∫ 2π

0
h(ξ )sinkξ dξ , (87)

d�k := d?
k −dα

k =
ekrk

1
πBk(α +πBk)

∫ 2π

0
h(ξ )sinkξ dξ . (88)

In order to estimate the norm of ‖u(r,θ)− uα(r,θ)‖L2(0,2π), we only need to esti-
mate the coefficients a�krk +b�kr−k appeared in the series functions (a�krk +b�kr−k)coskθ

in Eq. (82), and the other series (c�krk +d�k r−k)sinkθ can be estimated similarly.

When r2 ≤ r ≤ r1, the following inequality is obvious,

0≤

[(r1

r

)k
−
(

r
r1

)k
]
≤

[(
r1

r2

)k

−
(

r2

r1

)k
]

. (89)

From Eqs. (85) and (86) it follows that

a�krk +b�kr−k =
ek

πBk(α +πBk)

[(r1

r

)k
−
(

r
r1

)k
]∫ 2π

0
h(ξ )coskξ dξ . (90)

By using Eqs. (89) and (12) we have

|a�krk +b�kr−k|2 ≤ 1
(π2Bk)2(α +πBk)2

(∫ 2π

0
h(ξ )coskξ dξ

)2

, (91)

and similarly we have

|c�krk +d�k r−k|2 ≤ 1
(π2Bk)2(α +πBk)2

(∫ 2π

0
h(ξ )sinkξ dξ

)2

. (92)
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It follows that

‖u(r,θ)−uα(r,θ)‖2
L2(0,2π) ≤

α
2

∞

∑
k=1

1
(π2Bk)2(α +πBk)2

[(∫ 2π

0
h(ξ )coskξ dξ

)2

+
(∫ 2π

0
h(ξ )sinkξ dξ

)2
]

= α
2

∞

∑
k=1

(π2Bk)−2[(α +πBk)ε(α +πBk)1−ε ]−2

[(∫ 2π

0
h(ξ )coskξ dξ

)2

+
(∫ 2π

0
h(ξ )sinkξ dξ

)2
]

≤ α
2

∞

∑
k=1

(π2Bk)−2(πBk)−2ε
α
−2+2ε

[(∫ 2π

0
h(ξ )coskξ dξ

)2

+
(∫ 2π

0
h(ξ )sinkξ dξ

)2
]

= α
2ε

∞

∑
k=1

(π2Bk)−2(1+ε)

[(∫ 2π

0
h(ξ )coskξ dξ

)2

+
(∫ 2π

0
h(ξ )sinkξ dξ

)2
]

=: α
2εM2(ε). (93)

Therefore, we complete the proof. �

The above Theorems are important that the present regularized solution is well
behaved, and can approach the true solution of the ill-posed problem in Eqs. (1)-
(3).

6 Numerical examples

6.1 Inverse Cauchy problem

In order to validate the performance of our numerical method we consider a typical
benchmark example

∆u = 0, r2 < r < r1, 0≤ θ ≤ 2π, (94)

u(r1,θ) = g(θ) = r2
1 cos2θ , 0≤ θ ≤ 2π, (95)

ur(r1,θ) = h1(θ) = 2r1 cos2θ , 0≤ θ ≤ 2π. (96)

The datum to be retrieved is given by

u(r,θ) = r2 cos2θ = x2− y2. (97)
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Inserting Eqs. (95) and (96) into Eq. (16) we obtain

h(θ) = (πA2r2
1−2r1)cos2θ . (98)

Substituting the above g(θ) and h(θ) into Eqs. (46)-(51) only the following coeffi-
cients are nonzero:

aα
2 =

πr2
1e2

r2
2
− πe2(πA2r2

1−2r1)
r2

1(α +πB2)
, (99)

bα
2 =

πe2r2
1(πA2r2

1−2r1)
α +πB2

−πe2r2
1r2

2, (100)

and the other coefficients are all zero. Hence, from Eq. (52) we obtain a regularized
solution:

uα(r,θ) = (aα
2 r2 +bα

2 r−2)cos2θ . (101)

For the comparison purpose we have fixed r1 = 1 and r2 = 0.5 in the following
calculations. In Fig. 1 we compare the exact solution with the regularized solution
under α = 10−8, with a fixed r = 0.8. It can be seen that the numerical error is in
the order of 10−10. In Fig. 2 we have compared the contours of isopotential with
u = 0.1,0.3,0.5,−0.2,−0.4,−0.6. These curves are very well coincident with the
curves obtained from the exact solutions. In these comparisons the present results
are very excellent.

