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and Their Applications in the Models of HIV-1 Infection
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Abstract: In the paper, stability for fractional order differential equations is stud-
ied. Then the result obtained is applied to analyse the stability of equilibrium for
the model of HIV.
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1 Introduction

As is known to all that the conventional calculus has been well studied and its ap-
plications can be found in many fields such as incompressible viscous flows [shan,
shu and lu(2008)], the material failure evolution [chen, gan and chen(2008)], acous-
tic waveguide modeling [lu and zhu(2007)], atomic-scale modeling [nishidate and
nikishkov(2008)] and so on. Referring to fractional calculus, it is not familiar to
most people. In fact, fractional calculus is three centuries as old as the conven-
tional calculus. But the investigation of the theory of fractional differential equa-
tions has only been started quite recently [Caputo(1967); Kilbas, Srivastava and
Trujillo(2006)]. Meanwhile, the applications of fractional differential equations
to physics, biology and engineering are a recent focus of interest [Kilbas, Srivas-
tava and Trujillo(2006); Hilfer(2001)]. Many systems are known to display frac-
tional order dynamics, such as viscoelastic systems [Bagley(1983); Koeller(1984)],
electrode-electrolyte polarization [Ichise, Nagayanagi and Kojima(1971)] and com-
plex adaptive systems in biology [Ahmed, Elgazzar and Hegazi(2008)].

More recently, there are some investigators to study the qualitative properties and
numerical solutions of fractional-order biological models [Ahmed, El-Sayed and
El-Saka(2007); Ahmed and Elgazzar(2007); Ahmed, El-Sayed and El-Saka(2004)].
In [Ahmed, El-Sayed and El-Saka(2007)], the fractional-order predator-prey model
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and the fractional-order rabies model are investigated; the existence and uniqueness
of solutions are proved; the stability of equilibrium points are studied; numerical
solutions of these models are given. In [Ahmed and Elgazzar(2007)], a fractional
order model for nonlocal epidemics is given. Stability of fractional order equations
is studied. The results are expected to be relevant to foot-and-mouth disease, SARS
and avian flu. In [Ahmed, El-Sayed and El-Saka(2004)], some Routh-Hurwitz sta-
bility conditions are generalized to the fractional order case. The results agree with
those obtained numerically for Lorenz, Rössler, Chua and Chen fractional order
equations.

We know that there are different approaches of modeling various biological sys-
tems, e.g. ordinary differential equations, difference equations, partial differential
equations and coupled map lattice. In these papers mentioned above, fractional or-
der equations (FOD) are used. The main reason is that FOD are naturally related
to systems with memory which exists in most biological systems. Also they are
closely related to fractals which are abundant in biological systems.

We know that the Human Immunodeficiency Virus type I (HIV-1) causes AIDS
(Acquired Immune Deficiency Syndrome). The major target of HIV-1 infection is
a class of lymphocytes or white blood cells known as CD4+ T-cells which are the
most abundant white blood cells of the immune system. It is thought that HIV-1,
although attacking many different cells, wreaks the most havoc on the CD4+ T-
cells by causing their destruction and decline and decreasing the body’s ability to
fight infection.

Since the early 1980s there has been a tremendous effort made in the mathematical
modeling of HIV-1. Many mathematical models were derived in order to describe
the dynamics of HIV-1 infection in the bloodstream where the cell-free-viral spread
is the predominant route of viral spread [De Leenheer and Smith(2003); Perelson,
Kirschner and De Boer(1993); Perelson(1989)]. In [Kouche and Ainseba(2007)],
Kouche et al proposed a model of cell-to-cell spread of HIV-1 infection in tissue
culture, i.e.,

dx(t)
dt = rx(t)

(
1−

x(t)+y(t)+
t∫
−∞

f (t−s)x(s)y(s)
C+x(s) ds

K

)
−α

x(t)y(t)
C+x(t)

dy(t)
dt = β

t∫
−∞

f (t−s)x(s)y(s)
C+x(s) ds−δy(t),

(1)

where x(t) and y(t) denote the concentrations of healthy and infected cells at time
t respectively, r is the effective reproductive rate of healthy cells, K is the effective
carrying capacity of the system, δ is the death rate of infected cells, α is the max-
imum rate of infection, β is such that β

α
represents the fraction of cells surviving
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the incubation period, and C denote the half saturation constant of the proliferation
process. By taking as a delay kernel f (s) the Gamma distribution function of order
0 called weak kernel

f (s) = µe−µs, s≥ 0,

and putting

z(t) =
t∫

−∞

µe−µ(t−s) x(s)y(s)
C + x(s)

ds,

they obtained the following system of three ordinary differential equations

dx(t)
dt = rx(t)

(
1− x(t)+y(t)+z(t)

K

)
−α

x(t)y(t)
C+x(t)

dy(t)
dt = β z(t)−δy(t)

dy(t)
dt = µ

x(t)y(t)
C+x(t) −µz(t)

(2)

To our knowledge, no works are contributed to the analysis for a model of fractional-
order differential equations of HIV-1. Because of this, in this paper, we investigate
the following fractional-order differential system

Dqx(t) = rx(t)
(

1− x(t)+y(t)+z(t)
K

)
−α

x(t)y(t)
C+x(t) ,

Dqy(t) = β z(t)−δy(t),

Dqz(t) = µ
x(t)y(t)
C+x(t) −µz(t),

(3)

and study local asymptotical stability of its equilibrium points.

This paper is organized as follows. In section 2, we present some necessary defini-
tions and notations. In section 3, fractional order differential systems are studied,
and asymptotic stability conditions for equilibrium points are given. In section 4,
by utilizing the given result, we analyze the stability of a fractional order model of
HIV-1. Simulations and some remarks are given in section 5.

2 Preliminaries

Fractional derivatives are generalizations for derivative of integer order. There are
several forms of definitions of fractional integral and derivative, such as, Riemann-
Liouville fractional integral and fractional derivative, Marchaud fractional inte-
gral and derivative, Caputo’s integral and derivative, Grünwald-Letnikov fractional
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derivative, and so on. It should be pointed out that applied problems require defi-
nitions of fractional derivatives allowing the utilization of physically interpretable
initial conditions. In fact, Caputo’s fractional derivative exactly satisfies these de-
mands. The Caputo fractional derivative was introduced [Caputo(1967); Kilbas,
Srivastava and Trujillo(2006)] to alleviate some of the difficulties associated with
Riemann-Liouville approach to fractional differential equations when applied to the
solution of physical problems. Therefore, in this article, we deal with the systems
of fractional-order differential equations involving Caputo’s derivative.

For completeness, here we first present the definitions and some fundamental facts
on Caputo’s derivative of fractional order.

Let [a,b] be a finite interval on the real line R.

Definition 1 For any q ∈ C, R(q)≥ 0, Caputo fractional derivative of order q of
f (t) can be defined as

CDq
a+ f (t) =

1
Γ(n−q)

∫ t

a

f (n)(s)
(t− s)q+1−n ds,

where

n = q f or q ∈ N0; otherwise n = [R(q)]+1.

In particular, when 0 < R(q) < 1, we have

CDq
a+ f (t) =

1
Γ(1−q)

∫ t

a

f ′(s)
(t− s)q ds.

As is well known, in the fractional differential equations, the initial conditions are
specified in terms of fractional derivatives of the unknown function in the Riemann-
Liouville approach. But, in the Caputo approach, the initial conditions could be
specified in terms of integer derivatives with known physical interpretations. This
means that the Caputo formulation is more popular in applications of physical in-
terest. In fact, the following assertion, which yields the Laplace transform of the
Caputo fractional derivative CDq

0+ f (t), is true.