For the same problem, Saito, Nakada, Iijima and Onish (2005) have developed a
high order finite difference scheme together with a multi-precesion arithmic system
up to 50 decimal digits to calculate it. They have reported that the maximum error
occurred at the internal circle is 9×10−6. In our calculation if we let α = 10−8, a
maximum error at the internal circle is 2.34×10−9.

6.2 Zero-potential curve

As mentioned by Kress (2004), when the inner inclusion is a perfectly conducting
body, the determination of its unknown shape leads to an inverse Dirichlet boundary
value problem. The mathematical problem is that for the given data g(θ) and h1(θ)
on the exterior boundary, we attempt to determine the zero-potential curve, that is,

u = 0, on Γ, (102)

where Γ is an unknown curve inside the domain Ω.
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Figure 1: For the Cauchy type inverse problem we have compared regularized and 
exact solutions in (a), and the numerical error in (b) for a specific example. 
 
 
 
 
 
 
 
 
 

Figure 1: For the Cauchy type inverse problem we have compared regularized and
exact solutions in (a), and the numerical error in (b) for a specific example.

In order to illustrate the unknown curve problem and compare our numerical result
with exact solution, we first consider a direct problem with the following data:

u(r1,θ) = g(θ) = cos2θ +β cosθ , 0≤ θ ≤ 2π, (103)

u(r2,θ) = f (θ) =−cos2θ −β sinθ , 0≤ θ ≤ 2π, (104)

where β is a given constant. The solution of the direct problem would provide us
h1(θ), which is required in the inverse problem.

Then, from Eqs. (6)-(11) we obtain

a1 =
βπe1

r2
, a2 =

πe2

r2
1

+
πe2

r2
2

, (105)

b1 =−βπe1r2, b2 =−πe2r2
1−πe2r2

2, (106)

c1 =
βπe1

r1
, d1 =−βπe1r1. (107)
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Figure 2: Comparing the isopotential curves of the same example in Fig. 1. 
 
 
 
 
 
 

Figure 2: Comparing the isopotential curves of the same example in Fig. 1.

Therefore, we have a closed-form solution of the direct problem:

u(r,θ) = βπe1

[
r sinθ

r1
+

r cosθ

r2

]
−βπe1

[
r1 sinθ

r
+

r2 cosθ

r

]
+πe2

[
1
r2

1
+

1
r2

2

]
r2 cos2θ −πe2(r2

1 + r2
2)r
−2 cos2θ . (108)

The derivative of u(r,θ) with respect to r is

ur(r,θ) = βπe1

[
sinθ

r1
+

cosθ

r2

]
+βπe1

[
r1 sinθ

r2 +
r2 cosθ

r2

]
+2πe2

[
1
r2

1
+

1
r2

2

]
r cos2θ +2πe2(r2

1 + r2
2)r
−3 cos2θ . (109)

Letting r = r1 in Eq. (109), we obtain another Cauchy data of the inverse problem:

h1(θ) = D1 cosθ +D2 cos2θ +D3 sinθ , (110)
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where

D1 :=
βπe1

r2
+βπe1

r2

r2
1
, (111)

D2 := 2πe2

[
1
r2

1
+

1
r2

2

]
r1 +2πe2(r2

1 + r2
2)r
−3
1 , (112)

D3 :=
2βπe1

r1
. (113)

Inserting Eqs. (103) and (110) into Eq. (16) we obtain

h(θ) = (βπA1−D1)cosθ +(πA2−D2)cos2θ −D3 sinθ . (114)

Substituting the above g(θ) and h(θ) into Eqs. (46)-(51) we obtain

aα
1 =

βπe1

r2
− πe1(βπA1−D1)

r1(α +πB1)
, (115)

aα
2 =

πe2

r2
2
− πe2(πA2−D2)

r2
1(α +πB2)

, (116)

bα
1 =

πe1r1(βπA1−D1)
α +πB1

−βπe1r2, (117)

bα
2 =

πe2r2
1(πA2−D2)
α +πB2

−πe2r2
2, (118)

cα
1 =

πe1D3

r1(α +πB1)
, (119)

dα
1 =−πe1r1D3

α +πB1
. (120)

Hence, from Eq. (52) we obtain a regularized solution:

uα(r,θ) = (aα
1 r +bα

1 r−1)cosθ +(aα
2 r2 +bα

2 r−2)cos2θ + cα
1 r sinθ +dα

1 r−1 sinθ .