Lemma 1 [Kilbas, Srivastava and Trujillo(2006)] Let q > 0, n−1 < q≤ n (n ∈ N)
be such that y(t) ∈Cn(R+), y(n)(t) ∈ L1(0,b) for any b > 0, the estimate

|y(n)(t)| ≤ Beq0t (t > b > 0)

holds for y(n)(t), the Laplace transforms L [y(t)] and L [Dny(t)] exist, and

lim
x→+∞

(Dky)(t) = 0, k = 0,1, · · · ,n−1.
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Then the following relation holds:

L
[C

Dq
0+y(t)

]
= sqL [y(t)]−

n−1

∑
k=0

sq−k−1Dky(0).

In particular, if 0 < q≤ 1, then

L
[C

Dq
0+y(t)

]
= sqL [y(t)]− sq−1y(0).

Because of so, in the sense of Caputo’s fractional derivative, we could consider the
following initial value problem{ CDq

0+y(t) = f (x,y),
y(0) = y0, y′(0) = y1, · · · ,y(n−1)(0) = yn−1.

For the sake of simplicity, in this paper we denote the Caputo’s fractional derivative
of order q by Dq.

3 Stability conditions for fractional order differential equations

In this section, we study the stability for fractional differential equations.

Consider the system

Dqx(t) = f1(x,y), Dqy(t) = f2(x,y), q ∈ [0,1). (4)

with the initial values

x(0) = x0, y(0) = y0, (5)

where the fractional derivative in (4) is in the sense of Caputo fractional derivative.

In order to evaluate the equilibrium points, set

Dqx(t) = 0, Dqy(t) = 0⇒ f1(x,y) = 0, f2(x,y) = 0,

from which we can obtain the equilibrium solutions xeq, yeq.

To evaluate the asymptotic stability, let

x(t) = xeq +δ1(t), y(t) = yeq +δ2(t),

then

Dq(xeq +δ1(t)
)

= f1
(
xeq +δ1(t),yeq +δ2(t)

)
,
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Dq(yeq +δ2(t)
)

= f2
(
xeq +δ1(t),yeq +δ2(t)

)
,

from which we can get

Dq
δ1(t) = f1

(
xeq +δ1(t),yeq +δ2(t)

)
,

Dq
δ2(t) = f2

(
xeq +δ1(t),yeq +δ2(t)

)
.

Note that, for i = 1,2,

fi

(
xeq +δ1(t),yeq +δ2(t)

)
' fi

(
xeq,yeq

)
+

∂ fi

∂x

∣∣∣(
xeq,yeq

)δ1(t)+
∂ fi

∂y

∣∣∣(
xeq,yeq

)δ2(t)+ · · · ,

where fi

(
xeq,yeq

)
= 0. Thus we have

Dq
δ1(t)'

∂ f1

∂x

∣∣∣(
xeq,yeq

)δ1 +
∂ f1

∂y

∣∣∣(
xeq,yeq

)δ2,

Dq
δ2(t)'

∂ f2

∂x

∣∣∣(
xeq,yeq

)δ1 +
∂ f2

∂y

∣∣∣(
xeq,yeq

)δ2.

Furthermore we obtain the following system

Dq−→
δ = C

−→
δ , (6)

with the initial values

δ1(0) = x(0)− xeq, δ2(0) = y(0)− yeq, (7)

where

−→
δ =

[
δ1
δ2

]
, C =

[
c11 c12
c21 c22

]
,

and

ci1 =
∂ fi

∂x

∣∣∣(
xeq,yeq

), ci2 =
∂ fi

∂y

∣∣∣(
xeq,yeq

), i = 1,2.

Let λ1 and λ2 are the eigenvalues of C and B is the matrix of eigenvectors of C. We
have

B−1CB = Λ,
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where Λ is a diagonal matrix of C given by

Λ =
[

λ1 0
0 λ2

]
.

Then

CB = BΛ, C = BΛB−1,

which leads to

Dq−→
δ =

(
BΛB−1)−→

δ ,

Dq
(
B−1−→δ

)
= Λ

(
B−1−→δ

)
,

thus

Dq−→
β = Λ

−→
β ,

−→
β = B−1−→

δ , (8)

where

−→
β =

[
β1
β2

]
,

i.e.{
Dqβ1 = λ1β1,
Dqβ2 = λ2β2.

(9)

The solutions of Eqs. (9) are given by

β1(t) =
∞

∑
n=0

(λ1)ntnα

Γ(nα +1)
β1(0) = Eα(λ1tα)β1(0), (10)

β2(t) =
∞

∑
n=0

(λ2)ntnα

Γ(nα +1)
β2(0) = Eα(λ2tα)β2(0), (11)

where the function Eq(·) is the classical Mittag-Leffler function [Ahmed and El-
gazzar(2007)], defined by

Eq(z) :=
∞

∑
n=0

zk

Γ(nq+1)
, z ∈ C; R(q) > 0.

By using the result of Matignon [Matignon(1996)], we know that, if

|arg(λ1)|>
qπ

2
, |arg(λ2)|>

qπ

2
,
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then β1(t), β2(t) are decreasing and then δ1(t), δ2(t) are decreasing.

So the equilibrium point
(

xeq,yeq

)
is locally asymptotically stable if all the eigen-

values of the Jacobian matrix

A =
[

∂ f /∂x ∂ f /∂y
∂g/∂x ∂g/∂y

]
evaluated at equilibrium point satisfies the following condition:

|arg(λ )|> qπ

2
. (12)

4 Stability of fractional order models of HIV-1 infection

In this section, by using the result obtained in section 3, we investigate the stability
of fractional order model of HIV-1 infection, i.e., the system (3).

In order to find the equilibria of system (3), we put
rx
(

1− x+y+z
K

)
−α

xy
C+x = 0,

β z−δy = 0,

µ
xy

C+x −µz = 0.

(13)

It is not difficult to see the algebraic system (13) has three equilibria: the trivial
equilibrium E0 = (0,0,0), the healthy equilibrium E1 = (K,0,0), and in case that
the basic reproduction number R0 = 1

δ

(
βK

C+K

)
> 1, there is a third positive equim-

ibria E∗ =
(
x∗,y∗,z∗

)
called infected equilibrium, where

x∗ =
δC

β −δ
, y∗ =

βC(rδC− rKβ − rKδ )
(β −δ )(β rC + rCδ +αKβ −Kαδ )

,

z∗ =
δC(rδC− rKβ − rKδ )

(β −δ )(β rC + rCδ +αKβ −Kαδ )
.

At any point M(x,y,z), the Jacobian matrix of system (3) is given by

J(M) =

 r− 2rx+ry+rz
K − αCy

(C+x)2 −r x
K −

αx
C+x −r x

K

0 −δ β
µCy

(C+x)2 µ
x

C+x −µ

 .
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Theorem 1 Assume that R0 < 1. Then E1 = (K,0,0) is locally asymptotically sta-
ble.

Proof. At healthy equilibrium E1 = (K,0,0), the characteristic polynomial has the
form

P(λ ) = |λ I− J(E1)|=

∣∣∣∣∣∣
λ + r r + αK

C+K r
0 λ +δ −β

0 −µ
K

C+K λ + µ

∣∣∣∣∣∣
= λ

3 +(λ + µ +δ )λ 2 +[rµ + rδ + µδ (1−R0)]λ + rδ µ(1−R0).

Since R0 < 1, all the coefficients of P(λ ) are positive, and the inequality

(λ + µ +δ )[rµ + rδ + µδ (1−R0)] > rδ µ(1−R0)

holds. Thus by Routh-Hurwitz Theorem, we know that all roots of P(λ ) have
negative real parts. This means that the condition (12) is satisfied and E1 = (K,0,0)
is locally asymptotically stable.