(121)

From Eq. (108), by solving u = 0 we have a closed-form solution:

βπe1

[
r sinθ

r1
+

r cosθ

r2

]
−βπe1

[
r1 sinθ

r
+

r2 cosθ

r

]
+πe2

[
1
r2

1
+

1
r2

2

]
r2 cos2θ −πe2(r2

1 + r2
2)r
−2 cos2θ = 0. (122)
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On the other hand, from Eq. (121) we have a numerical solution by solving uα = 0:

(aα
1 r +bα

1 r−1)cosθ +(aα
2 r2 +bα

2 r−2)cos2θ +(cα
1 r +dα

1 r−1)sinθ = 0. (123)

We consider two cases with β = 0 and β = 0.05 in Fig. 3. For the case of β = 0
the zero-potential curves are regular and the numerical solution with α = 10−5 co-
incides very well with the exact solution as shown in Fig. 3(a). For the case of
β = 0.05 the zero-potential curve is discontinuous; however, the numerical solu-
tion with α = 10−5 also coincides very well with the exact solution as shown in
Fig. 3(b).

 
 
 
 
 

-1 0 1

x

-1

0

1

y

-1 0 1

x

-1

0

1

y

(a)

(b)
Exact

Numerical

 
 
Figure 3: Plotting the zero-potential curves in (a) with β=0 and in (b) 
withβ=0.05; the numerical and exact results coincide very well. 
 
 
 

Figure 3: Plotting the zero-potential curves in (a) with β = 0 and in (b) with β =
0.05; the numerical and exact results coincide very well.
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6.3 Detection of the position of cracks

The purpose of this problem is to detect the position of cracks inside the domain Ω

through the measurements of the Cauchy data on the outer boundary.

In order to examine the performance of our numerical method we consider the
following example:

u(r1,θ) = g(θ) =
a2−b2

2(a2 +b2)
r2

1 cos2θ +
a2b2

a2 +b2 , (124)

ur(r1,θ) = h1(θ) =
a2−b2

a2 +b2 r1 cos2θ . (125)

The datum to be retrieved is given by

u(r,θ) =
a2−b2

2(a2 +b2)
r2 cos2θ +

a2b2

a2 +b2 . (126)

The two parameters a > b determine the position and size of cracks, which are
obtained by solving u(r,θ) = 0.

Inserting Eqs. (124) and (125) into Eq. (16) we obtain

h(θ) =
a2b2

r1(lnr1− lnr2)(a2 +b2)
+
[

πA2(a2−b2)
2(a2 +b2)

r2
1−

a2−b2

a2 +b2 r1

]
cos2θ , (127)

Substituting the above g(θ) and h(θ) into Eqs. (46)-(51) we obtain

aα
0 =

2lnr1a2b2

[1+αr1(lnr1− lnr2)](lnr1− lnr2)(a2 +b2)
− 2a2b2 lnr2

(lnr1− lnr2)(a2 +b2)
,

(128)

bα
0 =

2a2b2

(lnr1− lnr2)(a2 +b2)
− 2a2b2

[1+αr1(lnr1− lnr2)](lnr1− lnr2)(a2 +b2)
,

(129)

aα
2 =

πr2
1e2(a2−b2)

2r2
2(a2 +b2)

− πe2

r2
1(α +πB2)

[
πA2(a2−b2)

2(a2 +b2)
r2

1−
a2−b2

a2 +b2 r1

]
, (130)

bα
2 =

πe2r2
1

α +πB2

[
πA2(a2−b2)

2(a2 +b2)
r2

1−
a2−b2

a2 +b2 r1

]
−πe2r2

1r2
2

a2−b2

2(a2 +b2)
. (131)

Hence, from Eq. (52) we obtain a regularized solution:

uα(r,θ) =
1
2
(aα

0 +bα
0 lnr)+(aα

2 r2 +bα
2 r−2)cos2θ . (132)
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Solving the above equation with uα(r,θ) = 0 we can determine the position of
cracks.

It can be seen that the regularized solution in Eq. (132) is much complicated than
the exact solution in Eq. (126); however, it is easy to prove that the two solutions
are identical when α = 0. In Fig. 4 we compare the cracks’ position calculated by
the numerical method based on the regularized solution with that calculated from
the exact solution, where the parameters used in this comparison are a = 3, b = 1,
r1 = 8 and r2 = 1. We have applied the half-interval numerical method to solve
uα(r,θ) = 0 under an error tolerance with 10−5. Even with α = 0.05 it can be seen
that the numerical results match very well with the exact solutions.
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Figure 4: Displaying the position of two cracks, where the numerical and 
exact results almost coincide even α=0.05. 
 
 
 
 
 
 

Figure 4: Displaying the position of two cracks, where the numerical and exact
results almost coincide even α = 0.05.

6.4 Robin type exchange coefficient problem

For the Robin type exchange coefficient problem the reader may refer the paper
by Chaabane, Elhechmi and Jaoua (2004). Let D be a disc with a radius r1 and
boundary T and G be the annulus G = D\ sD for some fixed 0 < s < 1. Given two
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functions g and h1, find a function φ such that a solution u to

∆u = 0, in G, (133)

u = g(θ), on T, (134)

un = h1(θ), on T (135)

also satisfies

un +φu = 0, on sT, (136)

where sT is a circle on the annulus with a radius r3 = sr1 and n is the outward
normal vector. The purpose of this problem is to find the unknown Robin coefficient
function φ .