The Jacobian matrix J(E∗) of (3) at E∗ =
(
x∗,y∗,z∗

)
is given by

J(E∗) =

 −a −b −r x∗
K

0 −δ β
µCy∗

(C+x∗)2 µ
δ

β
−µ

 ,

where a =−r+ r
K y∗+2 r

K x∗+ r
K z∗+ αCy∗

(C+x∗)2 and b = r x∗
K +α

δ

β
. In order to proceed

further, we make the following assumption on the parameters of system (3)

r−2r
x∗

K
− r

y∗

K
− r

K
z∗− αCy∗

(C + x∗)2 < 0, (14)

and denote by D and ∆, the following expressions:

D = 2aδ +a2 +ar
x∗

K
Cy∗

(C + x∗)2 −b
Cβy∗

(C + x∗)2 ,

∆ = D2−4(a2
δ +aδ

2)
(

r
x∗

K
Cy∗

(C + x∗)2 +a
)
.

Theorem 2 Assume that R0 > 1 and (14) holds.
1) If either ∆ < 0 or ∆ = 0 and D > 0, then E∗ is locally asymptotically stable for
all µ > 0;
2) If ∆ = 0 and D < 0, then there exists µ0 > 0, such that E∗ is locally asymptoti-
cally stable for µ > 0 and µ 6= µ0;
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3) If ∆ > 0, we have the following two cases:
(i) D > 0, then E∗ is locally asymptotically stable for all µ > 0;
(ii) D < 0, then there exist 0 < µ1 < µ2, such that E∗ is locally asymptotically

stable for µ < µ1 or µ > µ2.

Proof. At the infected equilibrium E∗ =
(
x∗,y∗,z∗

)
, the characteristic polynomial

has the form

P(λ ) = |λ I− J(E∗)|=

∣∣∣∣∣∣∣
λ +a b r x∗

K
0 λ +δ −β

− µCy∗

(C+x∗)2 −µ
δ

β
λ + µ

∣∣∣∣∣∣∣
= λ

3 +(a+ µ +δ )λ 2 +
(

aµ +aδ +
rx∗

K
µCy∗

(C + x∗)2

)
λ

+δ
rx∗

K
µCy∗

(C + x∗)2 +b
µβCy∗

(C + x∗)2 .

(15)

Since (14) holds, then a > 0 and all the coefficients of P(λ ) are positive. Applying
Routh-Hurwitz Theorem to (15), we know that E∗ =

(
x∗,y∗,z∗

)
is locally asymp-

toticqlly stable if

A(µ) = (a+δ + µ)
(

aδ +aµ +
rx∗

K
µCy∗

(C + x∗)2

)
−b

µβCy∗

(C + x∗)2

−δ
rx∗

K
µCy∗

(C + x∗)2 > 0.

(16)

We rewrite (16) into the following form

A(µ) =
(

r
x∗

K
Cy∗

(C + x∗)2 +a
)

µ
2 +Dµ +aδ

2 +a2
δ ,

for which the discriminant is ∆. Then we have the following conclusion:

If ∆ < 0 or ∆ = 0 and D > 0, then A(µ) have no real root or one negative real root.
In this case A(µ) > 0 and E∗ is locally asymptotically stable for all µ > 0.

If ∆ = 0 and D < 0, then A(µ) have one positive real root µ0. Thus A(µ) > 0 for
all µ > 0 and µ 6= µ0. E∗ is then locally asymptotically stable for all µ > 0 and
µ 6= µ0.

Now assuming that ∆ > 0. Then if D > 0, A(µ) have two negative real roots, so
A(µ) > 0. In this case the infected equilibrium E∗ is locally asymptotically stable.
In the case D < 0, A(µ) have two positive real roots 0 < µ1 < µ2 such that A(µ) > 0
for µ ∈ (0,µ1)∪ (µ2,+∞). Thus we have that E∗ is locally asymptotically stable
for µ ∈ (0,µ1)∪ (µ2,+∞).
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5 Simulations

In this section, we give some numerical simulations of model (3) to illustrate our
results on stability, the values of the parameters are given in Table 1, more details
can be found in [Kouche and Ainseba(2007)].

Table 1: Parameters and values of models (3)

Parameters Values
r healthy cell reproductive rate 0.65/day

K carrying capacity of the system 2×106/ml
δ death rate of infected cells 0.3/day

x0 initial concentration of healthy cells 5×105/ml
y0 initial concentration of infected cells 5×102/ml

C the half saturation constant of the proliferation process 3.7×106/ml
α the maximum rate of infection 11/day

Suppose that 7.7% of infected cells survive incubation which corresponds to a value
of β = 0.847. Then, R0 = 0.9906 < 1, the condition of Theorem 1 is satisfied.
Numerical simulations (see Figure 1) show that the healthy cells predominate. In
this case, E1 is asymptotically stable. However, we note that in reality it is unlikely
that so few cells would survive latency.

0 50 100 150 200 250 300 350 400
0.5

1

1.5

2
x 10

6

time(day)

x(
t)

0 50 100 150 200 250 300 350 400
200

300

400

500

time(day)

y(
t)

Figure 1: q = 0.9, 7.7% of infected cells survive incubation

Suppose that 30% of infected cells survive incubation which corresponds to a value
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of β = 3.3. Then, R0 = 3.8596 > 1, a = 0.0815, D =−0.0937 < 0, ∆ = 0.0051 >
0. The condition 3(ii) of Theorem 2 is then satisfied. Two positive real roots µ1
and µ2 are: µ1 = 0.111, µ2 = 0.9712. According to Theorem 2, we know if µ ∈
(0,µ1)∪ (µ2,+∞), the infected equilibrium E∗ = (3.7×105,1.8×105,1.6×104)
is locally asymptotically stable. Then, we take µ = 1/day which is a realistic
value since the incubation period is around 1 day (see [Spouge, Shrager and Dim-
itrov(1996)]). Numerical simulations give the graphics in Figure 2. In this case,
healthy cells and infected cells co-exist. This would correspond to the case where,
in models representing cell-free viral spread, we have an endemically infected
steady state. This means that infection is present but it does not grow out of bound,
and levels of healthy cells do not crash to zero. In the (x,y)-plane, trajectories spiral
toward the equilibrium (see Figure 3).

100 150 200 250 300 350 400
3.9

4

4.1

4.2
x 10

5

time(day)

x(
t)

100 150 200 250 300 350 400
1.75

1.8

1.85
x 10

5

time(day)

y(
t)

Figure 2: q = 0.9, µ = 1, 30% of in-
fected cells survive incubation
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y(
t)

Figure 3: q = 0.9, µ = 1, (x,y)-plane

If we take µ = 0.5/day, then the components x(t) and y(t) oscillate with increasing
time (see Figure 4). In the (x,y)-plane, trajectories are approaching the periodic
solution as the time increases (see Figure 5). Thus we can say that E∗ is unstable.

Suppose that 80% of infected cells survive incubation which corresponds to a value
of β = 8.8. Then, R0 = 10.2924 > 1, a = 0.0251, D =−0.1678 < 0, ∆ = 0.0279 >
0. The condition 3(ii) of Theorem 2 is then satisfied. Two positive real roots µ1
and µ2 are: µ1 = 0.0146, µ2 = 6.1303. According to Theorem 2, we know if µ ∈
(0,µ1)∪ (µ2,+∞), the infected equilibrium E∗ = (1.3×105,1.97×105,6.7×103)
is locally asymptotically stable. Then, we take µ = 7/day, numerical simulations
are showed in Figure 6. In the (x,y)-plane, trajectories spiral toward the equilib-
rium (see Figure 7).