In order to illustrate the Robin type exchange coefficient problem and compare our
numerical result with exact solution, we first consider a direct problem with the
following data:

u(r1,θ) = g(θ) = a+ cosθ , 0≤ θ ≤ 2π, (137)

u(r2,θ) = f (θ) = b+ sinθ , 0≤ θ ≤ 2π, (138)

where r2 < r3 is a given radius. a and b are selected such that g > f ≥ 0, 0≤ θ ≤
2π .

Then, from Eqs. (6)-(11) we obtain

a0 =
2b lnr1−2a lnr2

lnr1− lnr2
, b0 =

2(a−b)
lnr1− lnr2

, (139)

a1 =
πe1

r2
, b1 =−πe1r2, (140)

c1 =
πe1

r1
, d1 =−πe1r1, (141)

and a closed-form solution of the direct problem follows:

u(r,θ) =
b lnr1−a lnr2

lnr1− lnr2
+

(a−b) lnr
lnr1− lnr2

+πe1

[
r sinθ

r1
+

r cosθ

r2

]
−πe1

[
r1 sinθ

r
+

r2 cosθ

r

]
. (142)

The derivative of u(r,θ) with respect to r is

ur(r,θ) =
a−b

r(lnr1− lnr2)
+πe1

[
sinθ

r1
+

cosθ

r2

]
+πe1

[
r1 sinθ

r2 +
r2 cosθ

r2

]
. (143)
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Letting r = r1 in Eq. (109), we obtain another Cauchy data of the inverse problem:

h1(θ) =
a−b

r1(lnr1− lnr2)
+D1 cosθ +D2 sinθ , (144)

where

D1 :=
πe1

r2
+

πe1r2

r2
1

, (145)

D2 :=
2πe1

r1
. (146)

Inserting Eqs. (137) and (144) into Eq. (16) we obtain

h(θ) =
b

r1(lnr1− lnr2)
+(πA1−D1)cosθ −D2 sinθ . (147)

Substituting the above g(θ) and h(θ) into Eqs. (46)-(51) we obtain

aα
0 =

2b lnr1

(lnr1− lnr2)[1+αr1(lnr1− lnr2)]
− 2a lnr2

lnr1− lnr2
, (148)

bα
0 =

2a
lnr1− lnr2

− 2b
(lnr1− lnr2)[1+αr1(lnr1− lnr2)]

, (149)

aα
1 =

πe1

r2
− πe1(πA1−D1)

r1(α +πB1)
, (150)

bα
1 =

πe1r1(πA1−D1)
α +πB1

−πe1r2, (151)

cα
1 =

πe1D2

r1(α +πB1)
, (152)

dα
1 =−πe1r1D2

α +πB1
. (153)

Hence, from Eq. (52) we obtain a regularized solution:

uα(r,θ) =
1
2
(aα

0 +bα
0 lnr)+(aα

1 r +bα
1 r−1)cosθ +(cα

1 r +dα
1 r−1)sinθ . (154)

Inserting Eq. (142) for u and Eq. (143) for ur into the following equation:

φ =
ur

u
(155)

we can obtain the exact φ . Similarly, inserting Eq. (154) and its differential into the
above equation we can obtain a numerical solution of φ by the regularized method.
We compare the exact solutions with the regularized solutions under the parameters
a = 5, b = 2, r3 = 0.8 and α = 0.01 in Fig. 5(a), and a = 3, b = 1, r3 = 0.75 and
α = 0.01 in Fig. 5(b). The results are very good.
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Figure 5: Comparing the Robin coefficients for two cases, 
where the numerical results match very well the exact results. 
 

Figure 5: Comparing the Robin coefficients for two cases, where the numerical
results match very well the exact results.

7 Conclusions

The idea of detecting unknown Robin coefficient or cracks’ position in a disk is
modeled by an inverse Cauchy problem of Laplace equation. We have shown that
the reconstruction of an unknown inner boundary data on the inaccessible part can
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be reduced to a well-posed regularized second kind Fredholm integral equation.
Then, by using the Fourier series expansion technique and a termwise separable
property of kernel function, an analytical solution for approximating the exact solu-
tion is presented. The influence of regularized parameter on the perturbed solution
is clear. The regularized solution was shown to be uniformly convergent to the ex-
act solution, and the error estimation was provided. The numerical examples have
shown that the new method could retrieve very well the missing boundary data, and
very excellent numerical results were obtained.
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