If we take µ = 1/day which is a realistic value, then the components x(t) and y(t)
oscillate with increasing time (see Figure 8). And compared with Figure 4, the
oscillations are more frequent(i.e., the periods are shorter) and the amplitudes are
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Figure 4: q = 0.9, µ = 0.5, 30% of
infected cells survive incubation
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Figure 5: q = 0.9, µ = 0.5, (x,y)-
plane
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Figure 6: q = 0.9, µ = 7, 80% of in-
fected cells survive incubation
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Figure 7: q = 0.9, µ = 7, (x,y)-plane

smaller. In the (x,y)-plane, trajectories are approaching the periodic solution as
the time increases (see Figure 9), so we can say that E∗ is unstable. Besides, we
conclude that increasing the value of β will decrease the periods and the amplitudes
of the periods solutions.

Remark 1. In the simulations above, the fractional-order q = 0.9 is close to the
integer-order 1. The results obtained from the fractional model of HIV-1 are very
similar to those of the ODE model. But we have to point out that in ODE model,
if not more than 7.7% of infected cells survive the incubation period, infected cells
are cleared and the infection dies out as the time increase. However, in our model,
from Figure 1, we see that infected cells can not be all cleared, though the number
is very smaller compared with that of the healthy cells. Furthermore, if the infected
equilibrium E∗ is unstable, the amplitudes in ODE model are more larger than those
in our model.
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Figure 8: q = 0.9, µ = 1, 80% of in-
fected cells survive incubation
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Figure 9: q = 0.9, µ = 1, (x,y)-plane

Remark 2. In section 3, we have pointed out that if all the eigenvalues of the
Jacobian matrix satisfy the condition |arg(λ )| > qπ

2 , then the equilibrium point is
locally asymptotically stable. So in the case of 80% that infected cells survive
incubation, q = 0.9, µ1 = 0.0146, µ2 = 6.1303, if we take µ = 5 ∈ (µ1,µ2), the
infected equilibrium E∗ is also locally asymptotically stable (see Figure 10 and
Figure 11). Moreover, we can calculate that |arg(λ1)|= 3.1416 and |arg(λ2,3)|=
1.5643. They are all larger than qπ

2 = 0.9 ∗π/2 = 1.4137. Here, the bifurcations
are not µ1 and µ2, while in the ODE model they are the bifurcations.
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Figure 10: q = 0.9, µ = 5, 80% of
infected cells survive incubation

0.5 1 1.5 2 2.5 3

x 10
5

1

1.5

2

2.5

3

3.5
x 10

5

x(t)

y(
t)

Figure 11: q = 0.9, µ = 5, (x,y)-
plane

Remark 3. In the simulations above, we take the fractional-order q = 0.9 which is
close to the integer-order 1. If we take the order q = 0.5, the simulations are showed
in the following figures. The results are very different from those of the fractional-
order q = 0.9. Furthermore, we can find that if q < 0.9 which is far way from the
integer-order 1, simulations are all very different. Why do such differences happen
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and what the fractional-order serves in the HIV-1 model? We will discuss these
questions in our later studies.
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Figure 12: q = 0.5, µ = 1, 30% of
infected cells survive incubation
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Figure 13: q = 0.5, µ = 1, 80% of
infected cells survive incubation

Acknowledgement: This work is supported partly by the NNSF of China (Grant
No. 10701023).

References

Ahmed, E.; Elgazzar, A. S.; Hegazi, A. S. (2008): Modeling the avian flu,
lessons form complex adaptive systems in biology. Appl. Math. Compt., vol.
195, pp. 351–354.

Ahmed, E.; El-Sayed, A. M. A.; El-Saka, H. A. A. (2007): Equilibrium
points, stability qnd numerical solutions of fractional-order predator-prey and
rabies models. J. Math. Anal. Appl., vol. 325, pp. 542–553.

Ahmed, E.; Elgazzar, A. S. (2007): On fractional order differential equations
model for nonlocal epidemics. Physica A, vol. 379, pp. 607–614.

Ahmed, E.; El-Sayed, A. M. A.; El-Saka, H. A. A. (2004): On some
Routh-Hurwitz conditions for fractional order differential equations and their
applications in Lorenz, Rössler, Chua, and Chen systems. Physics Letters A,
vol. 358, pp. 1–4.

Bagley, R. L. (1983): A theoretical basis for the application of fractional
calculus to viscoelasticity. Journal of Rheology, vol. 27, pp. 201–210.

Caputo, M. (1967): Linear models of dissipation whose Q is almost indepen-
dent, II. Geophy. J. Roy. Astraunom., vol. 13, pp. 529–539.



316 Copyright © 2009 Tech Science Press CMES, vol.39, no.3, pp.301-317, 2009

Chen, Z.; Gan, Y.; Chen, J. K. (2008): A Coupled Thermo-
MechanicalModel for Simulating the Material Failure Evolution Due to Lo-
calized Heating. CMES: Computer Modeling in Engineering & Sciences, vol.
26, pp. 123–137.

De Leenheer, P.; Smith, H. L. (2003): Virus dynamics: A global analysis.
SIAM J. Appl. Math., vol. 63, pp. 1313–1327.

Hilfer, R. (ed) (2001): Applications of fractional calculus in physics. World
Scientific, New Jersey.

Ichise, M.; Nagayanagi, Y.; Kojima, T. (1971): An analog simulation of
noninteger order transfer function for analysis of electrode process. J. Elec-
troanal Chem., vol. 33, pp. 253–265.

Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. (2006): Theory and
Applications of fractional differential equations. North-Holland Mathematics
Studies 204, Elsvier, Amsterdam.

Koeller, R. C. (1984): Application of fractional calculus to the theory of
viscoelasticity. J. Appl. Mech., vol. 51, pp. 299–307.

Kouche, M.; Ainseba, B. (2007(to appear)): A mathematical model of HIV-1
infection in tissue culture. Discrete and Continuous Dynamical System, Sup-
plement volume.

Lu, Y. Y.; Zhu, J. X. (2007): Perfectlymatched layer for acoustic waveguide
modeling¡ª benchmark calculations and perturbation analysis. CMES: Com-
puter Modeling in Engineering & Sciences, vol. 22, pp. 235–247.

Matignon, D. (1996): Stability results for fractional differential equations
with applications to control processing. Computational Engineering in System
Application, Lille, France, pp. 963–968.

Metzler, R.; Schick, W.; Kilian, H. G.; Nonnenma-cher, T. F. (1995): Re-
laxation in filled polymers: A fractional calculus approach. J. Chem. Phys.,
vol. 103, pp. 7180–7186.

Nishidate, Y.; Nikishkov, G. P. (2008): Atomic-scaleModeling of Self-
Positioning Nanostructures. CMES: Computer Modeling in Engineering &
Sciences, vol. 26, pp. 91–106.

Perelson, A. S. (1989): Modelling the interaction of the immune system with
HIV. Mathematical and Statistical Approaches to AIDS Epidemiology(ed. C.
Castillo-Chavez), Springer-Verlag, New York, pp. 350–370.



Stability Analysis for Fractional Differential Equations 317

Perelson, A. S.; Kirschner, D. E.; De Boer, R. (1993): Dynamics of HIV-1
infection of CD4+ T-cells. Math. Biosc., vol. 114, pp. 81–125.

Shan, Y. Y.; Shu, C.; Lu, Z. L. (2008): Application of Local MQ-DQ
Method to Solve 3D Incompressible Viscous Flows with Curved Boundary.
CMES: Computer Modeling in Engineering & Sciences, vol. 25, pp. 99–113.

Spouge, J. L.; Shrager, R. I.; Dimitrov, D. S. (1996): HIV-1 infection
kinetics in tissue cultures. Math. Biosc., vol. 138, pp. 1–22.




